

:-

.,(t

. . ‘_- (’
;:‘,

‘. ..
‘.

:,

f ,’

.:. ,,

,.
. . . ,=

.

: __

Demanding Users

There is a simplistic model of the “user” in
many software design circles: Anyone who is
too dumb to write software merely uses it, and
thus is a user. As one so&are support person
said of conversations with customers, “It helps
if I just imagine I’m talking to Homer
Simpson.” These hapless folks are too often
seen as passive consumers, and many manufac-
turers give little consideration to their actual
tasks, needs, and desires.

The software industry has operated in high
gear for over a decade with this point of view.
The impenetrable cult of high technology and
the lack of alternative sources have long kept
the software-consuming masses from revolt-
ing. After all, when one word processor or
spreadsheet is as bizarre as another, what’s the
point in complaining about usability? The flip
side of this is that customers who have invest-
ed large amounts of time in learning a product
become rabidly loyal to it. It may still be awk-
ward and confusing, but it’s a confusion they
already know. (Note that uninitiated end-users
are not the only ones in this boat: Despite the
advent of WYSIWYG editors and graphical
symbolic debuggers, an easy way to pick a
fight in a group of software engineers is to
express a preference for one of the two old war
horses vi and emacs. Both are horrendously
unusable, yet the loyalty remains and the bat-
tles rage on.)

As the software industry expands, new prod-
ucts expose formerly non-computer literate
groups to the joys of automation. However,
some of these groups, notably doctors, lawyers,
and many children, are unwilling to bow pas-
sively at the altar of sofnvare. Rather than
spend their time conforming themselves to the
software that programmers hand them, these
users require that the products they use be
engaging, informative, and effective from the
beginning. Unlike traditional captive users,
these demanding users are generally in control
of how their software dollars are spent, and will
not buy products that increase their cognitive
load or that do not increase their capabilities
immediately. It is these users that point the

way we need to be moving - in designing
human-computer interactions we need to
design for the toughest audience, so that every-
one can benefit.

Software

Products created with the demanding user in
mind include visualization packages for the
medical, scientific, and financial fields (e.g.,
ISG Technologies’ Physician’s Review Station);
some information management products (e.g.,
Gavel & Gown’s Amicus Attorney); and many
video games and other entertainment products
(notably the recent Living Books CD-ROM
series). These projects demonstrate the impor-
tance of designing for the user, and that even
when the user-centered design process is only
partially implemented, it has a positive effect on
the development and acceptance of real world
products created for demanding users.

IX’s Physicians Review Station is a com-
plex product that enables radiologists - intelli-
gent, rushed, and not interested in “driving a
computer” - to examine and manipulate
images from medical scanners using any of sev-
eral flexible, graphical tools. This Unix/Motif-
based product fills the need for a low-cost way
to improve and speed up radiological diagnoses.

As we performed our initial user and product
analyses, we recognized the importance of
enabling the doctors to come up to speed on the
system quickly. We became aware of the trepi-
dation many doctors felt towards new and ever
more complex computer products. In particular,
those over the age of about 45, who have both
visual acuity that is beginning to diminish and a
large voice in buying decisions, were reluctant to
try new computer tools. In my investigations, I
saw several situations where a doctor would not
approach within about three feet of a computer
system unless it looked especially attractive, and
many who simply said, “This product does not
fit my needs’ - when in reality, it just appeared
incomprehensible to them.

As a result, we came up with a “three-
foot/five-minute” heuristic for initial user accep-
tance: The product had be attractive enough to
get doctors inside the three-foot zone, and

As one sofiwme supportperson said of convemztions wit.. customers,

q inreracrions...july 1994

___ _^^-_--.--.. ; _

usable enough that
any radiologist -
even those who had
not touched a type-
writer keyboard in
years - would be
able to perform a diagnostically significant
action within 5 minutes of starting to use the
product. We did not expect full proficiency
immediately, but this was nevertheless a major
departure from earlier products that typically
required 3-5 days of training.

This goal did not represent a formal usabil-
ity test suite, and yet it guided many feature
and interface design decisions and acted as a
touchstone to the character of the entire pro-
ject. As development proceeded, we came up
with other usability goals (e.g., 1 hour to self-
report of proficiency; 1 minute to select a
patient and exam for the novice; lo-second
patient selection for the familiar user) as a way
of measuring our progress. Thus far we have
met or exceeded most of our goals, including
the most daring that specified such a short
learning curve.

As part of our user analyses, we also exam-
ined the social and organizational context in
which radiologists work and adapted the prod-
uct to fit their needs. Specifically, most doctors
will not use a product that puts them in a posi-
tion of even appearing to be on unfamiliar
ground, or which puts their social standing at
risk. This point (and the steps we took to com-
bat it) turned out to be a major underlying
theme in our user interface design. We discov-
ered that a serious consideration for many doc-
tors was their ability to work in private, in
particular away from administrators and med-
ical technologists who occupy different social
strata. This aspect of product use does not fall
formally under the user interface, but it is def-
initely part of user-centered design. Had we
not looked at the product from an organiza-
tional point of view, we would have missed the
opportunity to skirt a major obstacle to user
acceptance.

In designing this product’s user interface,
we were careful to understand and clearly rep-

resent the doctors’ common and critical tasks
by observing and interviewing potential users in
their normal working environments. We thus
eliminated many conceptual barriers the users
had to getting started with this kind of product.
To this end, the program initially presents a
highly streamlined* set of graphical and direct
manipulation tools organized into four major
and clearly visible groups. This allows the user
to begin using the system immediately, without
spending time in formal training. The tools
available at first are limited in number and
scope, but correspond
to those tasks most
doctors perform most
of the time. This lim-
itation allows the
doctor to get right to
work, restricts the
sources of confusion
in the interface, and
encourages the users
to explore the prod-
uct at their own pace.

In addition to the
opening set of tools,
we provide Options
dialog boxes (Figure
1) that allow the user
to easily alter their tool set as they wish. We used
this idea of feature sets that are configurable
without being intimidating throughout the
product. It has met with strong user approval
from both computer novices and expert users.

Not all of our ideas were successful, howev-
er. Early in the product development, we pro-
vided context-specific guidance text in one
corner of the screen to help direct the user’s
actions. Unfortunately, we found during early
testing that the text had only an interfering
effect: The users did not read it for content, and
yet its mere presence increased their cognitive
load. We discovered that removing the text
resulted in better user acceptance and did not

‘Even the term “streamlined” was chosen with care, and
with the users in mind. Doctors do not like to see them-
selves as doing anything simple, so words that evoke this
- novice, basic, etc. -were avoided in the product.

article

,..
ISG Technology’s

Physician’s Review

Station. Simple

dialog boxes allow

the user to tailor

the interface to

their needs.

‘Tt helps ifr just m / Ih talking to Homer Simpson. ”

inreracrions...july 1994

__-_. ~-- _, “_ _--_ ,__ ._ _. ~~~~

Figure 2
ISG Technology’s

Physician’s Review

Station. The inter-

face uses muted

colors and icons

whenever possible.

A certain elegance

and medical

professionalism is

important to the

product.

j q

adversely affect performance. After this we con-
centrated on keeping the user interface stream-
lined enough that such guidance text would not
be necessary.

By giving the product a polished, simple
(almost austere) interface (Figure 2) we attend-
ed to the users’ personal and social needs for
clarity and medical professionalism. The high
degree of interactivity in the product attended
to their perceptual, cognitive, and task-oriented
needs. Finally, by creating a lower-cost product
that could sit on the doctor’s desk, we avoided
many organizational roadblocks to user accep-

Figure 3
Gavel & Gown Software’s

Amicus Attorney. The user

can choose their tools from

either a standard iconic tool

palette (see Figure 4) or

from a realistic view of a

lawyer’s desk. In this picture

the user can click on the

books, the address file, the

telephone, the clipboard,

the hour glass, the calendar,

the file folders, or either of

the two piles of paper to

access familiar functions.

Shown here, the user is

about to click on and open

their client files. Clicking on

the icon in the upper-right

corner returns the user to

the standard view.

7 --- _m - ‘. --

tance. Even though our user-centered design
process in this instance was more rough-and-
ready than methodical, it was still a success.
The Physician’s Review Station is still undergo-
ing FDA approval in the US, but has already set
a new standard for usability in the medical
imaging industry.

In another project I worked with a team at
Gavel & Gown Software to develop the user
interface for the lawyers’ practice information
management product Amicus Attorney. This
Macintosh-based product is specifically suited
to meet the demands of lawyers. Familiar items

such as appointments, dockets, and
client files make up the core of the
product. They appear in a natural
fashion that supports single-handed,
point-and-click navigation whenever
possible (the lawyer’s other hand typ-
ically is holding a telephone receiver,
document, or favorite pen). Even
sound is used in a natural, comple-
mentary fashion to inform the user
without annoying them: The sound
of a wooden file drawer opening
gives an aural cue that complements
the visual changes on the screen
when entering the client files “mod-
ule,” for example.

We extended the concept of natur-
al presentation in this product to allow the user
to choose primary tools (files, calendar, dockets,
telephone, contacts, etc.) from either a tradi-
tional iconic menu or from a digitized photo-
graph of a lawyer’s desk showing all these objects
(Figure 3). This allows the user to work in
whichever environment they find more appeal-
ing, thus supporting both the rank novice and
the more traditional computer user. In addi-
tion, the colors and backgrounds used in the
program evoke a legal setting without overpow-
ering the product itself: golds, red leather, oak,
and green marble are used judiciously through-
out (Figures 4 and 5). While this might seem
trivial, such attention to detail increases the
users’ emotional engagement with the product,
In this case, it has increased user acceptance in
an otherwise reluctant market - particularly
among older lawyers. It provides users with a
product that conforms to their world and expec-
tations, and which can be on-screen at all times

interactions...july 1994

article

‘_

i .

,.

,:J,

-, .I

without diminishing their stature in front of a
partner or client.

Like many startup products, the initial
development of Amicus Attorney progressed
informally, without a strong user-centered
design method. Nevertheless, this product is an
excellent example of an innovative, user-cen-
tered product developed for demanding users.
In an earlier incarnation, this product was used
internally at a major legal firm, and included a
“Suggestions” utility, Over five hundred user
suggestions were reviewed in the development
of the current version of the product. In addi-
tion, expert knowledge, observation, focus
groups, and fast-paced, highly iterative design
characterized this product’s development. It has
been enthusiastically received by its intended
users since before its first off&l release in April
of this year.

A different sort of example of successfully
designing for demanding users can be found in
the CD-ROM Living Books series by Living
Books, , formerly a division of Broderbund. I
have not worked on these, but I have enjoyed
their creativity and have been impressed by how
completely the graphics, sound, and attention
to detail has entranced my children (my 3-year-
old daughter learned to load the CD-ROM and
move and click the mouse in just a few minutes
while “reading” these books).

These “books” display a colorful, smoothly

Figure 4:
Gavel & Gown Software’s Amicus Attorney. This is the opening

“splash” screen from an early Macintosh version based on HyperCard

2.2. Note the red leather in the background, and the general color

scheme throughout. Clicking on the photo of the lawyer’s office

takes the user to the pictorial selector shown in Figure 3.

interactions...july 1994

F&we 5
Gavel & Gown Software’s Amicus Attorney,

The user can access on-line legal services just

as if they were using a more familiar library.

Note the colors (oaks, dusty reds and greens,

and gold) used to evoke a legal setting. All of

the backgrounds used in this product come

from an actual lawyer’s office; their use in this

product helps lower the intimidation factor

with many new users, and adds to the status

and enjoyment of those who are familiar with

computer products.

Figure G
A snapshot from Living Books’ The Tortoise and the Hare. Here, the tortoise is listening to the birds

sing. Note the microphone and musical instruments the birds are holding. Clicking on any of these

birds (and many other areas on screen) causes unexpected things to happen.

animated interface that reads a story aloud to
children and their parents (Figure 6). Further,
the interface - an on-screen storybook page -
uses obvious but unobtrusive modes (pages),
direct manipulation of on-screen objects, and
widely varying sounds to subtlely encourage the
reader to explore the story and its background
in a wonderfully engaging fashion. This is aided
by providing a clear and bright visual presenta-
tion of the story elements, and an animated
connection between the words (which highlight
as the computer reads them) and characters in
the story.

The pages are also filled with objects, char-

acters, and regions that react in unespected
but delightful ways when activated with a
mouse button click. These hidden rewards in
the user interface have become known as
“Easter eggs” and are beginning to show up in
a variety of software products. Such devices are
peripheral to the focus of most software; devel-
opers should use them judiciously, neither
overusing nor underestimating the opportuni-
ty to captivate and encourage the user. In the
case of the Living Books, the creators of this
software seem to have taken the premise that
their users (children of all ages) are intelligent
individuals to be entertained but not pandered

j q inrcracrions...july 1394

to, and have used animation, sound, and
Easter eggs to engage them emotionally, per-
ceptually, and cognitively.

The world of the child learning to read may
seem different from that of the radiologist or
lawyer, but their needs are not dissimilar: All
are examples of demanding users with little
desire to learn computers but who can benefit
from their use. These users respond well to
products that provide clear value while engag-
ing them on multiple levels and encouraging
them to explore further.

The products described for these users have
striking similarities as well. Each displays its
functions and graphical data in their most nat-
ural and engaging forms; visual and auditory
recognition are employed instead of making the
user learn and recall arcane commands. Each
product has a modular, task-oriented focus,
though the ‘inodes” are often smoothed over
by a unifying interface metaphor. Each pro-
vides extensive direct-manipulation tools and
environments. Finally, these products each pro-
vide access paths suited to both unfamiliar and
seasoned users. This allows for quick starts and
low-stress productivity gains as the user
becomes more familiar with the product. While
the products themselves are as different as the
demanding users they serve, the user-centered
approach to product design results in similar
degrees of user acceptance for each.

Process

The process of designing for demanding users
is necessarily a user-centered one. Designing
instead for engineers (what technology can we
build?), marketing (what is everyone else
doing?), or management (what will make the
stock go up next quarter?) may result in short-
term or niche-based sales, but is unliiely to
caprure the minds of truly demanding users.
Hallmarks of user-centered design include an
iterative process involving

*early product and user analyses
*iterative design and prototyping
*and formative testing

as shown in the previous examples and by
many authors [1,2,4]. There is no single user-
centered design process that is accepted across
the software industry. However, based on my
experience, some principles and activities
involved in this process are becoming clear.

At the beginning of the user-centered design
process, all those involved in the development
of a successful product must agree on the pro-
duct’s definition - one based on careful analy-
sis of the target users, their task flow,
informational requirements, and physical and
organizational environments. Resisting the
tempration to base the product definition on
second-hand user knowledge, marketing fads,
or the latest technological gimmickry will pre-
vent later problems in design and deployment.

The encapsulation of the early product and
user analyses comes in the form of a simple,
clear mission-like statement backed up by
usability goals and task-flow diagrams. The
simple product definition acts as a touchstone
during development so that “creeping feature-
ism” is avoided. Usability goals help team mem-
bers prioritize their work and know how
different designs perform against user expecta-
tions. Task-flow diagrams (Figure 7) are the pre-
cursor of the more familiar feature lists and
functional specifications and are close cousins to
state-transition diagrams; they provide a map of
the users’ work showing the natural progression
from one action to another in pursuit of the
final goal. To facilitate team understanding and
solid software architecture, these plans are best
created in a hierarchical fashion (Figure 8).

Once the team agrees on the task focus and
usability measures for the product, traditional
software development processes come into play.
This way, features and functional specifications

article I c . (,
,

The world of the child

may seem dzferentfiom tht of the radiologist or Lawyer,

but their needs dre not dissimilar . . .
inreractions...july 1994

__- * -~ “-~

1.

-, :

,_ -

I-

:.

4..

,*
7. ,
. .’

High-level tasks and transitions for the

Physician’s Review Station
General Go&

- review next patient’s images (one patient in today’s “stack”)
- recall a specific study for further review

- compare two studies

F&we 7

An example task-

flow diagram. These

start out simple,

with the major

states and activities

highlighted, and

gradually become

more complex as

more tasks are

included.

G -85%
/’ Select a \ -3 I,

emerge based on the supported tasks - not the
other way around - with the added benefit of
easy code modularization based on natural task
groupings. The early agreement on tasks and
matching features eliminates expensive argu-
ments, course changes, and rework. It also
highlights high-risk areas, thus enabling the
team to pay close attention to scheduling, tech-
nological progress, or user-acceptance measures
in specific areasIn designing the interface for
the demanding user, information about the
product itself must be made as “invisible” as
possible. That is, the user interface must be
more perceptually than cognitively significant
[5], so the user can think about the task and not
the tool. Constructing the features to fit the
users’ tasks - rather than hoping the users will
change their work to fit the tools - accom-
plishes this. Using a few clear metaphors,
graphics, animation, and icons greatly enhances
this effort.

This commitment to clarity makes the prod-
uct more transparent; it also provides the emo-
tional engagement and sense of comfort that
comes from knowing someone else has antici-
pated your needs. Deep levels of engagement
are not often considered in developer-centered
products, but those products designed for
demanding users must be more than just fea-
ture-laden to be successful; their usability must
be more than screen-deep.

While common tools must be represented
clearly, not everything in the product needs to

be equally obvious. Tucking advanced or occa-
sionally used features out of sight where they do
not get in the way of common usage removes
many distracters, helping the user focus on the
task at hand. However, avenues for exploration
of the product must be clearly marked and pro-
vide for no-risk investigation at the user’s own
pace. In this way users grow their model of the
product to fit their work, rather than reshaping
their work to fit the product.

Finally, when system errors happen, recover-
ing from them must be made as low-anxiety as
possible. Demanding users do not tolerate pro-
gramming laziness when things go wrong -
uncommunicative error messages are merely a
sign that similar development haste is likely to
crop up elsewhere in the product, probably
when they can least afford it.

As development proceeds beyond the prod-
uct analyses and early designs, the user interface
solidifies. First, the user interface designer cre-
ates task-based storyboards to try out various
ideas with team members and a few users,
These storyboards can be formalized on paper
or even on-screen, but most begin as fragment-
ed drawings on whiteboards, an invaluable tool
for the fast generation of many ideas.

Once a few general ideas begin to win out
over others, these show up as non-functioning
mockups depicting primary metaphors, screens,
and direct manipulation tools. Mockups are
generated quickly, though they are more formal
than storyboards. These take into account real-

interactions...july 1994

‘-- -_- - __~. -. ~..--l_ -. ,.-,I
. :

t a Patient
\ _ _--

--_ -_I__--__ __-. --- - -..- -,-.- - I :

~

.’

article L-----J

,r- View 2D

-’ Examine list for
matching info

ities such as screen real estate and widget size
and placement. Typically mockups are not
interactive, and do not demonstrate the prod-
uct-task flow. Thus, while mockups are useful
for getting fast user feedback without investing
a lot, they are problematic: Users (and others
not intimately familiar with. the ideas being
shown) sometimes have diff-iculty commenting
on an idea’s utility when seeing it in an isolated,
rough form. Since mockups are non-interactive,
their creation requires little engineering sup-
port. However, the development team (and
marketing, service, etc.) must be involved in
their review - at least - to prevent divergence
between the user interface and the underlying
sofiware modules.

Creating prototypes of user interface compo-
nents comes next. These are often made from
mockups, but differ in that they are more “real”
and have both greater interactivity and speci-
ficity. A prototype typically demonstrates major
task-related states and controls, including main
screen sequences, icons, menus to be used, etc.
They allow for formal user testing early enough
in development to make a difference in the
released product - without sacrificing the
development schedule. The final user interface
screens and components are often made from
the prototypes as they consolidate, based on
continuing user feedback. As the prototypes
become more real, the development engineers
become responsible for their creation and main-
tenance. Passing these smoothly from user

interface designers to software engineers is an
important milestone; cross-training members of
both groups helps this along.

As the prototypes mature and the team inte-
grates the product modules, the process &ii
from design to evaluation. The borderline is not
clear-cut except at common engineering mile-
stones like the start of beta-testing.
Unfortunately, if the team conducts no user
evaluation until this point, there is rarely time
to do more than a few token usability tests, or
to implement more than a few (if any) of the
changes recommended by this testing. It is also
likely that you will find development resources
have been wasted on unimportant details, or on
“refining” a feature that was good enough
months earlier.

To ensure successful product development,
user testing takes place repeatedly as the prod-
uct develops. These tests should be quick and
informal when the product is itself at an infor-
mal or semi-defined stage, and increase in scope
and formality as the product matures. Properly
conducted, such formative testing has at worst
a neutral effect on the development schedule,
and can have a positive effect by eliminating
expensive detours and rework. It is vital, how-
ever, to publicize the findings of usability tests
to all those concerned with the product’s devel-
opment.

One of the problems with doing things bet-
ter is that you don’t get credit for mistakes you
don’t make: saving six months in a development

interacrions...july 1994

Fipre 8

An example hierar-

chical task-flow dia-

gram. Each task

(bubble) at one level

can be broken down

into sub-tasks at a

lower level. This can

continue until going

any further results in

implementation

rather than design

decisions, though it

is not typically nec-

essary to go that far.

;.I,

! j,

r
a-

:, ,

schedule by preemptively eliminating an
unnecessary component is significant for any
project, but such “savings” rarely show up on
the bottom line and are quickly forgotten.
Increasing the visibility of iterative design
changes thus helps obtain internal acceptance
for user feedback as a valuable information
source. It helps to remember too that any eval-
uation results that are not used in one version
of a product will likely serve as advance analysis
for the next.

Throughout the user-centered development
process, some engineers are uncomfortable
spending the time it takes to learn from users
when they could be coding (doing “real work”).
They forget that someone will analyze and eval-
uate their designs - if no one else does, their
users and competitors will. Demanding users
do not have attentional and cognitive resources
to squander figuring out subtleties in a new

1

Graphical User Interface (GUI)
Design Training

Analysis and Design Methods for
Cfmplex User Interfaces@

Learn practical methods and skills
that will make your software:

l easy to learn and use
l reduce user errors
l increase user satisfaction

Learn valuable methods and techniques for user
analysis, screen design, prototyping, and evaluation.

We include information on the QUE Development
MethodologyTM, an exciting new usability engineering

methodology from Cognetics Corporation.

For More Information Call:

B (201) 267-6007
ioftware
Jsability
Seminars P.O. BOX 512. Morristown. NJ 07963

user interface, and cannot be “forced” into
doing so (i.e., by enforced product use and long
learning curves). Since demanding users are
quick to take their business elsewhere, ignoring
the user-centered process increases the risk of
slipped schedules, missed budgets, poor sales,
and a shortened product life - a potential dis-
aster for the manufacturer.

The issues encountered when designing for
demanding users can serve as advance models
for product designers in general. As more peo-
ple become aware of their technological choices
and as our industry matures, captive users are
disappearing - we are all becoming demand-
ing users. Except for certain small deep-niche
markets, the days are gone when manufacturers
could rely on the users’ affinity for computers,
their willingness to spend weeks at the bottom
of the productivity and learning curve, their
lack of alternative choices, or their lack of buy-
ing authority to prop up their sales. When we
regard all potential customers as demanding
users and increase the maturity and user-cen-
tered focus of our development process, we gain
greater user satisfaction, increased sales, and
increased implementation of the user-centered
design process. @

References

q Dayton, T. et al Skills Needed by User-Centered

Design Practitioners in Real Software Development

Environments: Report on the CHI’92 Workshop.

SIGCHI Bulletin 25 3 (July 1993)

ml Gould, J.D. and Avis, C. Designing for Usability:

Key Principles and What Designers Think.

Communi. ACM 28 3 (March 138S), 300-311

Ill Hix, D. and Hartson, R. Developing User

Interfaces. Wiley, New York, 1773

ml Nielsen, J. Usability Engineering. Academic Press,

Boston, 1993

fEl Robertson, G.G., Ma&inlay, J-D., and Card, SK;.

Cone Trees: Animated 3D Visualizations of

Hierarchical Information. In Proceedings of

CHIPLACM, NewYork, 1991, 183-194

intcracrions...july 1994

