

Distributed Indexing: A Scalable Mechanism


for Distributed Information Retrieval


Abstract


Peter B. Danzig, Jongsuk Ahn, John Nell, Katia Obraczka


Computer Science Department


University of Southern California


Los Angeles, California 90089-0782


danzig@usc.edu


Despite blossoming computer network bandwidths aud


the emergence of hypertext and CD-ROM databases, lit-


tle progress has been made towards uniting the world’s


library-style bibliographic databases. While a few ad-


vanced distributed retrieval systems can broadcast a


query to hundreds of participating databases, experi-


ence shows that local users almost always clog library


ret rieval systems. Hence broadcast remote queries will


clog nearly every system. The premise of this work is


that broadcast-based systems do not scale to world-wide


systems. This project describes an indexing scheme that


will permit thorough yet efficient searches of millions of


retrieval systems. Our architecture will work with an ar-


bitrary number of indexing companies and information


providers, and, in the market place, could provide eco-


nomic incentive for cooperation between database and


indexing services. We call our scheme distributed index-


ing, and believe it will help researchers disseminate and


locate both published and prepublication material.


We are building and plan to distribute a research


prototype for the Internet that demonstrates these ideas.


Our prototype will index technical reports and public


domain software from dozens of computer science cle-


partments around the country.


I~eywords: Information retrieval, heterogeneous data-


bases, resource location, bibliographic databases.
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1 Introduction and Motivation


In several years, all books, journals, articles, technical


reports, images of art work, and recordings of music will


be available from thousands, perhaps millions of data re-


trieval companies and publishers[9]. Imagine that you,


a scholar, need to find an obscure article that exists in


a handful of a million databases throughout the world,


but you have no idea where to start. One solution would


have you submit your query to every database. This


process could be automated quite simply with a com-


puter network feature called broadcast [6]. While broad-


casting your query assures that you find your article, it


will not do it efficiently. The impact of millions of other


people also broadcasting queries would quickly overload


all the world’s databases, and no one’s queries would be


answered. However, if the task of dist ributing a query to


a set of appropriate databases were not automated, then


the advantages of having millions of databases would di-


minish, because using them would be slow and cumber-


some. What is needed is an automated system that only


forwards a query to a set of databases that are likely to


have the article that you seek. We report here an ar-


chitecture which we call distributed indexing that could


unite millions of autonomous, heterogeneous retrieval


systems.


We say autonomous and heterogeneous because, de-


spite cooperating together to form a single distributed


retrieval system, they are neither managed nor owned by


any individual agency. They cooperate to increase their


individual exposure, and thereby increase the likelihood


that people use (and pay for) their services. The para-


graphs below motivate distributed indexing and con-


trast it to the current state of the art [13].
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1.1 Relationship to Existing Systems


The current largest heterogeneous retrieval system con-


nects 850 databases. This system can broadcast queries


to all 850 participants, where a stub at each participant


translates the query and response for local use[13]. If


you search for all works whose titles contain the words


“Information Retrieval”, then the system sends such a


query to all 850 databases, and you receive receive 850


responses. If you then ask for all works that cent ain title


words “Database Retrieval Systems”, the system broad-


casts a similar query to the 850 databases, and again,


you receive 850 replies. The creators of this database


have organized the 850 member databases by topic, and


users can reduce the number of databases contacted by


limiting their queries to particular topics.


The database research community, until this year,


addressed the issues of heterogeneous databases[16] by


focusing on translating schemas and concurrency con-


trol schemes, rather than finding or organizing informa-


tion. Several months ago, NSF identified these latter


problems as important [7].


The Wide Area Information Server (WAIS), an ar-


chitecture for heterogeneous retrieval systems is gaining


momentum[l 1]. WAIS maintains a directory of data-


bases, which is used to identify databases relevant to


a user’s query. Clients and servers employ the Z3!3-50


protocol [10]. Clients cache previous queries and their


results for future reference. Cache consistency is main-


tained by periodically re-executing queries or by cache


invalidation call-backs from the servers. We believe this


approach to cache consistency will cause considerable


overhead to the servers and communication network.


We are investigating how autonomous databases can


cooperate to make an efficient, distributed retrieval sys-


tem. We emphasize efhciency because the average query


to existing, nondistributed retrieval systems already re-


turns hundreds of answers on average, frequently returns


thousands of answers, and occasionally tens of thou-


sands [14]. The state of the art in distributed informa-


tion retrieval systems is intelligent “front end” interfaces


to non-cooperating, “back end” databases. Current re-


search addresses this problem with user interface tools


that help naive users refine their queries before unleash-


ing them. We believe this refinement should, instead,


be done by sophisticated users. For example, only a


sophisticated researcher would know that physicists, bi-


ologists, and computer scientists all work on vision. We


believe we can make sophisticated users out of naive


users without employing artificial intelligence. We do


this by making it easy to create autonolnous databases


that specialize in particular topics and types of queries.


Companies and user communities can create clatab~iscs


that sift through all the world’s documents, collect ma-


terial relevant to a particular topic, and process queries


submitted to them from around the world. We say such


databases are precomputed because they contain the re-


sults of executing particular queries on thousands of


other databases. Precomputation avoids the need for


users to broadcast their queries to hundreds or thou-


sands of databases. It eliminates work, reduces query


response time, and helps locate obscure information.


Our research does not address issues of access ccm-


trols, storage space, and copyright. Distributed index-


ing is a mechanism for efficiently discovering interesting


objects. While it can be extended with access controls


and the participating databases can be sensitive to copy-


right, neither this paper nor our prototype makes contri-


butions regarding copyright enforcement, access control,


or royalties. After all, these problems need only be dealt


with once an object is discovered. Information suppli-


ers that sell access to their database may still want to


have their objects indexed, since the more users that dis-


cover and subsequently retrieve them, the higher th~eir


revenues.


1.2 Precomputed Queries


A simple example illustrates what we mean by precom-


puted indices. Suppose a company created a database


of the title words of every work in each of 850 data-


bases. Because the new database contains neither the


text for the works nor even an entire citation record,


the new database would require only a small fraction of


the combined storage of the original 850 databases. It


need only contain the title and the name of the database


that has the complete record. Assuming the title word


database were kept current, it would be much more ef-


ficient to forward title word queries to the title word


database than to all 850 databases. The system would


need only contact the subset of the 850 databases that


stored appropriate articles.


The idea behind distributed indexing is to establish


databases that summarize the holdings on particular


topics of other databases. We call these special data-


bases brokers. We describe the particular topic by a


generator query. Generator queries are expressed in cmr


Common Query Language, the base query language em-


ployed by users. The rest of this-paper describes a sys-


tem that can exploit the advantages of precomputation


on a world-wide scale.


This paper is organized as follows. Section 2 de-


scribes the architect,urc of disl$ributcd indexing as seen


by prograllll)lers al)tl crentors of indict’s, and Section 3


dcscrib (’s ~llc’ arcllilectllrv as vio\v(xl l~y Il$crs. Section 4


221







Key:
. . . . . . . .


—


Replicated Topic Broker I


Topic Broker 1
Reg@ration


1


Generator j


regtstratlon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --------------------------------- -------------------------------- . . ..-J


User
queries Index Broker of


Scientific


Site Broker selling Site Sroker offering
access to free access to
Real Estate Literature Scientific Literamre


c~


Primary Database


< 2


Figure 1: Components of a distributed indexing system.


focuses attention on how to unambiguously specify the


topic of an index, and describes a special indexing struc-


ture we use. Section .5 addresses how we obtain update


consistency. We draw conclusions in Section 6 and de-


scribe the prototype retrieval system that our research


group has designed and prototype, and is planning to


distribute.


2 The Architecture


Our system consists of several components, illustrated


in Figure 1. An index broker is a database that builds in-


dices. The title word database from the example above


is an index broker. Index brokers can index the contents


of primary databases and, in fact, other index brokers.


Primary databases are today’s single-site retrieval sys-


tems such as a library catalogues, indexing services and


CD/ROM databases. Each primary database and index


broker operates in concert with one or more site brokers


that perform several functions. Site brokers store the


generator queries of all index brokers that index their as-


sociated database, and are responsible for keeping these


index brokers’ indices current. Site brokers also trans-


late the system’s query language for execution on the


primary database, translate results from the primary


database to the system’s query language[21], and im-


plement access controls.


When a site broker accepts a new generator, it trans-


lates and executes it on its associated database, and


reliably sends the results to the index broker that reg-


istered the generator. A database sends all new and


deleted records to its associated site brokers. Site bro-


kers apply their generator queries against these updates


and reliably forward appropriate changes to the index


brokers that originally registered the generators. Be-


cause we anticipate that popular site brokers may reg-


ister millions of generators, efficient storage and index


structures for evaluating them are essential. We discuss


these structures in Section 4.


Notice that index brokers are not caches. Rather


they are a consistent view of the databases that they in-


dex. The architecture’s complexity is due to this consis-


tency. This contrasts with Kahn’s Knowbots or WAIS’S


caches which must be re-executed or invalidated to re-


main consistent [15].


Index brokers index other databases, performing a


function similar to telephone yellow pages. An index


broker registers generator queries with site brokers of


primary databases and other index brokers. These site


brokers forward updates to the index broker as their


associated databases change. The index broker stores


these updates and passes them to the index broker’s


associated site brokers.


Index brokers, like telephone yellow pages, do not


compete with primary databases; they simply make the


primary databases more visible (and profitable). The


primary database is not obligated to give an index bro-


ker a copy of the object, nor is it prevented from doing


so. Users of the index broker may have to contact the


primary databases to retrieve the object itself. Previous


work on yellow page services, known as attribute-based


naming, has been restricted to network name servers
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[17, 4, 19, 20]. Our architecture extends attribute-based


naming to bibliographic databases.


The system’s final component, the replicated Topic


Broker, describes every site and index broker [12]. Users


employ an instance of the Topic Broker to identify bro-


kers relevant to their queries. Creators of brokers use it


to find relevant brokers and primary databases to index.


Topic broker replication is implemented with a flooding


algorithm.


2.1 Creating Index Brokers


How is a new index broker created? Creating a new in-


dex broker entails describing its contents and selecting


a set of primary databases and index brokers to index.


The broker’s generator, the query that it registers at the


site brokers of the databases that it indexes, defines an


index broker. A new index broker announces its pres-


ence by recording its generator and an abstract of its


contents with the replicated Topzc Broker, the one logi-


cally centralized component of the system (site brokers


of primary databases also register a generator and an


abstract with the topic broker).


The creator of a new index broker queries the Topic


Broker for a list of site brokers whose descriptions per-


tain to the new index broker’s generator and abstract.


The creator then attempts to register its generator at


each of the appropriate site brokers, and with the Topic


Broker. Henceforth it collects and stores indexing in-


formation from these site brokers. The instance of the


Topic Broker that first registered an index broker in-


forms the index broker when a pertinent new database


or index broker is created, or when changes in the de-


scription of an existing database make it gain or lose per-


tinence. This permits index brokers to choose whether


or not to register their generator at the new site broker.


We are developing interactive tools to automate bro-


ker creation, especially the process of writing generator


queries.


3 User-System Interaction


So far, we have examined how information is organized


in the distributed indexing architecture. In this section,


we examine how users can retrieve this information.


3.1 Specification of Queries


We use a common query language to express genera-


tors and user queries (note that user interface tools, or


user agents, can hide the common query language from


users). The common query language permits Boolean


expressions over traditional bibliographic attributes such


as author name, title, publication date, journal name,


and publication type; and non-traditional attributes such


as geographic location and search cost. It also permits


Boolean expressions over ranges of Library of Congress


numbers. Range queries efficiently restrict a query’s do-


main of interest, and restrict it less ambiguously than


traditional subject keywords. We discuss how ranges


are stored and employed in Section 4.


People in specific disciplines want to specify searches


in that discipline’s preferred classification system[7]. I)is-


tributed indexing does not prevent this, and permits


constructing domain specific user interfaces and broker


creation tools. These tools can map the domain’s pre-


ferred classification system to the Library of Congress


standard. Objects described in a discipline’s terminol-


ogy are easily found by keyword searches on brokers


that index the appropriate range of Library of Congress


numbers.


3.2 Processing Queries


Executing a query invokes a sequence of steps that even-


tually identifies or retrieves a set of relevant objects.


These steps are query specification, query translation,


broker location, broker querying, primary database lo-


cation, primary database querying, and object retrieval.


The process begins when a user issues a query. While


we are not seriously addressing how user’s specify the


query, possibilities include hand-typed common query


language expressions, form or template queries, and even


natural language queries.


Once specified, the user agent translates the query


into the common query language. For hand-typed com-


mon query language expressions, no actual translation


is required. The more sophisticated the user agent, the


more elaborate the transformation.


Take, for example, the following translated query:


Topic: QA76-QA77 and TK5105-TK5IO6


Attributes:


Date >= 1989;


Type = technical report;


Keywords: {computer networks, queueing theory,


not (neural networks, artificial intelligence) ,


gigs-bit, flow control>


This query is sent to an instance of the Topic Broker,
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which computes and returns to the user agent a list of


possible target index brokers that may be able to satisfy


the query. For our example query, this list could contain


an entry for the ACM SIGCOMM broker, the IEEE


Communication Society Broker, a university technical


report index broker on Computer Networks, and several


foreign university site brokers (See Figure 2).


The user agent ranks the list of target brokers ac-


cording to promise, and sends the query to one or more


of them. These execute the query and return a list of


object identifiers and attributes.


In our example, the user agent might send the query


to the University /3 Networks index broker and the site


broker at Cambridge University, although it turns out


that the first broker happens to already index the Cam-


bridge broker. Both brokers return a list of object iden-


tifiers and attributes. The user examines these, and may


chose to retrieve a copy of an interesting report from an


MIT full text retrieval system. His user agent contacts


the appropriate site broker to retrieve the object for


browsing.


3.3 Hypertext and Brokers


Hypertext systems provide an interface to information


that emphasizes browsing through linked chunks of data.


Hypertext can benefit from distributed indexing in three


ways: as a method to identify starting points for brows-


ing,as a way to locate interesting information to place


in a hypertext, and as a mechanism to provide “dynamic


links”.


IEEE Comm. Sot. Cambridge Tech Reprts


between system components.


Consider an existing large scale hypertext contain-


ing hundreds of millions of nodes stored in the primary


databases of our architecture. How can a user begin to


browse through such an enormous information space?


Clearly, it is impractical to visit every object in the hope


of finding something interesting. However, a query to in-


dex brokers might identify a reasonable subset of objects


for browsing. By specifying the general topic of interest


in the form of a query, the user can ask the brokers for


nodes that are worth examining[8].


Brokers can also aid in constructing a hypertext by


finding objects to serve as nodes. A query yields a set of


interesting items; these may be merged with other sets


to form a flat space of objects. Then, links are added


between objects to compose the hypertext structure.


Finally, a query to the distributed indexing system


can be used to implement dynamic links: links that are


constructed on demand. For example, a user viewing


a node might click on a link anchor. Rather than fol-


lowing an existing link, the system sends a query to the


distributed index. The result is displayed as the end-


point of the link, either taking the first object returned,


or presenting a linked list of objects. In this way, a link


endpoint can change over time as new objects are added


to the index space.


Thus, there is a complementary relationship between


hypertext and brokers: brokers add associative access to


the browsing mechanism of hypertext; hypertext adds


organization to objects so they can be easily retrieved


in the future.
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3.4 Implementation Issues


We hope that, ultimately, a multitude of user agents,


brokers, and primary databases will cooperate to form


global distributed indexing systems. These brokers and


databases will be heterogeneous, and, by necessity, will


incorporate existing databases. Network protocol stan-


dards will avoid heterogeneity problems between bro-


ker components and user agents. However, indexing an


existing primary database requires building a new site


broker that knows how to communicate with it. Besides


this, site brokers have another primary database related


task. Suppose a user identifies an interesting object


and wants to retrieve it from its primary database, The


site broker must retrieve the object from the database


and transfer it to the user. We do this to hide the pri-


mary database’s access protocol from the user. Brokers


and site brokers will employ a common communication


protocoll.


The preceding discussion presents a rather involved


series of interactions with the system in order to process


a query. We should emphasize that these need not be


explicitly managed by the human searcher; rather, we


imagine that user agents will do most of the work, asking


for user input at important decision points.


For example, a user agent might take the initial


query specification, translate it into the common query


language, then perform the necessary communications


with brokers and primary databases to obtain a set of


relevant objects for present ation to the user. In the pro-


cess, it may do weighting and ordering of brokers and


objects according to rules specified in some user or sys-


tem specific configuration file<


After a set of objects is found, the user agent may


evaluate their relevance to the search at hand by pro-


cessing user feedback while browsing. This information


could be used to modify the weighting criteria used to


order lists of brokers and objects.


This finishes our discussion on the system’s architec-


ture. The remainder of this paper discusses implemen-


tation issues. The next two sections discuss indexing


data structures and issues in consistency, concurrency


control, and recovery.


4 Indexing Structures


Site and topic brokers store generator queries, while in-


dex brokers store object descriptors (and possibly may


1It is possible that this protocol will be the Z39.50 Information
Retrievzd Protocol, but this clecision has yet to be made.


cache the objects themselves). This section describes


the indexing structures that brokers use. Because topic


and site brokers may store millions of generator queries,


generator queries must be indexed to optimize system


response time, and the index must efficiently use disk


space. Evaluating the query language’s keyword Boolean


expressions requires an attributed, inverted index, a struc-


ture we use but do not describe here. However, in-


verted indices do not support range queries over Library


of Congress numbers. We support Boolean expressicms


over Library of Congress ranges (e.g. QA76-QA77 &


QA244-QA248) as an attempt to confront the query vo-


cabulary problem. This section describes an indexing


data structure we use to support such range queries.


When a primary database or index broker passes a


new object to its site brokers, the site brokers must de-


termine which generators need to be evaluated. Like-


wise, when a user agent queries the Topic Broker for a


list of target brokers, the Topic Broker must determine


which of the abstracts and generators to evaluate. These


operations require collecting pointers to generators from


the keyword inverted index and from the range query


index, and efficiently evaluating the Boolean operations


on the indices.


We must identify the list of generators whose Li-


brary of Congress ranges intersect with the Library of


Congress numbers of the new items. In essence, this is a


set membership problem. Similar range problems exist


in VLSI design and computational geometry[l]; we have


chosen an index structure called a segment tree from the


latter.


4.1 Seglment Trees


In its purest form, a segment tree is a balanced binary


tree that represents a set of overlapping line segments


on some interval, say zero to one. The root node covers


the entire interval and the leaf nodes cover fixed sized


segments of the interval. A node’s left and right children


cover the first and second half of the parent’s interval.


The tree’s height is determined by the segment size of


the leaf nodes, which is set at design time.


How do we use this structure to record line seg-


ments? A line segment is inserted at the highest level


node or nodes in the tree such that the segment sub-


sumes the subinterval covered by the node, but not that


of the node’s parent. This means that a line segm~ent


may appear in many nodes. Take, for example, the seg-


ment tree in Figure 3. The tree’s root covers the interval


O – 1, and its leaves break this interval into 0.125 length


segments. We would insert the interval S1 = 0.125 – 1.0


into nodes i, e, and c because i covers 0.125 – 0.25, e
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Figure 3: An example segment tree


covers 0.25 — 0.5, and c covers 0.5 — 1.0. Likewise, we


would insert interval S2 = 0.00 – .30 into nodes d and j,


and interval S3 = 0.25 — 0.80 in nodes e, t, and n.


How do we use this structure to find all segments


that contain a given point? One simply collects refer-


ences to intervals while traversing the tree from the root


to the leaf into which the point falls. Take, for example,


the point 0.20. Neither the root nor its left child index


any segments, however node d refers to segment S2, and


the leaf i refers to segment S1. Hence, S2 and S1 both


contain the point 0.20.


Site brokers use our segment tree to identify the


set of index brokers whose generator queries should be


evaluated when they learn of new items. How do we


represent Library of Congress ranges using a segment


tree, and how does one find all ranges that contain a


given Library of Congress number? We tailor the seg-


ment tree structure to fit the relatively static Library


of Congress schedules by selecting the subintervals that


nodes represent so that they fall on Library of Congress


classification boundaries. Another way to look at it is


that we’re mapping the Library of Congress numbers


onto the interval O – 1. Based on the current size of


the Library of Congress schedules (about 10,000 printed


pages), we expect the actual size of the index to be about


10 megabytes. Hence, a substantial portion of the index


can reside in main memory. Additionally, we would ex-


pect blocks containing segments attached to the upper


nodes in the tree to be cached in main memory, since


they are shared by many paths.


5 Consistency


Adding an item to a primary database or index broker


may require updating thousands of brokers, which in


turn can cascade additional updates to thousands more.


Updates introduce two sources of problems. First, un-


less we restrict the system’s topology, we must take mea-


sures to prevent an endless cycle of updates. This is be-


cause an index broker may register with other index bro-


kers as well as primary databases. We could solve this


problem by requiring that site brokers reject registra-


tion attempts when they would cause cycles. However,


this requires that each site broker have knowledge of the


complete topology of the system at all times, an expen-


sive assumption. Furthermore, restricting the topology


to acyclic graphs reduces the probability of indexing rel-


evant objects, and may expose proprietary information.


We take an alternate approach based on flooding.


We require that each update message include the object


identifier of the object that caused the update. Upon re-


ceiving an update, an index broker examines its database


for the presence of the object identifier.


In the case of an addition, if the identifier is not


present in the broker, then the broker has not yet seen


the update. It processes the update and forwards it to


other registered brokers as appropriate. Conversely, if


the object identifier is already present, then the broker


has already received the update via another path. It


therefore ignores the update, thus breaking the cycle.


Deletion is quite similar. If the object identifier is


present in the database, then the update has not been
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seen. The broker processes and forwards the deletion.


If, however, the object identifier is not present, then the


update has already been processed, and is thus ignored.


We have to maintain consistency if index brokers or


primary databases disappear or generators are unregis-


tered. When the topology is acyclic, it is easy to nlain-


tain consistency. Permitting cycles, however, requires


that certain path information be exchanged in addition


to object identifiers. The deletion algorithm may need


further work.


Also, because it is unlikely that several thousand


databases are simultaneously functional, we cannot up-


date several index brokers simultaneously in a single


atomic action. We investigate these problems below.


5.1 Atomic Actions


When a database adds a new object, it is the respon-


sibility of the database’s site brokers to identify index


brokers that may be interested in the new object. This


is done by comparing the new object against the list of


generator queries of all index brokers who have regis-


tered at the site. It is entirely possible that the result


may include thousands of index brokers; it is also un-


likely that all of these brokers will be functional at any


given instant of time. Thus, it is unreasonable to as-


sume that notification of the new object can take place


as an atomic transaction.


To solve this problem, we require that new objects


be timestamped with their creation time, and add a


timestamp to each index broker’s registered generator


query. The latter timestamp indicates when the last


update was successfully reported to the index broker.


Site brokers repeatedly attempt to contact each index


broker and report the new object. When contact is es-


tablished, the generator timestamp is set to the times-


tamp of the new object. The process stops when all


generator timestamps are equal to the timestamp of the


last object created.


Deletions are handled in the same way. Each bro-


ker that had expressed interest in the deleted object


is notified in turn of the object’s deletion, All brokers


have been notified when the timestamp of every gener-


ator query is the same as the deletion timestamp of the


deleted object.


5.2 Media Recovery


We assume that primary databases perform their own


media recovery and that index brokers can recover their


list of generators. The index broker’s and site broker’s


timestamps can be used to recover either the index or


site broker after a disk crash[2]. For this reason, inclex


brokers need not recover the indices they store. These


are automatically recovered by resetting the generatc,r’s


timestamp at the site broker. To ensure that site bro-


kers can recover an index broker’s generator query, each


index broker regularly polls all site brokers where it has


registered a generator. If a site broker suffers a media


failure, its generators are recovered as each index bro-


ker polls it and reregister its generator and generator


timestamp.


6 Conclusions


Building a retrieval system to incorporate ten million


databases has never been attempted. The largest exist-


ing distributed database is the DNS name server which


has very limited functionality and only encompasses less


than twenty thousand sites [18, 3]. We believe that dis-


tributed indexing presents a new perspective on uniting


autonomous retrieval systems.


6.1 Prototype


We are implementing the system sketched above to dis-


tribute to the Internet community. The prototype will


run on Sun UNIX, which should make it easily ported


to other UNIX systems. At this time, we have a pro-


totype running in our lab. We expect to complete the


prototype by the time this paper is presented.


With the cooperation often to thirty other computer


science and electrical engineering departments, we will


create a national collection of computer science technical


report index brokers covering the various subdiscipli nes


of our field. Each department will create primary data-


bases of their technical reports, and make a site brc~ker


available over the Internet. As it is currently difficult to


obtain technical report lists, we believe our distributed


indexing project could easily become a permanent part


of the research Internet community. This prototype, al-


beit small, will demonstrate the system’s functionality.


We also plan to interface with DNS databases.


6.2 Future Work


We plan to evaluate how these ideas scale to retrieval


systems beyond this prototype. Scalability depends on


statistical properties of the data, queries, and brcjker


topology. We intend to load CD/ROM databases cmto
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the disks of various workstations, and build experimen-


tal index brokers. We will investigate the index broker


size as the number of indexed databases grows, and will


develop better tools for writing generator queries so that


they comprehensively yet selectively retrieve what we


expect. We are also working on extensions of our ideas


to object oriented databases[5]. Below we consider ques-


tions of scalability y and expressiveness.


Generator queries must describe subjects precisely


if brokers are to precompute useful views of millions


of retrieval systems. However, topics ordinarily span


many ranges. Someone searching “Computer Network-


ing” expects to see articles on Queueing Theory and


Network Technology as well. For this reason, we have


included ranges of Library of Congress numbers in our


queries. We do not expect users themselves will specify


ranges, but, as mentioned earlier, domain-specific user


interfaces can append a Library of Congress range to a


user’s keyword query. Broker creation tools help broker


creators specify Library of Congress ranges that appro-


priately cover the creator’s intended subject matter.
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