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Abstract 

One role for workload generation is as a means for un- 
derstanding how servers and networks respond to vari- 
ation in load. This enables management and capacity 
planning based on current and projected usage. This 
paper applies a number of observations of Web serve1 
usage to create a realistic Web workload generation tool 
which mimics a set of real users accessing a server. The 
tool, called SURGE (Scalable URL Reference Generator) 
generates references matching empirical measurements 
of 1) server file size distribution; 2) request size distribu- 
tion; 3) relative file popularity; 4) embedded file refer- 
ences; 5) temporal locality of reference; and 6) idle pcri- 
ods of individual users. This paper reviews the essential 
elements required in the generation of a representative 
Web workload. It also addresses the technical challenges 
to satisfying this large set of simultaneous constraints 
on the properties of the reference stream, the solutions 
we adopted, and their associated accuracy. Finally, we 
present evidence that SURGE exercises servers in a man- 
ner significantly different from other Web server bench- 
marks. 

1 

1 Introduction 

With the growing importance of the Web as an Intcr- 
net application comes an increasing need to model and 
reproduce typical Web workloads accurately. In par- 
ticular, the ability to generate a stream of HTTP re- 
quests that mimics a population of real users is impor- 
tant for performance evaluation and capacity planning 
of servers, proxies, and networks. 

Generating representative Web reference traces is 
difficult because Web workloads have a number of un- 
usual features. First, empirical studies of operating 
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Web servers have shown that they experience highly 
variable demands, which is exhibited as variability in 
CPU loads and number of open connections (e.g., see 
[15]). This indicates that it is important to pay atten- 
tion to those properties of Web reference streams that 
have been shown to exhibit high variability, such as re- 
quest interarrivals [9, 111 and file sizes [6, 21. 

The second unusual feature of Web workloads is that 
network traffic due to Web requests can be self-similar- 
i.e, traffic can show significant variability over a wide 
range of scales. Self-similarity in traffic has been shown 
to have a significant negative impact on network perfor- 
mance [lo, 171, so it is an important feature to capture 
in a synthethic workload. 

To capture these properties in a workload generator, 
one of two approaches could be used: a trace-based ap- 
proach or an analytic approach. Trace-based workload 
generation uses prerecorded records of past workloads 
and either samples or replays traces to generate work- 
loads. In contrast, analytic workload generation starts 
with mathematical models for various workload charac- 
teristics and then generates outputs that adhere to the 
models. 

These two approaches each have strengths and weak- 
nesses. The trace-based approach has the advantage 
that it is easy to implernent, and mimics activity of a 
known system. However, it treats the workload as a 
“black box.” As a result, insight into the causes of sys- 
tem behavior is hard to obtain. Furthermore, it can be 
hard to adjust the workload to imitate future conditions 
or varying demands. Analytic workloads do not have 
t,hese drawbacks, but they can be challenging to con- 
struct for at least three reasons. First, it is necessary to 
identify those characteristics of t,he workloads which are 
important to model. Second, the chosen characteristics 
must be empirically measured. Third, it can be diffi- 
cult to create a single output workload that accurately 
exhibits a large number of different characteristics. 

In this paper we describe methods we have devel- 
oped for generating analytically-based Web reference 
streams. Our goal is to imitate closely a stream of 
HTTP requests originating from a fixed population of 
Web users. These methods are embodied in a tool called 
SURGE (Scalable URL Reference Generator). The meth- 
ods used in SURGE have the advantages that come with 
the analytic approach. In particular, the models used 
in SURGE are explicit and so can be examined directly 
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by the user. In addition, SURGE’S models can be varied 
to explore expected future demands or other alternative 
conditions. 

To construct an analytic Web workload, it is neces- 
sary to address the three challenges described above. In 
this paper we show how each challenge was addressed. 
First, we describe the set of characteristics of Web ref- 
erence streams we chose to model, and explain why we 
believe that this set is important. Second, we describe 
the results of new measurements of the Web that were 
needed to populate the SURGE models. Third, we de- 
scribe the issues involved in incorporating these models 
into a single output reference stream, and how we re- 
solved those issues. 

The final result, SURGE, shows a number of proper- 
ties that are quite different from a common Web work- 
load generator: SPECweb96 [5]. We configured SURGE 
and SPECweb96 to exercise a server at equal rates mea- 
sured in terms of bytes transferred per second. Under 
these conditions, SURGE places much higher demands 
on the server’s CPU, and the typical number of open 
connections on the server is much higher. 

In addition we show that in an another important 
respect, the workload generated by SURGE is quite dif- 
ferent from that of typical Web workload generators. In 
particular, the traffic generated by SURGE shows self- 
similar properties; we show that this is not generally 
true for a typical alternative Web workload generator 
(SPECweb96) when run at high loads. Because SURGE’S 
analytic approach makes its models explicit, we can 
examine the causes of self-similarity in SURGE traffic. 
Based on this insight we conclude that most Web work- 
load generators proposed to date probably do not gen- 
erate self-similar traffic at high loads. 

2 Web Workload Characteristics 

Our goal in developing SURGE is to be able to exercise 
servers and networks in a manner representative of the 
Web. In particular, for servers we are interested in the 
behavior of the network stack and filesystem, and their 
associated buffering subsystems. In the case of both 
networks and servers, we are also interested in the effects 
of high variability in the workload. 

These motivations drove the choice of particular Web 
workload characteristics used in SURGE. These charac- 
teristics can be divided into two main categories. The 
first category is concerned with the idea we call loser 
equivalents. The second category is the set of distribu- 
tional models. 

User Equivalents. The idea behind user equivalents is 
that the workload generated by SURGE should roughly 
correspond to that generated by a population of some 
known number of users. Thus, the intensity of service 
demand generated by SURGE can be measured in user 
equivalents (UEs). 

A user equivalent is defined as a single process in an 
endless loop that alternates between making requests for 
Web files, and lying idle. Both the Web file requests and 
the idle times must exhibit the distributional and cor- 
relational properties that are characteristic of real Web 
users. Each UE is therefore an ON/OFF process; we 

Figure 1: ON/OFF Model Used in SURGE (HTTP 0.9; 
one TCP connection at a time). 

will refer to periods during which files are being trans- 
ferred as ON times, and idle times as OFF times. UEs 
have a straightforward implementation as independent 
threads or processes. 

Basing the workload model on user equivalents has 
important effects on system performance. Since each 
UE has significant idle periods, a UE is a very bursty 
process. Each UE exhibits long periods of activity fol- 
lowed by long periods of inactivity. 

The UE model is similar in some respects to the 
approach proposed in [13] but quite different from ap- 
proaches typically taken in other Web workload gener- 
ators. Most other workload generators send requests 
without preserving consistent properties of OFF times 
[5, 16, 201. The general approach used in these work- 
load generators is simply to make requests for files from 
a server as quickly as possible. We will show in Sec- 
tion 5 that ignoring OFF times destroys self-similarity 
in the resulting traffic at high loads. 

Specifying UE behavior during the ON period re- 
quires understanding some of the details of Web organi- 
zation. In particular, Web files may include by reference 
other files; these files are required to display the result 
properly. (Typically these included files might supply 
images or graphics.) Thus the user’s request for a sin- 
gle Web file often results in the transfer of multiple files 
from the Web server. We call a Web file along with all 
the files that also must be transferred to display it a 
Web object. 

The particular details of how components of a Web 
object are transferred depends on the browser used and 
the version of the HTTP protocol employed. HTTP 
0.9/1.0 uses a separate TCP connection for each file, 
while HTTP 1.1 allows a single TCP connection to be 
used for multiple files. In addition, some HTTP 0.9/1.0 
browsers open multiple simultaneous TCP connections 
when transferring components of a Web object. For 
the experiments reported here, SURGE was configured 
to use HTTP 0.9 and multiple TCP connections were 
not used; however modifying SIJRGE to use other styles 
is straightforward. 

This style of transferring Web objects means that 
there arc two kinds of OFF time, as shown in Figure 1. 
Inactive OFF time corresponds to the time between 
transfers of Web objects; this is user “think time.” Ac- 
tive OFF time corresponds to the time between transfer 
of components of a single Web object; it corresponds to 
the processing time spent by the browser parsing Web 
files and preparing to start new TCP connections. 
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Distributional Models. Having described the UE basis 
for the design of SURGE, we describe the set of proba- 
bility distributions needed by each UE. 

An important feature of some of the distributions 
we will consider is that they exhibit heavy tails. We say 
here that a heavy-tailed distribution is one whose upper 
tail declines like a power law, i.e., 

P[X >2]-P o<Ly< 2 

where a(z) N b(z) means lim+oo u(z)/b(X) = c for 
some constant c. Random variables whose distributions 
are heavy tailed exhibit very high variability; in fact, 
their variance is infinite, and if cy 5 1, their mean is 
also infinite. 

‘po fulfill SURGE'S goals, its output must adhere to 
the following six statistical properties of Web reference 
streams. 

1) File Sizes. In order to exercise the server’s 
filesystem properly, it is important that the collection 
of files stored on the server agree in distribution with 
empirical measurements. As noted in [6, 21, these distri- 
butions can be heavy-tailed, meaning that the server’s 
filesystem must deal with highly variable file sizes. 

2) Request Sizes. In order to exercise the network 
properly, the set of files transferred should match em- 
pirical size measurements. We call this set the requests. 
The distribution of requests can be quite different from 
the distribution of files because requests can result in 
any individual file being transferred multiple times, or 
not at all. Again, empirical measurements suggest that 
the set of request sizes can show heavy tails [6]. 

Note that the difference between the sets we call file 
sizes and request sizes corresponds to differences in dis- 
tribution between what is stored in the filesystem of the 
server and what is transferred over the network from the 
server. 

3) Popularity. A third property of the workload, 
related to the previous two, is the relative number of re- 
quests made to individual files on the server. Popularity 
measures the distribution of requests on a per-file basis. 
Note that even when the previous two properties are 
fixed (distributions of file sizes and request sizes) there 
still can be considerable flexibility in how requests are 
distributed among individual files. The distribution of 
popularity has a strong effect on the behavior of caches 
(e.g., buffer caches in the file system), since popular files 
will typically tend to remain in caches. 

Popularity distribution for files on Web servers has 
been shown to commonly follow Zipf’s Law [22, 1, 71. 
Zipf’s Law states that if files are ordered from most 
popular to least popular, then the number of references 
to a file (P) tends to be inversely proportional to its 
rank (r). That is: 

I’ = kr-’ 

for some positive constant k. This property is surpris- 
ingly ubiquitous and empirical measurements of the ex- 
ponent are often quite close to -1, although the reasons 
behind this effect in Web workloads are unclear. This 
distribution of references among files means that some 
files are extremely popular, while most files receive rel- 
atively few references. 

4) Embedded References. In order to capture 
the structure of Web objects, it is irnportant to char- 
acterize the number of embedded references in a Web 

object. This is done by characterizing the distribu- 
tion of the number of embedded references in Web files. 
In the configuration of SURGE used in this paper, the 
number of embedded references is important because 
OFF times between embedded references (Active OFF 
times) are typically short, while OFF times between 
Web objects themselves (Inactive OFF times) are typi- 
cally much longer. Previous work such as [4] has not at- 
tempted to develop a distributional model for the num- 
ber of embedded references typically contained in a Web 
object. 

5) Temporal Locality. Temporal locality in Web 
workloads refers to the likelihood that, once a file has 
been requested, it will be requested again in the near 
future. Accurate characterization of temporal locality 
is important because caching effectiveness can be signif- 
icantly increased when temporal locality is present. 

One way to measure temporal locality is using the 
notion of stack distance. Given a sequence of requests, 
its corresponding stack distance sequence can be gen- 
erated as follows. Assume that the files are stored in 
a push-down stack. Considering each request in order, 
move the requested file to the top of the stack, pushing 
other files down. The depth in the stack at which each 
requested file is found is the request’s stack distance 

PI 141. 
Stack distance serves to capture temporal locality 

because small stack distances correspond to requests for 
the same file that occur close to each other in the refer- 
ence stream. Note that, assuming the initial contents of 
the stack are known, the stack distance sequence con- 
tains information equivalent to the request sequence; 
each can be obtained from the other. 

Thus the distribution of stack distances for a Web 
request sequence serves as a measure of the temporal 
locality present in the sequence. Typical distributions 
for request sequences arriving at Web servers have been 
studied in [l]; results show that these are well mod- 
eled using lognormal distributions. Since the lognormal 
distribution has most of its mass concentrated at small 
values, this is indicative that significant temporal local- 
ity is often present in Web request sequences. 

6) OFF Times. As described in the previous sec- 
tion, accurate modeling of inactive OFF times is neces- 
sary to capture the bursty nature of an individual Web 
user’s requests. Proper characterization of active OFF 
times is necessary to replicate the transfer of Web ob- 
jects. Previous work has measured OFF times [6] and 
the related question of interarrival times of HTTP re- 
quests at a server [9]. 

3 Obstacles to Creating Representative Web Work- 
loads 

Two basic problems arise in building a workload gener- 
ator to meet the requirements described in the previous 
section. First, models for each of the six distributions 
are required, and second, methods for combining those 
distributions into a single output stream are required. 

3.1 Distributional Model Obstacles 

To populate our set of distributional models fully, three 
new distributions were needed. 
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File Sizes on the server were identified as a key 
characteristic of Web workloads in Section 2. File sizes 
on servers were studied in [6] but that work concentrated 
only on the tail of the distribution. For SURGE we need a 
model for the distribution that is accurate for the body 
as well as the tail. 

Active OFF Times have not been specifically ad- 
dressed in other studies. Client OFF times in general 
are described in [6]. However, no attempt to describe 
Active OFF time as a separate distribution was made; 
thus a model for Active OFF time was required. 

Finally, a model for the number of Embedded Ref- 
erences in a document was required. This number is 
difficult to extract from client trace data since there is 
typically no record in the data that indicates which doc- 
uments are embedded. This characteristic can, however, 
be inferred using Active OFF times (as is described in 
Section 4). 

The task of developing distributional models for each 
of these Web characteristics required the analysis of 
empirically measured Web workload traces. The most 
common way of specifying a statistical model for a set 
of data the is through the use of vis& methods such 
as quantile-quantile or cumulative distribution function 
(CDF) plots. These methods, however, do not distin- 
guish between two closely fitting distributions nor do 
they provide any level of confidence in the fit, of the 
model. To address this drawback one can use goodness- 
of-fit tests [8, 181. However, these tests also present a 
number of problems. Methods which place data into 
bins (such as Chi-Squared tests) suffer from inaccura- 
cies due to the choice of bin size. Methods based on 
empirical distribution functions (such as the Anderson- 
Darling test) are more likely to fail when applied to 
large datasets. Since most empirical Web measurements 
constitute large datasets, the methods we used to select 
distributional models needed to address these shortcom- 
ings of goodness-of-fit tests. 

3.2 Obstacles in Combining Distributions 

Generating a single output workload which exhibits each 
of the six characteristics which make up the S~JRGE 
model is difficult. We address this problem by devcl- 
oping methods for matching requests to files and for 
generating a representative output sequence. 

3.2.1 The Matching Problem 

The matching problem starts from three Web workload 
characteristics: file size distribution, request size distri- 
bution, and popularity. Given these three distributions, 
determining the total number of requests for each file 
on the server is the matching problem. The matching 
problem arises because even when these three distribu- 
tions are fixed, there still can be considerable flexibility 
in how requests are actually distributed among individ- 
ual files. 

First, any server will contain a set of uniquely named 
files each with a specific size. Let X be the set of file 
sizes on the server, whcrc 5’i is the size of file i. Scc- 
ond, using Zipf’s law we can calculate the set 1’ which 
consists of the number of references to each of the files 
on the server (the popularity distribution). However, 
Zipf’s Law does not determine which files correspond to 

each element of Y. Finally, request size distribution is 
also described by an empirical distribution, F(z). 

Given these as inputs, the matching problem is to 
find a permutation of the set Y such that the following 
conditions are satisfied: 

There is a one-to-one mapping between elements 
in the sets X and Y. The permutation of Y will 
be described by the set of indices 2 which is a 
permutation of integers 1, . . . . n. Thus, each yzi is 
the number of requests for file i. 

The mapping between X and Y results in a set of 
file requests. This set can be described by a CDF 
G(z) that is defined as follows: 

z=l i=l 

Thus, we can determine a desired value for each yj 
which we will call & by equating G(z) and F(z) 
and solving for & so: 

n j-1 

& = F(x) c yz; - c yz; 
i=l i=I 

We create a permutation 2 such that $i is as close 
as possible to yzi for all i. 

3.2.2 Temporal Locality 

The result of the matching process is that each unique 
file will be matched with a total request value. However, 
this is still not sufficient for the generation of a request 
stream which exhibits temporal locality. Temporal lo- 
cality can be analyzed using the distribution of stack 
distances. This distribution is an indication of tempo- 
ral locality because stack distance measures the number 
of intervening references between references to the same 
document [l]. To obey temporal locality, the sequence 
of document requests must be arranged such that when 
cast in a push-down stack the resulting distribution of 
stack distances will match empirically measured distri- 
butions. 

In addition to the distribution of stack distances, a 
method for request sequence generation must distribute 
references to each file as evenly as possible throughout 
the entire sequence. 

4 Solutions Adopted in SURGE 

4.1 New Distributional Models 

The BU client trace data sets discussed in [7] were used 
to develop the three models required to complete SURGE. 
These traces record the behavior of users accessing the 
Web over a period of two months. In general, it is desir- 
able that a large number of datasets from different envi- 
ronments be examined to determine representative dis- 
tributions. However, our focus in the work to date was 
in defining the necessary set of workload characteristics, 
and so we did not include a wide range of datasets in 
our analysis. We expect to examine a larger number of 
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datasets in future work, and for that reason S~JR~E’S al- 
gorithms and general structure were developed to allow 
easy adaptation to other distributions. Thus, SLJR~E 
has been developed as a highly parameterixable tool. 

To develop these models, we used standard statisti- 
cal methods, similar to those used in [18]. We used the, 
Anderson-Darling (A”) empirical distribution function 
(EDF) test for goodness of fit (recommended in [8, 181) 
and the X’ test (described in [19]) to comparc: how well 
analytic models describe an empirical data set. 

File Sizes. Completion of the file size model began 
wit,h the assumption that the heavy t,ailed characteriza- 
tion of the distribution as described in [6, 21 was accll- 
rate. The model was then developed as a hybrid consist- 
ing of a new distribution for the body, combined with a 
Pareto distribution for the upper tail. The X2 test on t,llc 
body of data (11,188 points) versus a number of distri- 
butional models (lognormal, Weibull, Pareto, exponen- 
tial, and log-extreme) showed that the best (smallest) 
X2 value was for the lognormal distribution. The CDF 
of the log-transformed data versus the normal distribu- 
tion can be seen in Figure 2(a). 

However, the A” showed no significance in terms of 
goodness of fit. The failure of the A” test was due 
primarily to the fact that a fairly large data set was 
used for the test; this is a common problem with EDF 
tests [8, 181. Therefore a method of testing goodness of 
fit using random sub-samples (as described in [18, 31) 
was used, which indicated a good fit between the EDF 
of file sizes and the lognormal distribution. 

Censoring techniques were employed to determine 
where to split between the lognormal distribution for 
the body and the heavy tailed distribution in the tail. 
A sample is said to be right censored if all observations 
greater than some value are missing. The body of our 
sample can be assumed to be right censored since we 
assume that it is contaminated with a heavy tail. We 
use the A2 statistic to determine the cutoff point be- 
tween the body ,and the tail. By successively increasing 
the amount of right censoring in the empirical data and 
then testing goodness of fit, we determine the cutoff 
between the two distributions to be at approximately 
133KB (93% of the files lie below the cutoff). The cutoff’ 
value along with the hybrid distributional model allows 
us to generate the appropriate distribution of file sizes 
on the server. 

Active OFF Times. We consider an OFF time to 
be “Active” if it is less than a threshold time, which 
we chose to be 1 second based on inspecting the data. 
X” tests showed Weibull to be the best fit of those COII- 
sidered. The CDF plot of the set of Active OFF t,imes 
Versus the fitted Weibull distribution is shown in Fig- 
ure “Lb). We found no significance at any level for 
the A test, which we again attribute to the relatively 
large sample size (40,037 elements). However, for ran- 
dom sub-samples the A2 test indicated a good fit to the 
Weibull model. 

Embedded References. The number of embed- 
ded references in each file was extracted from the traces 
of file transfers by identifying sequences of files fetched 
by a given user for which the OFF time between trans- 
fers was always less than the one second threshold (re- 
sulting in 26,142 data points). Initial inspection of this 
data set showed that its distribution had a long right 
tail. Generation of distributional plots suggested the 

Pa&o distribution as the best visual fit for the data. A 
least squares estimate of the tail slope in a log-log com- 
plementary distribution plot resulted in an estimate of 
CY which gave a good visual fit as can be seen in Fig- 
ure 2(c). 

A2 tests once again failed to find significant goodness 
of fit. Even the random sub-sample method did not 
indicate a good fit which we attribute to the fact that 
there were only a few values in the tail of our empirical 
data and thus very few in the tails of the sub-samples. 

A summary of the model distributions and parame- 
t,ers used in SURGE are given in Table 1. 

4.2 Solutions to the Matching Problem 

The solution to the matching problem as described in 
Section 3.2.1 results in a mapping of requests to files 
such that the desired file size distribution, request size 
distribution, and popularity characteristics are all present. 
The success of a matching is expressed as the difference 
bet,ween $, the desired number of references to file of 
size xi, and yZ, , the actual number of references to file 
of size z;. There are a number of ways in which these 
differences can be combined to form an optimization 
problem. First, we could bound the maximum differ- 
ence between the two distributions: max I62 - yZ, I. Sec- 
ond, we could bound the total error between the two 
distributions: cy=, I& - yZiI. Finally, we could bound 
the error in some important portion of the distribution: 
15% - yZ, 1 given ~1 . ..zz-l are already determined. 

A single algorithm is optimal for the first two cases. 
This algorithm creates the permutation index 2 such 
that the largest value in 6 is matched to the largest 
value in y, the next largest in f is matched with the next 
largest in y and so on. The proof of optimality of this 
method for the first two cases above is straightforward. 

However, the optimal method can allocate error be- 
tween the two distributions in an undesirable way (e.g., 
it can concentrate the error in the tail of the distri- 
bution). Since large files cause the greatest impact on 
network and server performance, the ability to match 
most closely in the tail is important. Therefore another 
method of matching was developed which allows match- 
ing in either the tail or head of the distribution to be 
optimal. This method matches values in the set Y to 
those generated from F(z) beginning with either the 
smallest value in X or the largest. This method results 
in very close fits in the tail of the distribution, and does 
not introduce large errors in the body. 

4.3 Solution to the Sequence Generation Problem 

To generate reference sequences with the proper tem- 
poral locality, S~JRGE begins by placing each of the in- 
dividual file names in a stack (the initial ordering is 
not important). A sequence of values drawn from the 
proper lognormal distribution (Table 1) is then gener- 
ated. This sequence is inverted to obtain a sequence of 
names. This is done by repeatedly selected files from 
t,he stack at a distance equal to the next value in the 
sequence, reordering the stack after each selection. 

Unfortunately this simple method, if followed ex- 
actly, results in a nonuniform distribution of file names 
throughout the request sequence. Therefore the method 
was modified by defining a small window on either side 
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Figure 2: CDF of (a) Log-transformed File Sizes vs. Fitted Normal Distribution (b) Active OFF Times vs. Fitted 
Weibull Distribution (c) Embedded Reference Count vs. Fitted Pareto Distribution 

Component 1) Model 1 Probability Density Function 1 Parameters 1 

Table 1: Summary Statistics for Models used in SURGE 

of the location specified in the lognormal sequence. Each 
of the files in this window are then assigned a weight 
whose value is proportional to the remaining number 
of requests required for that document. The choice of 
which file to move to the top of the stack is then based 
probabilistically on the weights of the files within the 
window. 

We found that this method of file sequence genera- 
tion gives a very good distribution of file names through- 
out the sequence, and the resulting stack distance values 
still follow the desired lognormal distribution. 

Finally, the use of multiple client hosts presents a 
problem for temporal locality. When UE threads are 
running on the same host they can share a common file 
name sequence, each thread using the next file name 
in the sequence as needed. However, when UE threads 
are running on multiple hosts, they cannot share a con- 
mon list without significant synchronization overhead. 
To handle this case we generate independent file name 
sequences with related stack distance properties. This 
is done by scaling the values output from the lognor- 
ma1 distribution by the number of clients which will be 
used in the simulation. In the case in which requests 
from separate hosts interleave at the server in a regular 
fashion this will result in the proper temporal locality 
properties. Our results show that this simple scaling ap- 
proach is sufficient to maintain approximately the same 
stack distance distribution as in the single client case. 

5 Performance Characteristics of SURGE Workloads 

In this section we describe the current implementation 
of SURGE and the results of initial experiments per- 
formed using SURGE. For comparison purposes we also 
present results using SPECweb96. 

5.1 Implementation and Validation of SURGE 

SURGE is implemented in two parts: a set of programs 
written in C that precompute four datasets, and a mul- 
tithreaded program written in Java that makes Web re- 
quests using the four datasets. The precomputed data- 
sets consist of the sequence of requests to be made, the 
number of embedded files in each Web object to be re- 
quested, and the sequences of Active and Inactive OFF 
times to be inserted between requests. The implemen- 
tation used Java for portability to a wide range of client 
machines. 

Validation consisted of verifying that SURGE’S out- 
put agreed with the six distributional models (file sizes, 
request sizes, popularity, embedded references, tempo- 
ral locality, and OFF times). Results showed that the 
efficiency of the Java implementation affected the ac- 
curac.y of OFF time generation. In particular, an in- 
terpreted implementation of Java introduced too much 
overhead to allow a close match to ideal OFF times; 
switching to a compiled implementation remedied the 
problem. In addition, we found that short runs (less 
than 15 minutes) did not always allow enough samples 
to be made of some distributions to reach acceptable 
match with the ideal cases; however runs of 30 minutes 
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were generally adequate to achieve close fits between the 
ideal distributions and the measured results. 

Of all the distributional models, only temporal lo- 
cality was affected when SURGE was scaled up (run on 
larger numbers of host machines). As the number of 
hosts used by SURGE was increased, the resulting stack 
distance distributions always appeared to be lognor- 
mal, but their characteristics changed somewhat. This 
was expected since an exact match to temporal local- 
ity properties could not be guaranteed unless there was 
strict synchronization between all clients, which would 
have resulted in an unacceptably low maximum request 
rate. 

5.2 Experimental Setup 

The environment for these experiments consisted of six 
PCs running on a 100 Mbps network that could be iso- 
lated from other networks. The PCs were configured 
with 200MHz Pentium Pro CPUs and 32MB of RAM. 
SURGE clients (from 1 to 5 hosts) ran under Windows 
NT 4.0, while the server system (a single host) ran 
Apache ~1.2.4 under Linux 2.0. To avoid resource lim- 
itations we never ran more than 50 UE threads on any 
SURGE host. 

On the Web server, we examined CPU utilization 
and the number of active TCP connections; for the net- 
work, we measured the total number of both files and 
packets transferred over the run. The number of open 
connections on the server was sampled every 100ms and 
the CPU utilization was sampled every second. Both 
values were taken from the Linux /proc filesystem. Mea- 
surements of traffic on the network were taken using 
tcpdump. 

In each of the experiments discussed in this sect,ion, 
the number of UEs is kept constant throughout the ex- 
periment. Thus we only explore the stationary behavior 
of the workload at this time. This assumption of sta- 
tionarity in the workload for real servers probably only 
applies over short timespans during which the number 
of users at the Web server remains approximately con- 
stant. For this reason we restrict ourselves to runs no 
greater than 30 minutes. Note that even over intervals 
as short as these, Web servers can show high variability 
in many system metrics [15]. 

The workload generated by SPECweb96 depends on 
two user-defined parameters: a target number of HTTP 
operations per second, and the number of threads used 
to make requests. The general approach used by SPEC- 
web96 is for each thread to generate HTTP requests a.t 
a constant rate; the request rate for each thread is de- 
termined by dividing the target rate by the number of 
threads. In all our experiments we used 16 threads, 
which was sufficient since the achieved operations per 
second were always close to the requested values. 

Thus the intensity of the SPECweb96 workload is 
specified in terms of expected number of HTTP opera- 
tions per second, while (as discussed in Section 2) the 
int,ensity of the SURGE workload is expressed in terms 
of user equivalents. To compare the effects of SURGE 
and SPECweb96, we empirically determined configura- 
tions of each resulting in approximately equal amounts 
of data transferred during a 30 minute run. We iden- 
tified three such configuration levels of each workload 
generator; for each level, the difference between the two 

Table 2: Comparison SPECweb96 ops/sec and SURGE 
UE’s. 

SPECweb96 SURGE 
Norninal TCP TCP 
pkts/sec Requests Packets Requests Packets 

70 5901 118560 5293 131642 
300 26028 560238 26055 507727 
500 46520 1000289 48238 874570 

Table 3: Summary of Comparison Experiments. 

in terms of data transferred is less than about 20%. 
These configuration levels, which are shown in Table 2, 
are used only for general comparisons between the two 
workloads. Table 3 summarizes the SURGE and SPEC- 
web96 workloads used, showing the number of requests 
satisfied and the number of TCP packets transferred in 
each 30 minute run. 

5.3 Results 

We first consider the differences between SURGE and 
SPECweb96 in terms of their impact on the server; then 
we examine their different impacts on the network. 

Server Impacts. The most immediately noticeable dif- 
ference between the effects of the SURGE and SPEC- 
web96 workloads is in server CPU utilization. Figure 3 
shows plots of mean CPU utilization for the two work- 
loads as a function of average packets transferred per 
second. Errorbars show one sample standard deviation 
above and below the mean. Mean and standard devia- 
tion were measured over the steady state of each exper- 
iment, with the startup transient removed. 

Figure 3 shows that when the average transfer rate 
approaches 500 packets per second, the SURGE workload 
causes a sharp increase in the server’s CPU load, while 
the server’s CPU is not very heavily loaded under the 
SPECweb96 workload. 

The difference in CPU load over time is shown in 
Figure 4. This figure plots instantaneous CPU load over 
the entire course of each of three experiments for both 
workloads. This figure shows how the two workloads are 
quite different in practice. The figure shows that SURGE 
results in a highly varying CPU load with utilization as 
high as 76% for transfer rates of about 500 pps. In 
contrast, the CPU load is relatively stable and never 
goes above 37% for the SPECweb96 workload. 

One reason for the difference in CPU demands of 
the two workloads can be seen by examining the num- 
ber of active TCP connections in each case. Table 4 
shows the mean and standard deviation of the number 
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011 the other hand, under SURGE the number of threads 
grows in proportion to the intensity of the workload, 
which results in a corresponding increase in the number 
of simultaneous connections that are possible. When 
connections happen to overlap in large numbers the per- 
connection rate is slowed, and so in SURGE connections 
slay open for much longer periods on average than they 
do under SPECweb96. 

In the case of SPECweb96, this difference could be 
addressed by scaling the number of connections in pro- 
portion to the requested operation rate, although it is 
apparently not customary to do so in Web server bench- 
marking. However, this effect highlights the drawbacks 
of the approach commonly used in Web workload gen- 
erators of employing a small or fixed number of threads 
to make requests. 
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Figure 3: CPU Utilization for SURGE (upper at right) 
and SPECweb96 (lower at right) Workloads 

Table 4: Active TCP Connections 

of connections open on the server measured at 1OOms 
intervals. This table shows that a large number of con- 
nections are typically open when running the SURGE 
workload; in contrast, the number of open connections 
for the SPECweb96 workload is typically very small. 
In addition, the variability in number of connections 
is much greater for the SURGE workload than for the 
SPECweb96 workload. 

Figure 5 shows the number of open connections at 
1OOms intervals for the three experiments. Note that 
figures in the two rows use different scales on the y axis. 
This figure shows the large fluctuations in the number 
of open connections for the SURGE workload. 

Maintaining and servicing a large number of open 
connections is computationally expensive, as pointed 
out in [15]. Clearly the difference in the number of ac- 
tive connections is likely to be a contributing factor in 
the CPU utilization differences seen between the two 
workloads (Figure 3). 

The reason that SURGE maintains a much greater 
number of open server connections on average can be 
understood by comparing the request generation pro- 
cess in SURGE with that used in SPECweb96. The inter- 
request time in SPECweb96 is determined by the goal 
of generating a fixed number of requests per time inter- 
val. Thus for SPECweb96, as the number of requests 
per second increases, each thread’s idle time between re- 
quests decreases. In contrast for SURGE, as the number 
of requests per second increases, the idle times of in- 
dividual threads do not decrease; instead more threads 
are used. 

The result is that in SPECweb96, connections are 
multiplexed onto a relatively small number of threads, 
and so the number of simultaneous connections is low. 

R‘letwork Impacts. Finally we consider differences in 
network traffic generated by the two workloads. As de- 
scribed in Section 1 we are particularly interested in 
whether the two workloads generate traffic that is self- 
similar [12] since this property has been shown to be 
present in Web traffic [6] and has significant implica- 
tions for network performance [lo, 171. 

Self-similarity in the network traffic context refers 
to the scaling of variability (burstiness). A timeseries 
Xt,t = 1,2, is said to be ezactlg second-order self- 
similar if 

mt 

X+ 2i 7cH c Xi for l/2 < H < 1 and all m > 0 

i=m(t-l)+l 

where 2 means equality in distribution. This defini- 
tion suggests a simple test for self-similarity in net- 
work traffic, called the variance-time plot. This test 

plots the variance of ~~~(tlj+l Xi against m on log- 

log axes, where the X;s are measurements of traffic in 
bytes or packets per unit time. Linear behavior with 
slope greater than -l/2 is suggestive of nontrivial self- 
similarity. 

Variance-time plots for SURGE and SPECweb96 traf- 
fic are shown in Figure 6. As the amount of data trans- 
ferred increases from left to right in the figures, the traf- 
fic generated by SURGE shows roughly linear behavior 
with slope different from -l/2. That is, it continues to 
demonstrate burstiness across all time scales. In con- 
trast, the traffic generated by SPECweb96 shows evi- 
dence of self similarity when the traffic intensity is low 
but as traffic increases, its self-similarity disappears: the 
variance-time plot approaches a slope of -l/2. 

This effect can be understood by analyzing each of 
the two cases as a collection of individual sources. Con- 
sider a thread as an ON/OFF source; then its marginal 
distribution is that of a Bernoulli random variable. Its 
variance is maximized when the two states are equiprob- 
able; when one state starts to dominate the other, the 
thread’s variability in demand declines. 

As the workload intensity increases, OFF times of 
individual threads under SPECweb96 grow shorter, SO 
individual threads exhibit lower variability in demand. 
Threads increasingly approximate an always-ON source. 
Thus the traffic generated by SPECweb96 comes from 
a constant number of sources which each decrease their 
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Figure 4: CPU Utilization for 70 pps (left), 300 pps (middle), and 500 pps (right) (upper: SURGE; lower: SPECweb96). 

Figure 5: Active TCP Connections for 70 pps (left), 300 pps (middle), and 500 pps (right) (upper: SURGE; lower: 
SPECweb96). 

Figure 6: Variance-Time Plots for 70 pps (left), 300 pps (middle), and 500 pps (right) (upper: SURGE; lower: 
SPECweb96). 
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variability as the workload intensity increases. Hence 
variability in the resulting aggregate traffic is reduced 
as well. 

In contrast, the traffic generated by SURGE comes 
from constant-variability sources; it is the number of 
such sources that increases as workload intensity in- 
creases. Theoretical work [21] has shown that when 
transfer durations are heavy-tailed (as they are in Suno~) 
this condition is sufficient for the generation of self- 
similar traffic. As a result we expect that SURGE will 
generally produce self-similar network traffic under con- 
ditions of both high and low workload intensity. 

Note that in this respect, the source behavior of 
SPECweb96 is similar to other Web workload generators 
whose general goals are to make requests from servers as 
quickly as possible [16, 201. Since these workload gener- 
ators do not preserve significant burstiness in individual 
thread demands, it is unlikely that under heavy loads 
they will produce self-similar traffic in practice. 

6 Conclusions 

In this paper we have described a tool for generating 
representative Web requests that is based on analytical 
models of Web use. We have described the characteris- 
tics that we feel are important to capture in Web work- 
loads, and why they are important. We have shown 
that satisfying this large set of requirements presents 
challenges, but that these challenges can be addressed. 
The resulting tool, SURGE, incorporates the idea of user 
equivalents as a measure of workload intensity in acl- 
dition to six distributional characteristics in order to 
create representative Web workloads. 

Our work draws on the wide range of previous re- 
search that has characterized Web usage patterns. In 
addition we present some new measurements of Web 
usage that are needed to complete the SURGE model. 

We have shown that a workload that satisfies all of 
these characteristics exercises servers in ways quite dif- 
ferent from the most commonly used Web workload gen- 
erator, SPECweb96. In particular, the workload germ- 
erated by SURGE maintains a much larger number of 
open connections than does SPECweb96, which results 
in a much higher CPU load. In addition, we show that, 
SURGE exercises networks differently than SPECweb96. 
At high loads, SURGE generates network traffic that is 
self-similar, which does not appear to be true for SPEC- 
web96. Thus SURGE’S workloads arc more challenging 
than SPECweb96’s to networks as well. These results 
suggest that accurate Web workload generation is im- 
portant, since comparison with realistic workloads in- 
dicate that traditional workload generators like SPEC- 
web96 may be optimistic in their assessment of system 
performance. 
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