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Abstract

In this paper, we propose a Quality of Service (QoS) architecture for an end-system protocol-suite. We
use TCP/IP using ATM as the networking paradigm, as a testbed to propose our QoS architecture. With
the help of no-load condition, host-load condition, and network-load condition experiments, we identify the
QoS perturbations caused in such an environment. We analyze these results behind the QoS perturbations,
and use them to arrive at the missing components in the current protocol architecture.
We use TCP/IP/AAL5/ATM, and AAL5/ATM as two performance comparing protocol suites to obtain

knowledge on the missing QoS components. We measure the application-level QoS in terms of throughput,
delay, round trip time, and loss to identify the base-line performance an application can expect from
such an environment. From the no-load condition we measure the behavior of these protocols at various
data rates and user submitted data block sizes. We demonstrate the trade-o�s involved in obtaining
high throughput, low delays, low Round Trip Time, and zero losses at di�erent data rates. We use
host-load condition experiments to understand the interaction between the CPU-intensive jobs and the
communication-intensive jobs. We use network-load condition experiments to observe interaction between
multiple streams of the above two protocol-suites, and its e�ect on the application QoS.
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1 Introduction

All applications, from complex collaborative applications such as \Video Collaborative (VC)" application,
to simple applications such as \ftp" application, expect predictable performance. The terms predictability,
and performance need some explanation in the context of this work. An application behaves predictably
when the application user observes the statistical behavior of the application, and it is consistent with the
requested behavior by him. The term performance is a relative term, which is a measure of the behavior of
an application. So an application is said to be performing predictably when it is in the behavioral range
as approved by the user. An example to understand these concepts is given in the following paragraphs.
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Figure 1: Meaning of point-of-operation with an example

Consider a Video Collaborative (VC) application in which audio, and video are sent across the network
among a group of collaborative users (e.g., a teacher, and students of the class). A user in such an
environment requires a set of performance measures (Quality of Service parameters) to be met to use this
application. For example, a user may be interested in the number of frames received per second (FPS),
latency, or delay between the sender and the receiver, for a good on-line interaction, and less loss and jitter
in terms of user perceivable range. These requirements decide the point-of-operation for the application
(refer to Figure 1). Most of the time a small deviation from this point-of-operation is acceptable by many
applications, as shown in the �gure. The volume encompassed by such a requirements is called the range
of operation in this work. We can say that the application is performing predictably, if it's performance
measures are within the acceptable range, as de�ned by the user; as shown in Figure 1.
Deviation from the point-of-operation manifest di�erently in di�erent applications; in a VC application

this may re
ect as reduction in the number of frames per second (FPS), and in an ftp application this
may re
ect as reduction in the throughput. This degradation in the application performance is because
of three reasons: end-system protocol behavior in high speed networks (HSN), the host load condition, and
the network load condition.
In this paper, we address the problems an end-to-end application encounters under the above three

conditions. In our �rst experiment we run a test application between two Sparc 10s under no CPU,
and network load condition (no-load condition); these results are used to identify the behavior of the
end-system protocols for di�erent control parameters, and host machine limitations. In the second set
of experiments we load the receiver side CPU to test its e�ect on the application behavior. And, in the
third set of experiments, we observe the e�ect of network-load on the end-system application behavior.
We show how these degradations manifest into Quality of Service (QoS) perturbations in the application,
with the help of the QoS measures such as throughput, delay, Round Trip Time (RTT), and loss. With
the help of the results obtained in the above experiments we identify the missing components in the
current technology for the end-system QoS guarantee.
To understand an application behavior qualitatively, we use an ATM LAN, with TCP/IP as the

end-system protocol-suite. We experiment with TCP/IP/AAL5/ATM (we refer to it as TCP), and
AAL5/ATM (we refer to it as direct) protocols under no-load, various CPU, and network load conditions.
For an application using such an environment, we �x a point-of-operation to di�erent values of target
o�ered load, and observe how QoS measures are e�ected to the varying protocol control parameters. These
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protocol control parameters include, in case of direct, the application requested bandwidth (or data rate),
and the application submitted data-block size; in case of TCP, these control parameters include MSS
(Maximum Segment Size), the receive and the send window sizes, and the user block size. In this work
we �x the TCP window sizes to 64 KBytes, and the MSS to 9148 Bytes to obtain maximum throughput.
Refer to [1, 2] for more details on the relation between the window size, MSS, and user block size.
The organization of the paper is as follows: in section 2 we present the testbed used for this work, and

discuss the relevant background to understand the protocol behavior in di�erent experiments. Section 3
present a discussion on the e�ect of protocol behavior, host CPU load, and network load conditions on
the application QoS. We use these results to deduct the modi�cations needed in the new generation of
end-system protocols in section 4. Conclusions and future work are presented in the last section.

2 Testbed and application
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Figure 2: A detailed testbed used in this work

Figure 2 presents the testbed used in this work. We have two 16 X 16 port Fore Systems ASX-100
switches connected in tandem. A SUNsparc 10, two SUNsparc 2 workstations are connected to each
of the switches. These workstations use Fore Systems SBA-200 ATM cards. The maximum bandwidth
between the workstation and the switch, and between the switches is 100 Mbps. We ran the application
both through TCP/IP running over AAL5/ATM, and through AAL5/ATM [3, 4]. When the application
runs over TCP it uses an end-to-end ABR (Available Bit Rate) [5] connection, whereas when it uses
direct AAL5 it has the option of selecting either a CBR (Constant Bit Rate) or an ABR connection.
The application running in these experiments merely generates data for transmission, but with explicitly
controlled properties. The command-line options to this application are the size of the user data block,
the number of user data blocks sent, and the rate at which these blocks are sent (in direct case, the
last parameter will be the peak bandwidth reserved for this application). When it is running on AAL5
directly it can reserve the requested bandwidth in the case of CBR. We use only the two SUNsparc 10
workstations for no-load, and CPU-load condition experiments. For network-load condition experiments,
we use all the six workstations to load the 100 Mbps channel between the switches.
On the receiver side of this application, we measure throughput, delay, and loss (number of retransmis-

sions in case of TCP), and on the sender side we measure RTT. These parameters capture the dynamic
behavior of the host, and the network (refer to Figure 3). In all the three experiments we use these QoS
measures to identify bottlenecks to obtain predictable performance for the end-user application. Through-
put is the amount data received per second, which is measured on everyN th packet (as shown in Figure 3),
and averaged over the total communication time. Throughput requirement of an application re
ects the
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Figure 3: An insight into the QoS parameter signi�cance on an ATM network

amount of host, and network bu�ers occupied by the application. In ATM-like networks, this parameter
is also a measure of the amount of bandwidth to be reserved for this application. The maximum observed
throughput on a host machine re
ects some of the system de�ciencies such as lesser number of system
bu�ers, host-network interface problems etc. A counterpart to throughput is loss, which also re
ects the
above mentioned system de�ciencies. Loss in our work is de�ned as the percentage of data lost during
the total communication time. We identify data lost on the receive side as shown in Figure 3, to calculate
the loss percentage. Loss, in case of TCP, is observed as more number of retransmissions which shrinks
the TCP congestion window, which in turn reduces the end-to-end throughput. This parameter in case
of UDP, or AAL5/ATM connection re
ects reduced throughput due to unpredictable loss of data. Delay
is the average delay incurred for N packets, which is averaged over the total communication time. Delay
parameter is a measure of the queuing delays in the end-system protocol suite, delay at the host-network
interface, and delay on the network. This parameter also re
ects the dynamic behavior of the end-system
protocol suite, such as the TCP-retransmission algorithm. RTT is the amount of time taken for the
N th packet to reach the receiver, and back to the sender; the average RTT is calculated over the total
communication period. RTT gives the size of the control loop of the application, as shown in Figure
3. In ATM-like networks, RTT tells the network element what sort of trade-o�s it can make between
responsiveness, bu�er size requirements, bandwidth available, number of connections it can support, etc.
[5].
Figure 4 shows the interaction between TCP(UDP)/IP and AAL5/ATM in a LAN environment [6].

TCP, and UDP maintain per-connection based information. In TCP the control parameters such as
send and receive windows, MSS, timers, and algorithms such as slow start and Nagle's algorithm are
maintained on per-connection basis. These parameters are used to make an end-to-end user connection
lossless, and react to congested host and network environment. Unlike TCP, UDP does not have elaborate
control parameters to make its connections lossless. Hence, it depends on the underlying protocols to
behave as lossless as possible.
Both TCP, and UDP send its data to IP, where no distinction is made between the connections from

the two protocols. As a result, IP might generate varying delay to di�erent connections, also losses are
unpredictable. Loss of data in IP is never informed to its user. Hence, these losses in case of UDP manifest
into loss of application packets. In TCP [7, 8] it is observed at the end of one or more RTTs, which will
re
ect as in the retransmission algorithm and hence the reduction in throughput. The congestion control
algorithms in TCP may not be as helpful as the congestion avoidance algorithms such as slow start [10].
This is because of the high bandwidth to delay product on ATM networks. The ATM community is
looking at the rate-based [9], and the credit-based [11] congestion avoidance algorithms [12].
In our environment IP feeds this data to ATM Adaptation Layer 5 (AAL5). A clear picture of the data
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ow through the end-to-end AAL5s is given in Figure 4. A user data block submitted to AAL5 (either
through TCP/IP, or directly to AAL5) is segmented into 9148 byte (most of the time) AAL5 CSPDUs
[3] before queuing in Q1 as shown in the �gure. If the user data is not rate controlled then the Q1 might
over
ow resulting in loosing data on the sender side itself. These CSPDUs are segmented into 48 Byte
cells and are queued in the ATM layer (Q2) to be sent across the network. If no per ATM connection
queues exist, even Q2 might over
ow if the combined data rates of the applications are high compared to
the number of bu�ers allocated to Q2. Loss of cells might occur on the network if the application exceeds
the requested bandwidth or if the network is congested. On the receive side, the cells are reassembled
into a CSPDU by ATM and is given to AAL5. AAL5 then assembles these CSPDUs to form a user
packet. CSPDUs are dropped in ATM (at Q3) if one or more cells belonging to a CSPDU is lost, this
loss of CSPDU results in dropping the user packet (at Q4).

3 QoS perturbing factors

A user application requested QoS is perturbed by the protocol behavior at di�erent host and network
load conditions, and at various data rate conditions. In this section we explore the behavior of TCP and
direct connections under such conditions. We chose requested bandwidth to represent di�erent classes
of applications. For example, 0.5 - 1.5 Mbps represents MPEG-1 compressed video stream, and 10 - 65
Mbps represents high data rate applications. We studied the above two classes of applications to gain
more insight into the behavior of direct ATM versus TCP/ATM connections.

3.1 No-load condition experiments

In this paper, the behavior of the protocol observed at various requested data rates is referred as no-load
experiments. With the help of these experiments we can identify the behavior of the protocols for di�erent
control parameters, and the host machine limitations. We use this information to suggest the simple, but
e�ective modi�cations required in the current protocols.
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In [1] we conducted a study on the e�ect of control parameters on the QoS of an application in the
current environment. In this work we evaluated the interaction between the UDP(TCP) with IP. We
reported that most of the losses in UDP occur because of the bu�er over
ow in IP (as shown in Figure
4). Since there is no back-pressure from IP to UDP (or to TCP) on the end-systems, these losses are
unreported to UDP. We also demonstrated that losses can be reduced considerably, using a simple rate
control on the sender side. When multiple connections are processed through the end-system assigning
the appropriate rate to an application is a challenge. From these results we can conclude two points;
�rstly, to reduce the losses in IP, a simple back-pressure algorithms should be devised between

UDP (or TCP), and IP (loacl feedback); secondly, a rate-control algorithm must be devised,
which allocates a data rate to an application depending on the QoS need of the application. The second
requirement is dependent on many system dependent factors such as the total number of bu�ers available
on the system, the maximum data rate supported by the system etc. We answer some of the system
dependent questions in our no-load experiments.

Common direct related TCP related
Requested Application ATM AAL5/ATM AAL5/ATM Loss Delay Delay TCP

delivered delivered
bandwidth Block size throughput sender receiver in % on AAL5 on TCP throughput
in Mbps in KBytes in Mbps statistics statistics in msec in msec in Mbps

0.5 1 0.47 12800/12109/5.40 12109/12109/0 5.40 41.6 127.2 0.49
8 0.48 1600/1582/1.12 1582/1582/0 1.12 48.9 131.0 0.5
64 0.49 1600/1526/4.62 1526/1526/0 5.00 128.2 131.0 0.51

1.5 1 1.40 12800/12125/5.27 12125/12125/0 5.27 15.36 41.52 1.49
8 1.43 1600/1591/0.56 1591/1591/0 0.56 17.44 43.66 1.49
64 1.44 1600/1544/3.50 1544/1544/0 3.50 41.34 43.6 1.51

10 1 9.26 12800/11877/7.21 11877/11877/0 7.21 3.04 5.4 9.45
8 9.33 1600/1561/2.44 1561/1561/0 2.44 2.64 6.5 9.9
64 9.48 1600/1480/7.50 1480/1480/0 7.50 6.45 6.54 10.09

25 1 7.32 12800/12245/4.34 12245/4132/66.26 67.72 3.63 4.4 13.47
8 21.89 1600/1488/7.00 1488/1488/0 7.00 1.16 2.82 22.71
64 21.06 1600/1361/14.93 1361/1361/0 15.00 2.26 2.64 24.83

65 1 5.34 12800/12800/0 12686/2144/83.10 83.25 5.34 3. 15.50
8 62.16 1600/1600/0 1600/1600/0 0.00 0.60 1.42 43.39
64 62.87 1600/1600/0 1600/1600/0 0.00 0.93 1.66 38.75

Table 1: Comparison of direct and TCP applications under no load condition

The no-load tests provide a set of baseline results in selecting the control parameters to obtain a speci�c
application level QoS. For both the TCP and direct cases we measure throughput and delay, for direct
case we also measure loss, and for selected cases of TCP we measure retransmissions. In all of these tests,
we use a user level rate control mechanism to control the amount of data submitted per second to match
the user-requested bandwidth.
Table 1 presents the experimental results obtained under no-load conditions for di�erent requested

bandwidths, and user data block sizes. In this set of experiments we target to o�er the same amount
of load as the requested bandwidth. We present the receiver side throughput, delay, and RTT (on the
sender side) for both TCP and direct cases and loss in case of direct connection. The 4th, and the 5th

columns in the table represent the statistics of the sending, and the receiving AAL5. The �rst portion
of the sender side statistics represent the number of CSPDUs given to Q1 after segmenting (if necessary)
the user packet. The second portion of the column represent the actual number of CSPDUs that left
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Q1, and the last represent the percentage of loss in Q1. Similarly, the �rst portion in the last column
represent the number of CSPDUs assembled by AAL5 before placing the data into Q4, the second portion
represents the actual number of CSPDUs passed onto the user, and the last represent the percentage of
CSPDUs lost in Q4. An application with certain throughput, loss, and bonded delay conditions can look
into the data in the table to select appropriate control parameters.
For both TCP/ATM and direct ATM cases, providing the requested throughput for low bandwidth cases

is never a problem. Delay increases as user block size increases in the case of direct ATM connection
because of the processing overhead. This end-to-end delay is much less in case of 1 KByte and 8 KByte
block sizes compared to that of 64 Kbyte block size because no segmentation and reassembly is done in
ALL5. Because of the segmentation and reassembly in AAL5 for 64 KByte block size, delay increases
by almost three fold. Delay in case of TCP is high compared to that of direct ATM connections because
TCP tries to accumulate MSS worth of data before sending it to ALL5. TCP delay can be reduced by
reducing the window size and MSS (if possible). The loss of data in the direct ATM case occurs at Q1

due to our user-level rate control which may not supply data at the exact requested rate. Loss can be
made zero by increasing the requested bandwidth marginally more than the o�ered load (refer to Table
2).
For high data rate applications, the number of interrupts generated on the receive side of the application

by the ATM card are high in the case of using a 1 KByte block size. This phenomenon leads to dropping
packets in Q4 if the host is not fast enough. Hence the user-level throughput goes down and losses are
high. Delay will also increase because of higher queueing delays at Q4. We also noticed that using our
testbed we could not observe throughput more than 65 Mbps, which is the host limitation. By increasing
the block size to 8 Kbytes we are reducing the number of CSPDUs, and hence the number of interrupts
on the receiver side, which will reduce the losses to zero.

direct related Common direct related TCP related
Target Offered load

Requested bandwidth
Block size Delivered load RTT Delay # Blocks CSPDUs Loss CSPDUs Retx. %

in KBytes in Mbps (ATM) in msec in msec (ATM) in % (TCP) in TCP

0.5/0.5 1 0.47 1060.52 39.36 12800 12109 5.40 4554 0.00
0.5/0.7 1 0.49 15.61 130.88 0.00
0.5/0.5 8 0.50 5672.59 48.9 1600 1600 1.12 1600 0.00
0.5/0.7 8 0.49 115.39 129.10 0.00

0.5/1.0 8 0.49 69.70 130.10 0.00
65/65 1 5.34 305.72 5.50 12800 12800 83.25 5144 13.00

65/75 1 7.30 270.41 37.52 77.41

65/85 1 7.05 251.52 37.36 77.62

65/65 8 62.16 4.26 0.99 1600 1600 0.00 1600 0.00
65/75 8 62.59 4.25 1.00 0.00

Table 2: Case analysis direct and TCP applications for di�erent block sizes

In Table 2 we present the relation between RTT, delay, and losses at di�erent cases of target o�ered
load, and requested bandwidth. For 0.5 Mbps case, high RTT values are observed when the requested
bandwidth is same as the target o�ered load; this is due to all the resources allocated for the duplex con-
nection are occupied by the forward connection (refer to Figure 3) itself. When the requested bandwidth
is more than the target o�ered load then RTT becomes very less because of the resources available in the
reverse direction. Average delays has increased as more bandwidth is reserved, because of the increase in
queue sizes allocated for this connection. As observed in case of 8 KByte block size, average delays reach
saturation, for example 130.10 msec; this is because the leaky bucket rate-control algorithm in ATM is
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becoming e�ective.
At 65 Mbps, the target o�ered load and the requested bandwidth does not e�ect the delay, and RTT

for 1 Kbyte block size, due to losses at Q4 because of bu�er over
ow. At 8 Kbyte block size because
of the zero data losses the delay and RTT are comparable. These parameters cannot be improved by
increasing the requested bandwidth.
In case of TCP, at low data rates TCP will not encounter losses and hence no retransmissions. We use

this information to calculate the percentage of retransmissions in the lossy case of 65 Mbps with 1 KByte
block size. We observe 13% retransmissions, which is less compared to 83.25% losses in its counterpart in
the direct case. At the same time, TCP adjusts itself to a lower throughput to avoid losses. This shows
the self-healing nature of TCP because of its elaborate 
ow control mechanism.
From the above observations we conclude that, the application block size and the requested bandwidth

play major role as control parameters in obtaining applications requested QoS. An application using
direct connection should clearly balance the control parameters to obtain the desired QoS. Where as, an
application using TCP need not balance the control parameters, at the cost of not obtaining tight bounds
on the application QoS. We notice that the maximum data rate a TCP connection supports is around 45
Mbps, where as a direct connection supports upto 65 Mbps, on a Sparc 10 workstation. Hence, with the
given con�guration of Sparc 10 workstation the combined data rate of all TCP applications should not
exceed 45 Mbps, similarly for direct it should not exceed 65 Mbps.

3.2 Host behavior experiments

Common direct related TCP related
Requested CPU AAL5 delivered AAL5/ATM AAL5/ATM Loss Delay Delay TCP delivered

load load throughput sender receiver in % on AAL5 on TCP throughput
in Mbps in % in Mbps statistics statistics in msec in msec in Mbps

0.5 20 0.48 1600/1581/1.19 1581/1581/0 1.19 49.34 131.18 0.50
40 0.48 1600/1582/1.12 1582/1582/0 1.13 49.08 131.20 0.50
60 0.48 1600/1581/1.19 1581/1581/0 1.19 52.98 131.10 0.50
80 0.48 1600/1583/1.06 1583/1583/0 1.06 49.95 130.99 0.50

1.5 20 1.44 1600/1594/0.38 1594/1594/0 0.38 18.32 43.46 1.50
40 1.44 1600/1595/0.31 1595/1595/0 0.31 18.51 43.74 1.49
60 1.44 1600/1594/0.38 1594/1594/0 0.31 18.50 43.84 1.49
80 1.44 1600/1594/0.38 1594/1594/0 0.38 17.75 43.74 1.50

10 20 9.33 1600/1562/2.38 1562/1562/0 2.38 2.66 6.46 9.94
40 9.34 1600/1566/2.13 1566/1566/0 2.13 1.53 6.52 9.89
60 9.34 1600/1567/2.06 1567/1567/0 2.06 2.66 6.61 9.88
80 9.46 1600/1560/2.50 1560/1560/0 2.50 2.67 6.51 9.98

25 20 21.82 1600/1501/6.19 1501/1501/0 6.19 1.14 2.78 22.96
40 21.80 1600/1507/5.81 1507/1507/0 5.81 1.20 2.69 23.61
60 22.03 1600/1494/6.62 1494/1494/0 6.63 1.20 2.72 22.94
80 25.92 1600/1503/6.06 1503/1503/0 6.06 1.31 2.63 23.67

65 20 43.50 1600/971/39.31 39.31 2.94 1.49 1600/1600/0 37.11
40 45.77 1600/1600/0 1600/920/42.50 42.50 2.87 1.47 36.51
60 49.98 1600/1600/0 1600/1095/37.90 37.19 3.07 1.81 35.85
80 55.97 1600/1600/0 1600/1228/23.25 23.25 1.64 1.40 39.73

Table 3: Comparison of direct and TCP application at di�erent CPU-loads

To obtain predictable performance, QoS guarantee should be assured on the end-systems too. We
conduct a preliminary study on the behavior of the two protocols stacks under consideration, using host-
load condition. In [13] Guru Purulkar et al. reported a study on a SunOS 4.1, in which one of their
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conclusions was - in a UNIX-like Operating System a communication-intensive gain higher priority over
a computation-intensive job - because of its dispatcher algorithm. In our host-experiments we conclude
similar results, with the help of a software decompression of an MPEG-1 stream as a computation-
intensive job, and our application as a communication-intensive job. Other communication jobs sharing
the same protocol suite, and the end-system resources need a special consideration in reserving resources
etc., which we will discuss in the next section.
We used 8 KByte user data blocks with TCP control parameters set to 64 KBytes of window size, and

9148 Bytes of MSS under di�erent receive side CPU-load conditions.
From Table 3, we make the following observations: In the 0.5 - 25 Mbps range the losses are mainly

at Q1, because of the inaccurate user-level rate control at the sender. Delay using TCP is still higher
compared to that using a direct ATM connection. The throughput is comparable in both the cases.
For the 65 Mbps case losses shift from the send side to the receive side because the application is

working in the maximum machine throughput range, and a slight neglection of this connection leads to
loss of data in Q4. TCP on the other hand adjusts itself to lower throughput in the process of reducing
the number of retransmissions because of the losses on the receive side. AAL5 throughput is still higher
than TCP but this might be a bad option in such cases because of random losses. TCP has a better delay
characteristics because it dynamically adjusts itself to the lossy behavior of the communication path.

3.3 Network behavior

Dynamic behavior of an end-system protocol can be well understood at various network-load conditions.
These experiments re
ect the de�ciencies in such protocols. We use 4 di�erent sets of experiments to
evaluate the interaction of TCP with direct connections under network-load conditions. The conclusions
from these experiments are used to identify the missing components in TCP/IP-like end-system protocol-
suite. To be able to compare appropriate results, we used ABR connection for direct case in the following
experiments.

In our �rst experiment, results of which are shown in Figure 5, we use a TCP connection between the
two SunSparc 10 workstations, and two direct connections between the SunSparc 2 workstations. The
TCP connection is rate-controlled to produce 45 Mbps, where as the direct connections are tuned for 35
Mbps each. Figure 5 presents the throughput, delay, and loss values of the above three connections over
a period of time.
As can be observed from the throughput graph in Figure 5, TCP behaves poorly in combination

with the other direct connections-even though almost 30 Mbps bandwidth is available. This is because
of the TCP retransmission algorithm. As a consequence of low throughput, the average delay for this
connection is high till the direct connections are active. As soon as the direct connections are closed TCP
picks up high data rate, and hence lower average delays are also observed. Even at lower data rates of
direct connection, TCP performs the same way re
ecting the de�ciencies in its retransmission algorithms.
Direct connection on the other hand, works at higher data rates, because it does not have error-recovery.
Losses in direct connection occurs in bursts as shown in �gure.
From this experiment we can make two conclusions. The retransmission timers of TCP need to

be adjusted properly for a given networking environment. And, to obtain maximum utilization of the
network resources, some sort of resource allocation has to be done on per TCP connection basis.

We conduct the next experiment with two TCP connections each using two SunSparc 2 workstations,
and a direct connection between Sparc 10 workstations. The TCP connections are rate-controlled for 30
Mbps each and the direct connection is rate-controlled to produce 65 Mbps. In Figure 6, we present the
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Figure 5: One TCP at 45 Mbps, and two direct at 35 Mbps
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Figure 6: Two TCP at 35 Mbps, and one direct at 65 Mbps
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Figure 7: Three TCP connections one at 45 Mbps and two at 35 Mbps
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throughput, and the delay results as a function of time.
We observe that both the TCP connections produce very low throughput, because of the interfering

tra�c on the network; and as a consequence, higher delays are observed. After the direct connection is
terminated, both the TCP connections compete for the resources on network (in our case, the output port
bu�ers on the ATM switch). This causes varying delay, and also regular throughput dips for both the
connections, as shown in Figure 6. To obtain a bounded delay for any of these connections, we need to
reserved certain bandwidth for each connection; which consolidates the outcome of our previous
experiment. To reserve bandwidth a connection should know at what data rate it is submitting data
to the network. This requirement need rate-control some where in the path of the application on the
end-system.

A prolonged e�ect of throughput dips can be observed from the throughput graph in Figure 7. In this
experiment we use three TCP connections, with one of them rate-controlled at 45 Mbps and the other two
are rate-controlled at 35 Mbps. For the graph we can make a note of the fact that the higher the number
of TCP connections sharing the resources, higher the degradation in the throughput characteristics of
the applications.
By comparing the throughput graphs of Figures 6 & 7, we can make an interesting conclusion. Though

the average throughput for the three TCP connections in Figure 7 are low, they are better compared to
that in Figure 6. This re
ects that TCP's retransmission algorithm performs better when it is interacting
with other TCP connections. But when TCP shares network resources (in this case the output bu�ers on
the ATM switch) with ATM-like tra�c it su�ers. Because TCP relies on the other connections observing
loss should take some action, such as backing o� for certain duration. Hence, though the available band-
width on the network is more than the resultant bandwidth, TCP connection cannot utilize the slack
bandwidth. This observation consolidates the idea of reserving bandwidth on per TCP connection
basis.

To predict the behavior of a connectionless transport protocol such as UDP in our environment, we
conduct our 4th experiment. In this experiment, we use three direct ABR connections, one running at 65
Mbps and the other two running at 35 Mbps. Figure 8 presents the throughput, the delay, and the loss
characteristics of these applications with respect to time.
We can observe from the graphs that, when the aggregate throughput of the three connections is more

than the capacity of the channel (here 100 Mbps), there is a chaos on the network. Delays are high as a
resultant of queuing on the ATM switch. Hence, the losses are high for all the three connections, resulting
in lower throughput. Such characteristics, disturbs the QoS requirement of all the three connections.
When one of the connections complete its transmission, normal status is achieved on the network. From
this experiment we can conclude that, in a LAN environment, by preventing the use of connections whose
aggregate results into chaos, we can sustain the requested QoS on all the connections. Another solution to
this problem is to degrade the QoS of all the connections with the help of feedback from the network.
By assuring all the applications are in the range of predictable performance, and by avoiding the network
from reaching its maximum bandwidth limitation we can rectify this situation dynamically.

4 QoS architecture

In this section, we present a higher-level preliminary design of the end-system QoS architecture. This is
based on the conclusions we made in the previous section. Our architecture has three main components:
namely, application-level, protocol-level, and global components (as shown in Figure 9).
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Figure 9: End-system QoS architecture

Application-level components

We divide applications into di�erent classes depending on their QoS requirements. Each class of
application talk to its corresponding module in the class-speci�c interface module in the application-level
component. These QoS requirements are translated into a generic set of QoS requirements by the generic
interface. These generic requirements are translated into a set of protocol-related control parameters,
with the help of the results we presented in the previous section and in [1]. These control parameters
are sent to the service-providing protocol to set the appropriate values for this connection. This interface
will also help an application to dynamically adjust its QoS requirements depending on the network, and
the host status, with the help of the feedback from the service-provider. Design details of this interface
is out of scope of this paper.

Protocol-level components

From the host, and network behavior experiments, to provide predictable performance to an applica-
tion, the following components are essential in the end-system protocol architecture.

� Rate-control algorithm: Both TCP, and UDP require a connection-based rate-control algorithm, to
limit the user to behave in its requested QoS. In TCP, this algorithm works below window-based
retransmission scheme to retain the 
avor of the exiting TCP. In UDP, rate-control prevents user
from using higher data rate than the agreed upon data rate, by blocking the application. This
scheme reduces the losses in UDP, due to uncontrolled transmission of data, which leads to bu�er
over
ows.

� Local feedback algorithms: Feedback from the service-provider, such as, from IP to TCP(UDP) or
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from TCP(UDP) to the application user, helps to change the control parameters, and in turn retain
the user requested QoS. For example, IP feedback information could be used in UDP to reduce the
data rate of an application to avoid further losses in IP.

� Connection-based monitoring: All the applications with speci�ed QoS requirements should con�rm
to the initial negotiation. A deviation from the negotiation will e�ect the other connections using a
common resource pool. Hence, to retain the isolation between the applications, we need to monitor
the application to check if it is within its allocated resources. This monitoring is e�ective if it is
done closest to the user application. Hence, we propose to do the monitoring on per connection
basis at TCP, or UDP.

� Resource allocation: To avoid the complexity of handling resources on per connection basis, we
provide class-based resource allocation. For example, we have real-time, and time-shared classes
inside IP. In a real-time class we schedule the data to meet dead-lines, where as in a time-shared
class we are interested to obtain a given throughput.

� Class-based monitoring, and scheduling: We provide class-based monitoring to avoid over
owing the
resources, which e�ects the QoS of all the applications in that class. The scheduling algorithms we
use in each class of applications are di�erent. A scheduling algorithm is dependent on the combined
knowledge of all the applications in its class.

Global components

To maintain information about all the resources, and to gracefully degrade the performance of an
application as a result of changing status of these resources, we need global components. These global
components include network feedback, resource control, and global monitoring. The network feedback
information is used to monitor the status of the network and react to it to reduce loss, or control delay
for an application. Global resource control is used to allocate resources dynamically to di�erent classes of
applications. And, global monitoring is used to predict the degradation in the performance of the appli-
cations and inform their class schedulers about modifying the scheduling parameters of the algorithms.

This QoS architecture is generic enough to work with a simple link-level protocol like Ethernet protocol,
to the complicated protocol such as ATM in a LAN environment. Also, the algorithms we are developing
in this architecture are generic enough to be incorporated in any transport-level protocols such as TCP
or UDP, and network protocols such as IP.

5 Conclusions

In this paper we use an application-oriented approach to propose a QoS architecture for a TCP/IP-like
end-system protocol-suite. We conducted no-load, host-load, and network-load condition experiments
to identify the missing components in the current architecture of TCP/IP. These missing components
include rate-based control of TCP(UDP) connections, TCP(UDP) connection-based monitoring, local
feedback in TCP, UDP, and IP, resource allocation etc.
We presented the base-line QoS that can be achieved by an application in a LAN environment. We

compared the behavior of an application using TCP/IP/AAL5/ATM and direct AAL5/ATM with respect
to their control parameters. We identi�ed the bottlenecks an unwary user might encounter, such as, high
delay at higher block size, heavy losses for 1 KByte block sizes at high data rates, relation between
the requested bandwidth and target o�ered load etc. We demonstrated the trade-o�s between the QoS
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parameters with the help of the control parameters, such as obtaining zero loss, reducing the RTT etc.
Also, an application using certain throughput, loss and bounded delay requirements can refer to the
tables presented in this paper to select appropriate protocol control parameters.
It is also demonstrated in this work that TCP/IP can still be used over ATM for di�erent classes of

applications, provided appropriate resource reservation policies are incorporated into TCP and IP. TCP
acts as a self-healing end-to-end protocol in many unwanted cases, such as losses at the receiver interface.
Our future work [14] include devising the above mentioned algorithms, implementing them, and com-

paring the performance of the architecture with the results presented in this paper. One of the important
issues in devising these algorithms is the fairness in allocating the resources among the competing appli-
cations, which we consider in our future work.
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