

(116 IEEEJACM TRANSACTIONS ON NETWORKING. VOL. 5. NO. 5, MTODER 1997

Modeling the Perfurmance of HTTP
Over Several Transport Protocols i

John Heidemann, Member, IEEE, Katia Obraczka, and Joe Touch, Member, IEEE

Abstract-This paper considers the interaction of HTTP with
several transport protocols, including TCP, ‘&ansaction TCP, a
UDP-based request-response protocol, and HTTP with persistent
TCP connections. We present an analytic mode1 for each of these
protocols and use that model to evaIuate network overhead carry-
ing HTTP traffic across a variety of network characteristics. This
model includes an analysis of the transient effects of TCP slow-
start. We validate this model by comparing it to network packet
traces measured with two protocols (HITP and persistent HTTP)
over local and wide-area networks. We show that the model is
accurate within 5% of measured performance for wide-area net-
works, but can underestimate latency when the bandwidth is high
and delay is low. We use the model to compare the connection-
setup costs of these protocols, bounding the possible performance
improvement. We evaluate these cosfs for a range of nefwork
characterisfics, finding that sefup optimizations are rdatively,
nnimportant for current modem, ISDN, and LAN users but can
provide moderate to substantial performance improvement over
high-speed WAN’s. We also use the model to predict performance
over future network characteristics.

Index Terms-Computer protocol performance, HTTP, inter-
networking, TCP.

I. INTRoDucrIoN

T HE World Wide Web [l] has rapidly become one of the
most popular Internet services [ZJ. The popularity of the

web has resulted in a corresponding popularity for HTTP,
the standard Hyper-Text Transport Protocol [3], 141. HTTP
is layered over TCP.

The strengths of TCP are well known. TCP is a wdl-
understood protocol with carefully tuned fiow contro1 and
congestion avoidance algorithms [5]. These characteristics
make TCP an excellent protocol for bulk data transport in
congested networks.

Web traffic is not ideally matched to TCP, however. In
practice, web access is request-response oriented with bursts
of numerous requests and small, unidiiectional responses.
Retrieval of a complete web page requires separate requests for
text and each embedded image, thus making traffic inherently
bursty. Responses are small to keep transmission times down;
several studies have documented typical response size as less
than 1 kB [6], 6 kB [7], or 21 k3 [S]. Finally, web users often

Manuscript received November 21, 1996; revised June 6, 1997; approved
by IEEE/ACM TUANSACRONS ON NEWORKING Editor L. Peterson. This vrork
was supported by the Defense Advanced Research Projects Agency (DARPA)
under FBI Contracts J-FBI-95-185, entitled ‘%ities Online,” and J-FBI-95.
204, “Global Operating Systems Technologies.” The views and conclusions
contained in this paper are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied,
of tbe Department of the Army, DARPA. or the U.S. Government.

The authors are with the Information Sciences Institute, University of South-
em California, Marina de1 Rey, CA 902924695 USA (e-mail: johnh@isi.edu;
katia@isi.edu; touch@isi.edu).

Publisher Item Identifier S 1063-6692(97)07264-6.

bounce rapidly from site to site, as verified by both client [6]
and server side traces [8].’

Unfortunately, TCP is poorly suited to frequent, short,
request-response-styIe traffic. Frequent connection setup and
tear-down costs burden servers with many connections left in
TIME-WAIT state [9], [lo]. Short connections can internct
poorly with TCP’s slow-start algorithm for congestion nvoid-
ante [lo]. Finally, TCP’s initial three-way handshake adds
latency to each transaction [lo].

These mismatches between the needs of HTI’P and the
services provided by TCP contribute to increased lntency for
most web users. Fundamentally, TCP is optimized for Inrge-
scale bulk data transport, while HTTP often needs a light-
weight, request-response protocol. Other request-response-
style services, including transfer of short e-mail messnges or
files and RPC protocols, would also benefit from protocol
improvements.

Prior work in this field. (reviewed in the next section) hns
identified and proposed solutions to each of these probbms,
This paper builds upon that work in several ways. First, we
present analytic models for HITP traffic over several trnnsport
protocols. These models allow us to compare current nnd
future protocols in a common framework. We can also predict
protoco1 performance on proposed networks. We validate our
models by comparing them to measurements from an actunl
system. Finatly, we use the insight provided by the models to
reflect on the needs of protocols for HTTP traffic.

This paper makes several contributions to the field, First,
we provide a detailed examination of the transient effects of
TCP connection start-up. We show that the start-up behavior of
TCP’s slow-start algorithm depends on the acknowledgment
policy of the receiver and that this fact often results in the
congestion window opening significantly slower than has often
been described. These effects are particularly important for
HTTP (and similar short, request-response protocols) where
transient effects often dominate performance. Second, we
provide an analytic model for web transport over severnl
protocols and use this model to compare these prolocots
and to validate the experimental results of prior researchers,
Third, we apply our model to predict protocol performnnce
in a broad range of network characteristics including future
networks characteristics. Finally, we apply these predictions lo
evaluate the performance of recent HTTP enhancements. We
find that while recent enhancements such as persistent H’ITP
are effective with high-bandwidth network characteristics, they
offer much more modest gains in the medium- and low-

t For example, from tbe 19954996 Boston University survey [6], we cnn
deduce that an upper bound on the mean number of unique URL’s rend from
each site is 15.5. The NCSA server-side traces suggest that clients rend n
mean of 2.92 text pages at their site per-browsing session,

1063-6692/97$10.00 0 1997 IEEE

HEIDEhlANN cf al.: MODELING THE PERFORMANCE OF HTTP

bandwidth network characteristics common to most Internet
users today.

II. RELATED Wow

This section summarizes previous and current work in the
areas of HTTP performance evaluation as well as transport
protocols that have been proposed as alternatives to TCP.

A simplified version of the HTTP over TCP and caching
TCP models of this paper is under development [ll]. That
paper focuses on comparison of H’ITP with and without
persistent connections; this paper more accurately models
slow-start and workloads and analyzes additions protocols in
more detail.

A. Persistent-Cortrtection HlTP

Padmanabhan and Mogul conducted experiments to quan-
tify the cost of using TCP as HTTP’s transport mechanism
[lO], Their examination of a typical HTTP request-response
demonstrated throughputs for short responses as small as 10%
of the throughput obtainable by bulk data transfers under
similar network conditions. They attribute these costs to TCP’s
connection setup and slow-start mechanisms.

To amortize TCP’s connection overhead over multiple
H’lTP interactions, Padmairabhan and iMogul propose a
‘persistent-connection” HTTP, or P-HTTP, a variant of HTTP
that uses one TCP connection to carry multiple HTTP requests
[IO]. Mogul also investigates trace-driven simulations of
HTTP and P-H’lTP, demonstrating that P-HTTP can avoid
these setup costs and achieve significantly better performance
than HTTP when there is temporal locality in web accesses
[12]. By requiring fewer TCP connections than HTTP,
P-HTTP also conserves server and network resources.

Padmanabhan and Mogul’s results have been corroborated
by Spero in an unpublished study [13]. A version of P-HTTP
is part of the specification of HTl?/l.l [4].

Both Padmanabhan and Mogul’s and Spero’s analyzes of
HTTP overhead were founded on measuremeniS between
relatively well-connected Internet hosts (bandwidth -about 1
Mb/s, roundtrip time 70 ms). We show that our analytic model
of performance allows us to extend these results to other
networks. We validate their results for well-connected hosts;
in such cases, P-HTTP will improve performance. We also
show that when either bandwidth or delay degrade (perhaps
due to wide-area congestion, bottleneck links such as a modem
or ISDN, or colocation of hosts), then P-HTTP performance
improvements are much more modest.. .

A recent technical note has suggested thaz use of pipelining
is important to get good performance from the HTTP/1.1
implementation of P-HTTP [14]. Pipelining reduces the num-
ber of packets transmitted and supports request independence
(as discussed in Section IV-A). We discuss the performance
implications of HTTP/l.1 with pipelining in Section V-E.

B. Transaction TCP

Transaction TCP, or T/TCP [9], [15], was proposed to
bridge the gap between the services provided by UDP and
TCP for request-response applications? TlTCP improves TCP
performance by caching per-host information sufficient to

2A TfKP “transaction” is a request-response exchange, not a database-
style transaction.

617

bypass the TCP’s three-way handshake and avoid slow start3
TflCP also shortens TCP’s TIME-WAIT period from 240 to
12 s, reducing the duration that per-connection state is retained.

Stevens compares the time to complete a client-server
transaction using TCP, UDP, and TACP for different sizes
of the request and reply over Pentium-based hardware on a
10 Mb/s Ethernet [16]. As expected, the UDP-based client-
server yields the smallest latency (11-N ms, depending on
packet size), and the TCP-based interaction takes the longest
to complete (36-105 ms). In Stevens’ experiments, T/TCP is
about 5 ms more expensive than UDP for a given packet size
(and, therefore, 557~18% faster than TCP).

We extend Steven’s resuhs by modeling HTTP traffic over
Ti’TCP. We also show that, with respect to connection es-
tablishment cpsts, HTTP traftic over T/TCP and persistent-
connection TCP (I-HTIP over TCP) behave identically.

C. UDP-Based Request-Response Protocols

The Asynchronous Reliable Delivery Protocol (ARDP) is
one example of a reliable message passing protocol built atop
UDP for request-response-style interactions between a client
and a .server. ARDP was proposed and implemented as the
transport mechanism for the Prosper0 information discovery
too1 [17].

ARDP’s main design goal is to provide a reliable. yet
lightweight communication mechanism to transport requests
and responses between clients and servers. The current version
of ARDP (in development) borrows TCP-style flow-control,
congestion-avoidance, and retransmission algorithms.4 ARDP
avoids TCP’s three-way handshake, instead randomly selecting
connection identifier& ?his approach trades conuection setup
overhead f6r a chance of accidental (or intentiond) connection
identifier reuse.

We will ,show ihat although avoiding the three-way hand-
shake is heIpfit1, caching congestion-control information is
important for optimal performance.

III. NETWORKANDTRAFFIC MODEL

To understand the performance of HTTP over different
transport protocols, we must characterize tire network and the
trafbc we expect to send. We consider each of these in turn.

A. Network Model

Fig. 1 shows the beginning of a typical TCP packet ex-
change. Sieral parameters are needed to characterize this
exchange; we list these in Table I.

The first three parameters listed in Table I-roundtriF time,
bandwidth, and maximum segment sizes-are all properties df
a given network path (although observed roundtrip time and
bandwidth may change due to variations in network and server
load). The remaining two parameters can be derived from the
others. Segment-transmission time (the time it takes to send
the largest possible packet) is directly related to bandwidth

3While the functional specifications for TflCP suggkt that
cohgestion window be cached, the reference im@Iementation (at
ftp:/~ftp.isi.cdu/pub~radenRTCP.tar.Z) does not cache this value.

‘JOlder versions of ARDP have a fixed window size of 16 1250-byte packets
and do not do slow-start.

‘Our segment sizes already account for link-level headers.

618 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5. NO. 5, OCTOBER 1997

setup

initial
request

HlTP HTTP
Client SWd.53

. ,

:
stat) 1

:

4
1 rbund-trip
1 lime (RTT)

t

4 segment
7 transmission

time

slow
start

sustained
kansfer

Fig. 1. Packets exchanged in an HTP over TCP connection not limited by
bandwidth. Bold arrows indicate data transfer, while thin arrows show SYN-
or ACK-only packets.

TABLE I
NETWORK CHARACIERKT~CS AFFECTING ERTP PERFORMANCE

rtt

bw
77lSS

stt
7nuws

and segment size:

roundtrip time
bandwidth
maximum segment size
segment-transmission time
maximum useful window size

mss
stt = -.

bW
Maximum useful window size is the btidwidth-delay prod-

uct expressed in an integral -number of packets. This final
parameter represents the number of segments which must be
in flight to keep the network “‘pipe” fulI. When the current
window size is less than mtiws, there will be a delay while
acknowledgment return to the sender; when window size is at
least muws segments, then there will be continuous flow of
data. Analytically, muws is

Ttt
muws = - .

1 1 sti
A final network characteristic not considered here is trans-

mission error rate. We discuss the ‘effects of packet Ioss on
OUT results when we validate our model in Section V-C. The
primary goal of this paper is to examine startup effects of
transport protocols. A compIete discussion of the effects of
error on transport performance are beyond the scope of this
paper, so for the remainder of this paper we assume error-free
transmission.

Having defined these parameters, we can now @ntify them
for the networks in which we are interested. These vaIues are
given in Table II.

Our models will use these pqameters to predict perfor-
mance across a range of networks. where possible, we have

TABLE II
NETWORK CHARACIERBTICS FOR SEVERAL EXISTING NETWORKS, N-Ethernet,

N-Fast-Internet. and N-Modem are discussed in Section V-E

network
Ethernet
Fast-Ethernet
Slow-Intern+
E&t-Internet
Modem
XSDN
WAN-Modem
WAN-ISDN
ADSL
DirecPC
N-Ethernet
N-Fast-Internet
N-Modem

rtt dw mss stt muws
0.7ms 8.72Mb/s 1460 B 1.28ms 1 pkts

. 0.7 100 1460
161 cl.lQ2 512
69 1.02 512

250 0.0275 512
30 0.122 512
350' 0.0275 512
130 0.122 512
30 6 512
500 I 512
0.7 8.72 1460

80 1.17 1460
150 0.0275 1460

0.111
38.5
3.85

142
32
142
32
D.651
3.91
1.28
9.52

396

7
6

24

;

i
47

128

;
1

directly measured these parameters on actual systems. For
Ethernet, we use observed bandwidth and latency measured
between two Sun SPARC 20/71 hosts connected by a dedicated
10 Mb/s Ethernet. For the Internet, we employ two differ-
ent values-“fast” and “slow” Internet-which correspond
to measured coinmunications speeds between well-connected
hosts on the same and different continents, respectively,6
Actual Infei-net performance represents a continuum between
these points. The fast-Internet case corresponds roughly to
characteristics present in Mogul’s and Spero’s studies [12],
[13]. DirecPC also presents measured values from a system
with satellite down-link and a modem back-channel [18],
(we assume tiat the back-channel is not a factor limiting
performance.)

Foi several other networks, we have had to estimate these
parameters. Modem and ISDN figures employ measured la-
tencies and theoretical bandwidths. Fast-Ethernet and ADSL
use theoretic&l bandwidths and latencies suggested by similar
sy&ms (10 Mb/s Ethernet and ISDN, respectively). We look
forward to replacing these estimates With actual measurements
as these systems become available.

Finally, onIy the Slow- and Fast-Internet figures consider
wide-area limitations on latency and bandwidth; other cases
assume that the client is directly connected to the server by
the given networking technology. We can reflect wide-aren
limitations by adding latency and capping bandwidth to that
observed in the Slow--and Fast-Internet cases. For Modem and
ISDN, we therefore show WAN version with 100 ms additional
latency. For faster technologies (ADSL, DirecPC, Slow- and
Fast-Ethernet& bandwidth and latency can be approximated
by the Slow- to Fast-Internet cases.

We can already observe that mzLuls is fairly Iow in many
current networks, with the exception of the fast-Internet case,
Once the transmission window has opened up past this value,
acknowledgments of outstanding packets are returned as fast
as packets are transmitted. muws is directly related to protocol
overhead; we will show later that when it is small, connection
setup optimizations have little to optimize and so provide
performance similar to HTI’P over TCP.

6For the fast-Internet case, we measured communications between dnrk-
star.isi.edu and prep.ai.mit.edu; for the slow case, between darkstar,lsi,cdu and
ftp.connect.org.uk. These measurements wcne taken on a Saturday afternoon
(7 h west of UTC) on May 11, 1996.

. c:

HEIDEUANN eraL:hfODELING THE PERFORMANCEOFH’ITP

B. Trajk Model

Performance of transport protocols also depends upon the
traffic characteristics of HTTP. We consider several potential
HTTP workloads.

Small page: Single 5 kB web page.
Medium page: Single 25 kB web page.
Large page: Single 100 kB web page.
Small duster: Single 6651 3 page with embedded 3883 B

and 1866 B images.7
Medium cluster: Single 3220 B page with three embedded

images, sizes 57 613 B, 2344 B, and 14 190 B.*
Large cluster: Single 100 kB page with 10 embedded 25

kl3 images.
Notice that at each change in size (from smaII to medium to

large), the total amount of data exchanged is about five times
larger.

Each of the cluster workloads requires multiple HTTP
requests, one per page or image. In multirequest exchanges,
we assume that all requests are independent. Requests A
and B are independent if request B can be initiated before
request A has completed. Although a simple client program
wouId sequentiahy request each item, modem multithreaded
browsers initiate multiple parallel image requests as the basic
HTML page is received, thus allowing some degree of request
independence.

Choice of traffic wilI influence our protocol evaluation. The
small and medium cases are representative of typical web
pages today. We consider the large cases representative of
what may become common in the future as networks with
higher bandwidth become more widely available.

Finally, we also need to model the size of HTTP requests
and the time it takes a server to parse and interpret the request
(server processing time). To simplify our model, we assume
a constant request size of 256 B and zero processing time. A
more complex mode1 of request size is not warranted since
requests almost always fit in one segment and so performance
is dominated by response sizep The zero processing-time
assumption is clearly incorrect; request-handling overhead
depends strongly on server hardware, software, aud load. We
remove this effect from our computations to focus instead
on the network protocol aspects of HTTP instead of server
implementation. We reconsider processing time when we
validate our model in Section V.

IV. PROTOCOL ANALYSIS

We next examine protocol performance for the networks
and traffic patterns we are considering. We examine the
interactions between HTTP and several classes of protocols.

TCP: HTTP currently runs over TCP, opening a new
connection for each transaction.

Connection caching protocols: To avoid connection
setup overheads, P-HTTP and TYTCP cache connections or
connection information across muhiple requests.

UDP-based request-response protocols: ARDP em-
ploys UDP to avoid TCP setup costs.

7Thc front pap (http://www.yahoo.com) at Yahoo on May 1. 1996.
*The front page (http://www.gnn.com) at GNN on May 1. 1996.
9Some older browsers had substantially longer requests [13]. Performance

concerns are one reason modem browsers keep requests short.

619

To examine these protocols against a consistent baseline, we
first consider a lower bound on transaction time.

A. Minimum Transmit 2imes

Logically, the minimum possible transaction time is the one
ronndtrip time delay inherent iu commnnication, plus the time
it takes to send the request and receive the reply, and any time
spent at the server:

T& = tit

+ whin
+ processing

+ rePb&i,,
TeQsize

Teqmin = -
bw

(1)
This equation is stmightforward and can be reduced to

data size divided by bandwidth. We present it in this detail
to illustrate the differences and similarities between different
transport protocols.

A series of n independent requests wilI incur only one
roundtrip latency because they are pipelined. The total required
time will, therefore, be

Smira = tit + 2 [T,G~ (i) - rtt]. (2)
id

The assumption of independent requests implies a browser
which is muhithreaded or which pipehues requests and that the
subsequent requests are sent immediately without waiting for
the prior response. (In particular, we assume that the second
request can be made before the complete results of the first
request have returned.) If we were to assume a singIe-threaded
browser making n sequential requests, we would then add
an additional (n - 1) x rtt delay to (2), while the client
determines and requests the next page. If we assume that no
additional requests could be made until the first was completed
(as wouId be the case iu a multithreaded browser where all
image references are in the last segment of the first page), we
would add one additional rti.

Because of our assumptions about request size and process-
ing time, the primary factor influencing minimal transmission
times will be rePZy,i,. Table IIl snmmarizes the minimum
possible transmission times for the networks and workloads
we consider.

B. Simple Model

We can construct a very simple estimate of when transport
protocol overhead will be significant by comparing the ratio
of tbe bandwidth-delay product to the transaction size. In
any streaming transport protocol, several roundhip exchanges
are required to reach steady-state performance (assuming net-
working conditions are not known a priori!. When the offered
transaction is too small, stability is not achieved, and transient
effects are amplified.

We can approximate the minimum amount of time a con-
nection would have to stabilize by comparing the ratio of
transmitted data to pipe size. For an HTTP transaction, as-

620 IEEIYACM TRANSACTIONS ON NETWORKING. VOL. 5. NO. 5, OCTOBER 1997

TABLE III i
MINIMAL THEORETKAL Tlhm -ro SEND DI~RENT WORKLOADS ACROSS DIFFERENT NETWORKS

j
,

network smaII-page medium-page large-page smalI-ciuster medium-cIuster large-cIustor
Ethernet 5.4Im 23.3ms 90.5ms 12.2ms 69.3ms 317ms
Fast-Ethernet

i
1.11 2.67 8.53 1.7 6.60 28.3

Slow-Internet
,

565 2100 7870 1150 6050 27300
Fast-Internet 129 283 860 188 678 2800
Modem 1740 7430 28800 3910 22000 101000 I \
ISDN 366 1650 6450 853 4930 22600
WAN-Modem 1x40 7530 28900 4010 22100 101000
WAN-ISDN 466 1750 6550 953 5030 22700
ADSL 36.8 62.9 161 46.7 130 489
DirecPC 541 697 1280 600 1100 3260

TABLE IV
A?PROXIhlAT[ON OF ONE ROUNDTRIP OVERHEAD PER TRANSACXON ~umow (a)]. Highlighted values indicate ratios more than 025,
whe= transient effects may dominate performance. for cluster worldoads, ratios are given assuming separate and single connections

small- medium- large- small- medium- large-
network page page p*g= cluster cluster cluster
Ethernet 0.16 0.03 0.01 0.19 / 0.06 0.04 / 0.01 0.02 / 0.00
Fast-Ethernet 1.79* 0.36* 0.09 2.22*/ o.74* 0.47*/ 0.12 0.28*/ 0.03
Slow-Internet a-42* 0.08 0.02 O-52*/ 0.17 0.11 / 0.03 0.07 / 0.01
Fast-Internet 2.31+ 0.46* 0.12 2.87*/ 0.95* f3.61*/ 0.15 0.36*/ 0.03
Modem 0.18 0.04 0.01 0.22 / 0.07 0.05 / 0.01 0.03 / 0.00
ISDN 0.09 0.02 0.00 0.12 / 0.04 0.02 / 0.01 0.01 / 0.00
WAN-Modem 0.25 0.05 0.01 iI3oy 0.10 0.07 / 0.02

lx.@*
0.04 / 0.00

WAN-ISDN 0.08 0.02 0.50*/ 0.17 0.11 / 0.03 0.06 / 0.01
ADSL &a* 0.92+ 0.23 S-71*/ 1.90* l-22*/ 0.30* 9.72*/ 0.07
DirecPC l2.80* 256* O-64* 15.86*/ 5.29* 3.39*/ 0.85* 2.01*/ 0.18

suming that reqsize is zero, this ratio is

lnuxrtt- \-/

When this ratio is small, we would expect protoco1 setup
costs to dominate performance; when it is large, setup costs
would be amortized.

An alternate view of the same concept inverts this ratio to
get the pipe size in reply-sized units.

rtt

reply,iz, lbw *
(4)

This equation is a good approximation for one roundtrip
overhead per reply (the exact value would be rtt/Tv&. We
can use this equation to provide a first approximation for setup
overheads. To estimate overhead for single page retrievals,
we apply this equation directly. For clusters of retrievals, we
use the harmonic meanlo of ratios for each retrieval, if each
retrieva1 requires a separate connection. If connection overhead
is amortized across all of a cluster’s replies (as it would be if
retrievals were batched over a singIe connection), we treat all
replies as a single large response.

Table IV shows these ratios, highlighting exchanges where
the overhead approximation exceeds 25%. These simple equa-
tions provide a good predictor of where transient effects will
be high, but they fail to accurately capture these effects when
the bandwidth/delay product rises. To accurately estimate
performance of actual network protocols in these cases, we
next consider the effects of congestion avoidance protocols.

'"The harmonic mean of n values is f,/<C l/.ri).

TABLE V
NUMBER OF SEGMENTS BEIWEEN SLOW-START S-mtls FOR

DIFFERENT ACKNOWLEDGMENT POLWE% The cumulative number
of segments sent is given in parentheses. these columns represent

se9s,da Ci)[cse9s,,d, WI, swaa(~)lcse9sdn Ii)], and
segs.,(i)[csegs,,(i)] from the Appendix. where i js the stall number

no delayed
stall ACKs

4 6 (ii)
5 9 (23)
6 12 (35)
7 18 (53)
8 27 {80)
9 42 (122)
10 63 (185)

delayed
ACKs
2 (2)
3 (5)
5 (101
8 (18)

:i j::j
27(75)

41 (116)
62 (178)
93 (271)

ACK every
segment

2 (2)
4 05)
8 (14)

:: gj

i?8$2]
256 (510)

512 (1022)
1024 (2046)

C. HTP Over TCP

We next consider the overhead present in TCP when com-
pared to the minimum transaction time. TCP adds several
sources of overhead: protocol headers, the three-way hand-
shake at connection setup, the slow-start algorithm, and re-
transmissions and congestion control delay due to packet loss,
Packet loss rates depend on a number of factors beyond the
scope of this paper; we, therefore, consider only the firs1 three
sources of overhead. We discuss how packet loss would impnct
our model in Section V-C.

An idealized packet trace for a request-response transaction
over TCP is shown in Fig. 1. In this packet trace, we can

. see how the three-way handshake (labeled setup) adds one

_ - 2. __-z

I

HEIDEMANN er al.: MODELING THE PERFORMANCE OF HTTP 621

roundtrip time overhead. We next consider the effects of TCP’s
slow-start algorithm.

I) TCP Slow-Srurf: TCP’s slow-start algorithm limits
transmission by a congestion window (cwnd) which is
initialized to one segment and increases each time an ACK
is received [5]. The size of increase changes: initiahy cwnd
grows in one segment increments (the slow-start phase), then
later by l/cwnd (congestion avoidance phase). TCP is thus
“clocked” by the flow of acknowledgments

For high bandwidth/delay-product paths, TCP initially al-
ternates between segment transmission and stalls waiting for
ACK’s from these segments to return. The number of segments
sent per stall increases exponentially during slow-start untiI
enough segments are in flight that ACK’s return continuously.
To model slow-start behavior, we therefore need to know how
many segments are sent between stalls, how much time each
stall wastes, and how many stalls occur until steady state is
reached or transmission ends.

We originally expected that the number of packets between
each stall would follow a simple exponentiaI pattern: 1, 2,
4, 8, and so on. Modem TCP implementations deviate from
this behavior for two reasons. First, in BSD-derived TCP
implementations, the ACK of the SYN packet on the HTTP
server opens the congestion window, so the cwnd for the reply
begins at 2. Second, TCP’s delayed-acknowledgment algo-
rithm normaIly causes the cbent to ACK every other segment,
not each segment [191. Because the congestion window opens
per ACK received rather than per segment acknowledged,
the slow-start window opens much slower than is usually
assumed. We develop the exact relationship and review the
details of slow-start and delayed acknowledgments in the
Appendix. Table V summarizes our findings for three different
acknowledgment policies. The rightmost column illustrates our
original expectations, the left column shows a lower-bound on
slow-start performance.

Not all the time of each stall is completely wasted: an
increasing part of each stall is spent sending packets, until
mnd opens past muws. The Appendix quantifies this cost
with the formula slowsfarrTcp. In the next section, we use
this result to develop HlTP over TCP transaction time.

2) Perjhmar~ce and Discussiort: We can summarize the
cost of accessing an object via I-ITIP over TCP by including
the extra roundtrip of the setup and the slow-start costs

TTC~ = 2 * rtt

+ reqru*,L
+ processing

+ rePIYTCP

replyTcp = shvstartmp

+ rePly,,i - (5)
The cost of a series of independent requests is then

S~cp = rtt + 2 [TTcp(i) - rtt].
i=l

We can now define the overhead of HTTP over TCP as
STCP 0verheadTcp = -.
S,,i,,

The TCP lines of Table VI show overlzeadTcp Regiven by
(7)] for a variety of workloads and network characteristics (we

lOK- -0
RTT(milrmnds)

Pig. 2. TCP congestion avoidance overhead for various bandwidth-delay
products &-cp/S,&. for a 512 B segment size and the small-cluster
workload.

describe the other lines of this table in the following sections).
To highlight significant overhead, we indicate ratios higher
than 1.25 with italics.

We can draw several conclusions from these results. First,
overhead for the Ethernet, modem, and ISDN networks is
reasonable (less than 25% overhead) for all workloads (al-
though adding WAN delays raises small-page and small-
cluster overheads to significant levels). These networks have
M muws at most 2 and so do not pay any slow-start
penalty. The extra roundtrip cost of the three-way handshake
is proportionally largest for short responses, but even there,
overhead is less than 25%.

On the other hand, network such as Fast-Ethernet, Fast-
Internet, ADSL, and DiicPC have substantially higher
overheads because they have much higher mzLws sizes. The
high bandwidth-delay product of these networks requires
seven to 128 segments in-transit to fiI1 the communications
pipe; for small files, substantial time is spent waiting
for packet acknowledgments. These overheads are most
pronounced when smaller workloads are processed, since
larger workloads are able to expand the congestion window
and amortize the connection setup cost over the duration of
the connection.

Local-area networks behave differently than wide-area net-
works in two ways that affect performance. Fit, many
TCP hnpIementations disable sIow-start on LAN’s where
congestion control is done at the link layer. Second, most
LAN’s allow TCP segments much larger than are typical in
WAN’s (1460 B instead of 512 or 536 B), although wide
deployment of path-MTU discovery supports huger WAN
segment size [20]- An interesting observation is that employing
slow-start does not substantially affect performance over IO
Mb/s Ethernet because large segment-size and low roundtrip
time result in a small muws.

To explore the effects of these overheads for a wider variety
of network characteristics, Fig. 2 examines a single workload
(the small-cluster workload) with a fixed segment size (512 B)
and a range of bandwidths and roundtrip times.

622 IEEE/ACM TRANSACTIONS ON NETWORKING. VOL. 5. NO. 5. OCTOBER 1997 I
1

TABLE VI
RAWIS OF PREDCI-ED PROTOCOL TRANSACR~N TIMES -ro MINIMUM TRANSA~ON TOME FOR DIFFEREW PROTOCOL MODELS.

WORKLOADS, AND NETWORK CHARACERISTICS. Ratios are for the HTTPOver 'KPModel(S~~p/!&,;~); HITP Over TCP
with connection caching, assuming no cache hit (Scachpmiss /S,,,;,,, with cache hits the performance ratio is
always 1); AND HTTP OVER ARDP (S .~nDp/S,i,).‘Hiehlighted values indicate overheads larger than 0.25

SnlalI- medium- hUt?e- small- medium- Iaree-
network model page page P&e cluster cluster cluster

Ethernet TCP 1.13 1.03 1.01 1.17 1.04 LO2
caching 1.13 1.03 1.01 '1.06 1.01 1.00
ARDP 1.00 1.00 l.DD 1.00 1.00 1.00

Fast-Ethernet TCP 2.16* 1.62* 1.19 2.92* 1.79* 1.6d*
caching 2.1fi* 1.62* 1.19 1.76’ 1.19 LOS
ARDP 1.53* f-36+ 1.11 1.69’ 1.37* 1.37*

Slow-Internet TCP 1.50* 1.13 1.04 1.7p 1.19 1.11
caching 1.50* 1.13 1.04 1.25 1.05 1.01
ARDP 1.22 1.06 1.02 f-32* 1.08 1.05

Fast-Internet TCP 2.9.J* 2.11* 1.36* 4.60* 2.55* 2.23*
cachinn 2.9d* 2.11* 1.36* 2.3d* 1.37* 1.11

Modem
ARDP- 2.2ii* t.79* 1.26* 3.s 2.03' 2.88,
TCP 1.14 1.03 1.01 1.19 1.05 1.03
caching 1.14 1.03 1.01 1.06 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00

ISDN TCP 1.08 1.02 1.00 1.11 1.02 1.01
caching 1.08 1.02 _ 1.00 1.04 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00

WAN-Modem TCP 1.30* 1.07 1.02 1.42* 1.10 1.06
caching 1.30* 1.07 1.02 1.14 1.03 1.01
AFZDP 1.11 1.03 IAll 1.16 1.04 1.02

WAN-ISDN TCP 1.49’ 1.13 1.03 1.72+ 1.18 1.11
caching 1.49* 1.13 1.03 1.24 1.05 1.01
ARDP 1.21 1.06 1.01 1.31* 1.08 1.05

ADSL TCP 3.37* 3.12* l.cw 6.01* 3.99*
caching 5r.37*

4.03*
3.12* 1.X?* 2.87* 1.67* 1.27*

ARDP 2.56* 2.6.j* 1.64* &OS* 3.10* 3.32*
DirecPC TCP 3.74* 4-4#* 3.3@ 7.60* 7.57* 9.30*

caching 3.74* 4.44+ 3.36” 3.47* 2.35’ 1.93*
ARDP 2.82* 3.72* 2.97* 5.10* 5.75* 7.61*

I

Again, we observe in this graph that overhead is fairly
low when the bandwidth-delay product {and so muws) is
small, either because of small bandwidths or small roundtrip
times. Overhead rises sharply when the product of these values
grows. Finally, overhead tops out at about 9 times the minimal
transfer time.

This workload-dependent limit indicates network charac-
teristics where all transmission time for all transactions is
spent in the slow-start realm. (For the medium-cluster case
the maximum possible overhead is about 16 times minimal,
for large-cluster it is about 55 times minimal.)

Note that these high overheads occur only when the band-
width-delay product is very large, as in a satellite connection.
It is well known that TCP is not the best protocol for such
situations. When either bandwidth is low or delay is very low,
TCP performs much better.

D. HlTP Over TCP with Comection Caching

P-HTTP [lo] has been proposed as a solution to sev-
eral problems resuiting from running I-ITTP over TCP, and
persistent connections are part of the HTTPr’1.1 standard [4]. P-
HTTP reuses a single TCP connection to amortize connection
setup and congestion avoidance costs across several HTTP
requests. When a transaction is completed, the TCP connection
is left open for subsequent transactions. This connection is
reused for subsequent requests; it will be closed if server or

Stevens has suggested the use of T/TCP for HTTP traffic
[16]. TflCP [9] is au extension of TCP enhanced to support
transactions. T!TCP caches TCP connection setnp information
so that subsequent TCP connections avoid the three-way
handshake and reduce slow-start cost. Thus, like P-HTTP,
T/TCP pays the full cost of TCP setup for the first connection
and avoids setup costs for subsequent connections. Cached
TACP information will be flushed using algorithms similar to
those for breaking P-HTTP connections {for example, using a
Ieast-recently used or a periodic time-out).

Although P-HTTP provides connection caching at the user
level and T/TCP does so in the kernel, a series of requests in
either protocol performs identically (at the level of detail we
consider here). In each protocol, the first request pays the full
cost to open a standard TCP connection, but subsequent re-
quests avoid the three-way handshake and continue to develop
the slow-start window. We, therefore, model fhese protocols
together as “IITIP over caching TCP” protocols.

There are two possible costs for caching protocok, with
and without cache hits:

T cache-miss - - TTCP @I
T cache-hit - - Trrrirr . PI

In a series of requests to a new server, the first will always
be a miss and subsequent requests will usually be hits.

To quantify a series of requests we make the simpii-
client demand is high, or when idle for a given length of time. fying assumption that after the first exchange the conges-

---- .- -.-

HEIDEMANN et d: MODELING THE PERFORMANCE OF HTTP

tion window will be completely opened. For the purpose
of our model, the congestion window is fully opened when
mnd > mows, since opening the window further will not
impact performance. Therefore, for our assumption to be
true, curnd[stalZ~(rrepZy,i,e/mssl)] 2 muws after the first
exchange, where replysize is the size of the first reply from
the server. (We analyze cwnd and stalls in the Appendix.)
Our workloads satisfy this assumption for the networks listed
in Table II satisfy this assumption.

Given this assumption, all requests after the first will be
cache hits under conditions of normal load (under high load the
client or server may terminate connections causing additional
cache misses). The first request may or may not be a cache
hit depending on the user’s browsing pattern and server load.
We therefore define two formulas for series of independent
accesses-one assuming that the first request is a cache hit,
and one assuming that-it’s not

Sf irst-miss = ~&he-miss(1)

+ 2 [%zehe-hit(i) - ‘.tt]
k2

Sfirst-hit = &I? + 2 [~&he-hit(i) - rs]
i=l

= s,i,.

Finally, overhead is again

overheadfirst-,,,iss = Sfirst-miss

&nin

overheadfi,.,t-hit = Sfirst-hit

Smin
=l.

(10)

(11)

(12)

(13)

The caching lines of Table VI show the performance results
of our workloads, assuming that the first web page access does
not use a cached connection [overheadf+,+,iSS in (1211. Note
that for the cluster workloads, accesses after the first are cache
hits.

Several observations about HTTP over connection-caching
TCP protocols are apparent from this table. Fiit, HTTP over
caching TCP performance is the same as standard HTIP over
TCP performance for single page queries. Second, caching-
TCP performance is somewhat better than standard TCP for
the cluster cases because connections after the first need
not pay for three-way handshake or slow-start. We explore
this relationship further in Section VI. Finally, overhead is
still high for the Fast-Ethernet and Fast-Internet cases with
cluster workloads. In these cases, the large bandwidth-delay
product results in significant overhead, while the congestion
window is opened even when amortized over an entire series
of connections.

Finally, if we assume that the first transaction results in
a cache-hit for a caching-TCP protocol (13), then caching-
TCP has no overhead. Thus, when caches last long enough
to encompass access of multiple clusters, caching protocols
are very helpful. Implementation issues can limit this benefit,
however [21].

623

E. HTTP Over Mulrple, Concurrent TCP Connections

Many web browsers open multiple concurrent connections
to mitigate TCP s&t-up costs (HTTP over parallel connec-
tions). We can bound their performance by HTTP over TCP
with and without connection caching. Our H’ITP-over-TCP
model overestimates transmission time by not considering
parallelism in the concurrent slow-start of each connection.
HTTP over connection caching underestimates transmission
time by assuming that there is no penalty for slow-starts of
later requests in a chrster. A better approximation might be
obt+ed by treating rti as if it were rtt/n, for n concurrent
connections. Completely specifying behavior with multiple
parallel connections is an area of continuing work.

F. HlTP Over UDP-Based Protocols

Since web access is typically request-response oriented, we
examine the performance of HTTP over a request-response
style protocol such as ARDP. ARDP avoids TCP’s three-
way handshake, while it keeps TCP’s slow-start algorithm
for congestion avoidance. Therefore, the time to complete an
l%TP transaction over ARDP is

T ARDP = Tt’ft

+ W7AIWP

+ processing

+ rePIYARDP

WIARDP = ‘W&n

rqdyAmp = ShVstatiTCp

The total time to complete a series of independent HTTP
requests is given by

SARDP = rtt + e [Til~Dl=(i) - Ttt] w
id

and the overhead by

SARDP OverheadAmp = -.
&bin

(16)

The ARDP lines of Table VI show OverheizdARDp [(16)
for the different workloads and network characteristics]. Note
that for the Ethernet, modem, and ISDN networks, HTTP
transactions over ARDP result in minimal transaction times.
This confirms that because of their small maximum useful
window size (muws), these networks do not pay any slow-start
penalty.

On the other hand, APDP’s overhead becomes noticeable
in the higher bandwidth-delay-product cases (Fast-Ethernet,
both Internets, ADSL, and DiecPC). ARDP also incurs higher
overhead than TCP with connection caching for the cluster
workloads. This overhead is due to the fact that ARDP always
slow-starts, while caching the connection setup parameters
allows the caching protocols to avoid slow-start every time.

Avoiding the three-way handshake is especially helpful for
single, brief request-response interactions. For a series of re-
quests to the same server, though, ARDP performance suffers
because we do not cache congestion information between calls.

624 IEEE/ACM TKANSACTIONS ON NETWORKING. VOL. S. NO. 5, OCTOBER 1997

As a result of this observation, we plan to provide simple
congestion-information caching in a future version of ARDP.

V. VALIDATION

To relate the analytic results of the prior section to real-
world performance, we next validate them using traces of
actual HTTP traffic. This validation has three goals. First,
to show that we model aspects of the protocol relevant to
performance. Second, to show that comparisons between the
modeled protocols are valid. Finally, we will look for areas
where implementations can be improved.

Since it would be impractical to validate each of the
150 combinations of workload, network, and the protocols
described in this paper, we instead consider only four cases:
HTTP over simple and caching TCP transport protocols with
the small-cluster workload, and Ethernet and Fast-Internet
networks.

A. Methodology

Our experiments consisted of the four combinations of
Ethernet and Fast-Internet networks and HTTP over simple
and caching TCP protocols. In all cases, our server computer
was a Sun SPARC model 20/71 running SunOS 4.1.3 with
some TCP/IP modifications (IP-multicast support and a 16 kB
default TCP window size). We describe server software and
client hardware configurations below. In all cases, our HTTP
client was a custom-written Per1 script retrieving the small-
cluster workload.” We also logged all relevant TCP traffic on
the server’s network.

For experiments over Ethernet, the client computer was
a Sun4-20/71 identical to the server. These computers were
connected by a dedicated 10 Mb/s Ethernet. Note that SunOS
bypasses TCP slow-start when both computers are on the
same physical network. We wanted to measure the effects of
standard TCP in a high-bandwidth, low-latency environment
rather than that of a particular TCP implementation, so we
removed this optimization for our experiments.

For the Fast-Internet experiments, the client computer was
a Sun SPARC-20 running unmodified SunOS 4.1.3. Measure-
ments between the server (located in Los Angeles, CA) and the
client (in Washington, DC) were taken over the Internet with
evening (U.S. West-coast time) background traffic present.
Average roundtrip time was 133 ms and bandwidth was 0.734
Mb/s (as measured by repeated FTP of a 1.5 MB file) over
the 11 hops between the client and our server at ISI.

Our implementation of HTTP over simple TCP was
HTTP/l.0 with an Apache 1.0.5 server. The client made
HTTP/l .O-style requests.

For HTTP over caching TCP protocols, we used the fourth
beta version of Apache 1 .l with some modifications. This
server implements “keep-alive” HTTP connections, an ex-
perimental implementation of persistent connection HTTP
(abbreviated HTTP/l .O+KA) similar in character to persistent
connections recently standardized as HTTP/l. 1 [4]. This server
was slightly modified to avoid two interactions between P-
HTTP and TCP which substantially reduce performance [21].
Our client made HTTP/1.0-style requests with the “Connec-

” Although the program is interpreted, we have verified that it can wturate
our Ethernet and so does not pose a performance bottleneck.

t

data x
1ooM)

ack 0

X

::

::
X
X

0

0

handshake L- X 0
X

2000 X 0 1
I x 0” I

Fig. 3. A packet trace of the HTTP over caching TCP (HTTP/l.O+KA)
requests for the small-cluster workload.

tion: Keep-Alive” header; the server returned MIME-style
headers and page contents with page size determined by the
Content-Length header.

B. Slow-Sturt Validation

We have observed that a key aspect of HTTP over TCP
performance is slow-start behavior. Slow-start performance
is dependent upon the client’s ACK rate; when a client
acknowledges every other segment with delayed acknowl-
edgments, the congestion window opens much more slowly
than if every segment is explicitly acknowledged. Table V
summarizes these effects based upon bounds of the slow-start
rate developed in the Appendix.

To validate that our bounds on the slow-start rate are
accurate, we examined a number of packet traces of HTTP
over caching TCP (HTTP/l.O+KA) and FTP traffic between
Los Angeles, CA, and Washington, DC, hosts. Fig. 3 shows
a representative plot of the packets exchanged for the
HTTP/l.O+KA requests for the small-cluster workload. As
can be seen from this graph, the roundtrip time is about 133
ms and the client acknowledges every other packet. From
the pattern of ACK’s, we can infer that no timeout-induced
delayed acknowledgments occurred in these transactions.

To validate our slow-start model, we will examine two parts
of the total exchange, the first request (from time O-O.7 s) and
the second (from 0.7-0.9 s). ‘

In the first request, we see the pattern predicted by the no-
delayed-acknowledgment analysis of Table V: 2, 3, 3, and 6
segments, each with an -1 rtf delay stall between them. (Note
that in the 6-segment stall, the sixth segment advances the
sequence number by only 19 bytes and so is plotted nearly on
top of the fifth segment, and that the ACK for this segment
was piggybacked on the next request.) From this we conclude
that, in the absence of delayed acknowledgments, we correctly
predict segments per stall.

In BSD implementations of TCP, the delayed ACK timer
fires every 200 ms, independent of packet arrival. We expect
that delayed ACK’s will speed up opening of the slow-start
window by causing occasional single-segment ACK’s instead

HElDEhlANN et ~1.: MODELING THE PERFORMANCE OF H’tTP 625

TABLE VII
VAUDATION E~PERI~MENTS FOR OUR MODELS. Au EXPERIMENTS Usu, THE SMALL-CLUSIFR WORKLOAD. Basic indicates our basic (unadjusted)

model: ndjusfed is the model corrected as described in Section V-C, Measured indicates the average over 100 trials with the standard
deviation and 95% confidence intervals given in parentheses; ratio 111 : a shows the ratio of measured to prediction/adjusted times

prediction ratio
protocol implement. network basic adjusted measured m:a
TCP HTTP/1.0 Ethernet 12.8mS 26.8ms 36.8ms(lOms, G!.Oms) 1.37
caching-TCP HTTP/l.Ct+KA Ethernet 11-4 25.4 26.6 (8.8, 33.7) 1.05
TCP HTTP/1.0 Fast-Internet 977 1730 1716 (101, S20.1) 0.99
caching-TCP HTTP/l.O+KA Fast-Internet 536 1070 1103 (48, zl99.5) 1.03

of delays until two packets have been received. In practice, we
observe that delayed ACK’s sometimes alter both the pattern
of packet transmission between stalls and the stall delay. For
the small-cluster workload, delayed ACK’s seem to have little
effect on overall performance.

In the second request, we see back-to-back transmission of
all nine segments (again, the final segment is short and is
obscured by the previous segment on the plot). This behavior
is consistent with our model of the congestion window; the
window started at two and was opened by one for each of the
seven acknowledgments received.

Based on analysis of packet traces from which these ex-
amples are drawn, we conclude that our lower bound for
segments-per-stall is accurate assuming that no delayed ACK’s
are triggered.

C. Model Adjustments

Our model focuses on transport-layer issues and therefore
makes several simplifying assumptions about client and server
software. To validate our results, we must account for these
assumptions; in particular, the following.

Server processing time: Our basic model assumes zero
processing time. In our experiments we observe an average
3.7 ms server processing time, so we must add 3.7 ms per
page to our adjusted model.

Request independence: Our basic model assumes that all
requests are independent. Unlike modem browsers, our simple
client is not multithreaded and so issues dependent requests (as
described in Section III-B. We can see two such stalls (marked
“dependent delay”) in Fig. 3. We correct for this artifact by
adding 1 rtt delay per page after the first.

Inexact bandwidths: Our basic model assumed that Fast-
Internet bandwidth was 1 Mb/s with 89 ms rti. We selected
these characteristics to emulate experimental characteristics of
other researchers. Our validation experiments instead observed
a bandwidth of 0.734 Mb/s and an rtt of 133 ms; we correct
for this using observed netsvork characteristics in our revised
estimate.

Table VII shows our original predictions and our predictions
adjusted for these factors. We interpret these results in the next
section.

Finally, our model assumes no packet loss. We believe that
we experienced no packet loss in our Ethernet experiments and
loss in only one of the fast-Internet transactions. Packet loss
depends heavily on congestion. Because packet loss is detected
by timeout and causes reevaluation of congestion control, even
low packet loss rates can cause measured values substantially
longer than predicted by our model. In such cases, connection

setup costs would liiely be overwhelmed by loss-recovery,
and therefore, the benefits of connection caching protocols
less noticeable.

D. Model Validation and Discussion

We undertook this validation with two goals: to compare
our analysis to reality, and to ensure that comparisons among
our analytic results are valid. We evaluate these goals below.
In addition, in the process of validation, we found several
interactions between P-HTTP and TCP which substantially
reduce performance.

Except for the case of HTTP/l.0 over Ethernet, our
validation suggests that the model, when adjusted, is accurate
within 5% of measured values. The H’IllN.0 over Ethernet
case shows a discrepancy of about 40%. A high bandwidth
and low delay link (like Ethernet) makes modeled network
overhead small, so other kinds of overheads (which are
not modeled) can be noticeable. Furthermore, the modeled
overhead is very sensitive to latency at high bandwidths
as is shown in Figs. 2 and 4.

Another source of error in our model results from interac-
tions between the application-level behavior and the under-
lying TCP implementation. In the course of validation, we
found two such interactions that crippled HTIF/l.O+KA per-
formance [21]. In both cases, packets shorter than maximum-
segment-size caused our TCP connection to wait for a delayed
acknowledgment, stalling data transfer for up to 200 ms. We
worked around both these problems with small application-
level changes, eliminating these sources of error. Other inter- .
actions between the application-level interface and our TCP
implementation result in the transmission of short segments.
We do not believe that this interaction causes the catastrophic
performance loss observed in the other interactions, but it is
a source of some model error-

We believe that our second goal has also been met: valid
comparisons of what is modeled can be made between the
protocols. The Ethernet case suggests that care must be taken
when transaction time is small (say, less than 50 ms), but the
performance of wide-area HTTP exchanges is dominated by
network protocol behavior described in our model. Since the
models capture the essence of performance in such networks,
comparisons between the models should correspond to com-
parisons between the protocols operating in actual networks.

E. Additional Validation

A recent technical note by the World-Wide Web Con-
sortium has suggested that pipelining substantially reduces
packet counts for HlTlYI.1 [14]. We call the resulting pro-

626 EEEIACM TRANSACTIONS ON NETWORKING. VOL. 5. NO. 5, OCTODER 1997

TABLE VIII
ADIXTJONAL VALIDA~ON EXPERIMENTS FOR OUR MODELS. THESE Exww.lwrs USE-IX WORKLOAD DESCRIBED IN S~cruzu V-E. B&c indicates our basic

(unadjusted) model; Adjusted is the model adjusted for processing time; Meusuremenr indicates performance as measured in [14] with
&wo values for N-Fast-Internet as described in Section V-E; Ratio m : a shows the ratio of the measurement to predicdonlailjustcd

prediction di0

protocol implement. network server basic adjusted measurement m:n
caching-TCP HTTP/1.1+-P N-Ethernet Jigsaw 160ms 316ms 69Dms 2.18
caching-TCP HTTP/1.1+-P N-Ethernet Apache 160 316 520 1.64
caching-TCP HTTP/l.I+P N-Fast-Internet Jigsaw 1470 1620 2860 / 1860 1.77 / 1.15
caching-TCP HTTP/l.l+P N-Fast-Internet Apache 1470 1620 3500 / 2419 2.16 / 1.49
caching-TCP HTTP/1.1+-P N-Modem Jigsaw 49600 49800 52810 1.06
caching-TCP HTTP/U-f-P N-Modem Apache 49600 49800 52360 1.05

tocol persistent-connection HTI’P with pipelining, abbreviated
HTTP/l.l+P. A comparison of their results with our model’s
predictions is particularly interesting, both because their obser-
vations are made with different client and server software, and
because they have optimized the buffering of their system to
improve performance. This comparison provides an additional
level of validation of our model.

Their experiments compare first-fetch and the cache valida-
tion of a 42 kB web page with 41 embedded images totaling
125 kB. They examined performance for three networks: high
bandwidth, low latency; high bandwidth, high latency; and low
bandwidth, high latency. These nearly match our Ethernet,
Fast-Internet, and Modem results and are shown in Table II
as N-Ethernet, N-Fast-Internet, and N-Modem, although each
,case used a 1460 B mss. (We estimated bandwidth for N-Fast-
Internet based on examination of their traces; they presented
bandwidths and rtts for the other cases.) They considered
four protocols: HTTP/1.0 with multiple parallel connections,
HTTP/1.1, HTTP/l.1 with pipelining, and HTTP/1.1 with
pipelining and compression. We consider only the case of
H'ITP/l.l with pip&lining, designating it H’ITP/l.l+P. (We
did not consider HTTP/1.0 because we do not model parallel
connections, ~lTP/i.l because of the buffering problems they
experienced, and HnP11.1 with pipelining and compression
because we do not model compression.) Their client software
was either a custom robot in the cases we consider. Their
server software was either Apache or Jigsaw. A complete de-
scription of their methodology can be found in their technical
note (141.

Table VIII summarizes the results of their measurements
and our predictions. The adjusted portion of the predic-
tion corresponds to aqdition of a 3.7 ms server processing
time.

The N-Ethernet and N-Fast-Internet cases show substantial
discrepancy from our predicted values. We do not have enough
information about their traces to understand the discrepancy
for the N-Ethernet case at this time, although, as described in
Section V-D, in LAN’s, per-packet processing (which is not
considered in our model) can overwhelm connection startup
costs.

For the N-Fast-Internet case, we also found substantial dis-
crepancy (1.77-2.16 times sIower performance than predicted).
Examination of their traces for this network configuration
shows a consistent stall of about 1 s following the third
segment of the reply. We believe that this stall is due to
an interaction behveen a short TCP segment and TCP silly-

window avoidance [22], similar to the odd/short-final-segment
problem we encountered in our experiments 1211. If so, this
interaction can be avoided by appropriate buffering. We correct
for it by subtracting 1 s from the measured times. With this
corre&on, our model is much closer to the measured values
which are 1.15-1.49 times slower.

For the N-Modem case, the prediction corresponds closely
to observed performance. These experiments corroborate
our validation, suggesting that aIthough our models can be
inaccurate when applied to LAN’s, they can provide guidance
to protocol designers for wide-area and low-bandwidth
network conditions. We also note that models can provide
a useful “sanity check” against observed performance and
led us to investigate the anomaly in the N-Fast-Internet case.

VI. PROTOCOL DISCUSSION

We have presented analytic models for H’ITP over several
transport protocols and demonstrated that, with care, these
models can be applied to current as well as future network
characteristics. From this work, we can draw several con-
clusions about the interactions between HTTP and different
transport protocols.

First, HTTP over TCP overhead is fairly low under net-
working characteristics today. Fig. 4 shows a contour plot
of TCP overhead for various network characteristics for the
small-cluster workload. In this two-dimensional representation
of the graph of Fig. 2, we solve for overhead (STCP/Sl,rirr) for
a set of representative points and employ linear interpolation
between them. We show contour lines at every 50% increase
in overhead. Of networking technologies deployed today, only
the Fast-Internet case shows substantial overhead. Modem and
ISDN technologies used for the “last mile” of the Internet
today show moderate overhead when coupled with wide-arcn
latency, but li$e overhead if the server is nearby.

Second, TCP overhead becomes significant when the band-
width-delay product rises. Again, referring to Fig. 4, the fast-
Internet performance shows substantial room for improvement
(current performance is 5.20 times slower than the theoretically
minimal transfer time), as do developing last-miIe technologies
such as ADSL and DirecPC.‘2

In these cases, HTTP optimizations become important.
Fig. 5 shows the advantage of connection-caching protocols
in different network configurations. In this graph, the long
dashed line shows when standard HTTP fakes 1.5 times as

‘2The DirecPC region falls out of scale and is no1 shown in the graph.

7

HElDEMANN e, al.: MODELlNG THE PERFORMANCE OF HTTF’ 621

0.3

0.25

0.2

a
3
8
5

0.15
s

0.1

A05

0
l(

I -

loci
band& (bps)

Fig. 4. Predicted overheads of HTTP over TCP relative to minimum possible costs. The two axes show primary network parameters La and rtt; segment size
and workload are fixed at 512 and small-cluster, respectively. Contour lines show the surface corresponding to TCP overhead (STCP/Smin); solid lines are a
factor of 1. dashed lines 0.5 times minimum. Label centers indicate bandwidth and latency points corresponding to the sample networks described in the text.

0.3

0.25

0.2

H
z
6 s 0.15
I

0.1

0.05

I 121.3 , 1.1 1.4 151.6’ 1.7 1.6 1.9 ’

0’ 1 I . Ethqmet . . Fast:
1OOW

bandk%?(lqx)

Pig. 5. Predicted ratio of HlTP over TCP to HlTP over caching TCP, assuming no initial connection caching. The two axes show primary network
prnmeters bw and rtt; segment size and workload are fixed at 512 and small-cluster. respectively. Contour lines show the surface corresponding to the
do S~c~/S~i~d-~~~i~~: long dashed lines are a factor of 0.5; fine dashed Iines, 0.1. Label centers indicate bandwidth and latency points corresponding
10 Ihe sample networks described in the text.

long as caching protocols, while dotted lines show intervals performance improvement always approaches a workload-
of 0.1. As can be seen, performance is marginally better than dependent limit as the bandwidth-delay product rises; in this
simple HTTP over TCP in many cases (Modem, ISDN, and case, the asymptote is 2, the ratio of 8 : 4 (noncaching :
Slow-Internet); caching protocols are 80% faster only when caching) roundtrip delays.
presented with network characteristics simiIar to Fast-Internet A recent technical note by W3C has suggested that
(moderate bandwidth and latency), ADSL (high-bandwidth, pipeliuing substantially reduces packet counts for persistent-
low-latency), or DirecPC (high bandwidth and latency). The connection HTTP [14]- Although they substantially reduce

.

,

628

packet counts, their measurements of elapsed times support
the conclusion that HTTP over caching-TCP protocols
offer comparatively modest performance improvements over
low-bandwidth-delay connections today but can provide
substantial improvement when conditions approach the Fast-
Internet case.

We note that our model can be used to predict HTTP per-
formance for network technologies only now being deployed
such as ADSL and DirecPC. The ability to vary workload and
network characteristics is important here.

Finally, our protocol analysis has influenced design of
UDF-based protocols at ISI. We are currently in the process
of adapting ARDP to use TCP-like congestion avoidance
algorithms. As a result of this study, we have concluded
that ARDP must cache information about recent congestion
window behavior to provide good performance for large
request-response exchanges.

VII. CONCLUSIONS Am FUTURE WORK

This work makes three contributions to, the study of
HTTP. First, we have developed a simple analytic model
for HTTP performance over different networks and transport
protocols. Second, we have used this model to compare
the relative performance of existing protocols for various
network characteristics and workloads. Finally, this model
has given us insight into the needs of request-response-style
protocols.

Our analytic model of request-response performance is im-
portant both because it allows comparison of existing protocols
under current network characteristics and because it Aows
prediction of protocol performance under future networking
and workload characteristics. Our model predicts web perfor-
mance within 5% of measured values for wide-area traffic. For
networks with high bandwidth and Iow delay, ‘it becomes less
accurate as nonmodeled costs become noticeable. With this
caveat, we believe that the model can be an effective means of
comparing different protocols at a given network configuration
and across different network characteristics.

In addition to providing a model useful for HTTP, our
analysis of slow-start behavior applies to other uses of TCP
where transient behavior cannot be ignored. Applications
might include RPC-systems, and transfer of short e-mail
messages or FTP of short files.

By applying our model to existing protocols and networks,
we were able to draw several conclusions about their be-
havior. We confirmed that TCP overhead is low when the
bandwidth-delay product is low. In the Ethernet, modem, and
ISDN cases, overhead was consistently less than 25% for our
workloads. Even when latency rose to WAN levels, modem
and ISDN overhead was only moderate for certain workloads.
We demonstrated that overhead was very significant when the
bandwidth-delay product was large.

Connection caching protocols reduce overhead for the clus-
ter cases (where a cluster represents the text and images that
make up a single web page); we therefore conclude that these
protocols will be useful even if users visit only single “pages”
on sites before changing servers.

Finally, validation of our model has led to insight into
request-response protocol design and suggested several areas

IEEWACM TRANSACrIONS ON NEWORKlNG, VOL 5. NO. 5, OCTOBER 1997

for future work. Validation of these experiments have detected
interactions between application- and kernel-level networking
that substantially reduce performance [ZI 1,

A broader question is how to optimize TCP for brief,
request-response-style traffic. We are currently exploring two
approaches to this problem. We are examining how TCP
congestion-control information should be initialized for mul-
tiple connections separated by space or time [23]; this work
investigates alternatives to divide bandwidth among existing
and new connections and for reusing cached congestion infor-
mation. Given a large initial window, we are investigating how
a rate-limited addition to slow-start can prevent overloading
intermediate routers I21 1.

We have generalized our experiences with TCP to other
transport protocols. We have also found that the performance
of protocoIs that fail to cache congestion-control informalion
suffers in high-bandwidth-delay conditions, and have modified
our design for ARDP accordingly.

&‘PEFJDIX

THE TCP SLO~V-START ALGORITHM IN DETAIL
As described in Section IV-Cl, the TCP slow-start algo-

rithm limits transmission by congestion window (culntE) when
a connection begins. Table V summarizes our analysis of slow-
start performance. This appendix looks at the details behind
this table, both the rate at which the congestion window opens
and the amount of time spent waiting.

The basic slow-start algorithm (as presented in [S]) is that
the cwnd begins at one segment worth of data and then is
increased by an additional segment for each ACK received,
This algorithm results in an exponential increase in cwntl;
when cu~nd reaches a threshold (ssfhresh, initialized to 64
ti), this increase is slowed to linear (l/cwnrl per ACK
received). The exact rate of this exponential is dependent
on the receiver’s acknowIedgment rate and will be bounded
by muws. In this appendix, we assume infinite muws and
ssthresh and examine the effect of different acknowledgment
rates. We also continue with the assumptions used in the rest
of the paper: connection bandwidth and rtt are stable over the
Iength of the connection and packet loss does not occur. In a
real system, cwnd growth will be limited by packet loss due
to congestion, buffer overflow, or connection window size,

We can, therefore, divide TCP behavior into a period
consisting of a series of transmitted segments followed by
a s~~JI.‘~ Formally, we define se&i) to be the number
of segments sent in the ith period. To derive segs(i) we
will use cu.&(i), the congestion window at the beginning
of the period (measured in segments), a&s(i), the number
of acknowledgment messages sent in response to se$s(i),
and unacled(i), the number of unacknowledged segments in
period i. The number of segments sent in period i is given by
the following recurrence relation:

segs(i) = cm&(i) - wnacked(i) (17)

13Since segments are sent only in response to an ACK. segments lend to
be sent back to back (this behavior was first noted by Shcnker, Zhang, and
Clark in simulation experiments [24]).

HEIDEhIANN et al.: MODELING THE PERFORMANCE OF HlTF’

where
cwnd(i) = cwnd(i - 1) + a&s(i - 1)
cwnd(1) = 2. (183

Our goal is to determine how many stalls occur when
sending a given number of packets. The cumulative number
of segments sent is helpful:

csegs(i) = 2 segs(i).
i=l

These formulas specify the sender-side aspects of slow-start.
The receiver influences slow-start by its ACK rate. We will
indicate the client’s ACK policy with subscripts. For a client
that acknowledges each packet

ucksae (i) = segsae (i)

unucked,,(i) = 0

so from (17) and (18),

segsa,(i) = cwnd,,(i)

culnd,Ji) = cuJnd,,(i - 1) + ack&i - 1)

cwnd,,(l) = 2.

The recurrence relation for segs,,(i) simplifies to the
familiar exponential

segs,,(i) = 2i.

The fourth column of Table V shows sample values of
segs&i) and megs&i), the cumulative number of segments
sent when clients acknowledge every segment.

These equations describe TCP behavior for older (43BSD-
Tahoe) implementations; modem implementations implement
delayed acknowledgments [191.

B. Delayed Achowledgments

TCP implementations with delayed ACK’s send ACK’s
only after receipt of two full-size segments or a delay of up
to a half-second. (Most BSD-derived implementations limit
this delay to 200 ms.) This approach avoids ACK’s for many
short segments while preserving TCP ACK-clocking. It risks
transient effects in data-stream start-up [21], and it also reduces
the rate of cwnd growth.

We can place a lower-bound on the ACK rate by assuming
that delayed ACK’s never occur (or that they occnr only when
all segments have been acknowledged). If we assume that
delayed ACK’s were timed from receipt of the last (odd)
packet, and if the rtt was less than the delay, then delayed
acknowledgments will never trigger. We adjust for this in
our recurrence by halving the number of ACK’s per stall,
rounding, and carrying over appropriateiy

UCkSn& (i) =
L

segs,d,(i) + unackedllda(i - 1)
2 I

unucked,,d, (0) = 0

tinacbed,da((i) = SegS,&(i) + tmUCkednd,(i - 1)

- ~&S,&(i) x 2.

629

Again, from (17) and (H),

segs&(i) = Cum&da(i) - nnucked&a(i)

CW1Zd,&) = cwndnda(i - 1) + di&da(i - 1)

CIUn&d,(l) = 2.

The effects of this algorithm on slow-start performance
are illustrated in the second column of Table V, with
csegs,d,(i) shown in parentheses. Although both csegs,,(i)
and CsegS,&(i) grow exponentially, csegs,d,(i) lags
substantially.

This description is slightly more pessimistic than actually
occurs in Berkeley TCP implementations. In BSD, the delayed
ACK timer fires independent of segment receipt every 200 ms,
so we expect delayed ACK’s to be generated occasionally,
each time acknowledging a single segment.

We can place an upper bound on Reno’s performance by
assuming that the delayed-ACK timer always fires immedi-
ately for the last odd-numbered segment of any stall. This
means that the receiver acknowledges every other packet and
delay-acknowledges odd packets. The revised relations are

zLnucked&) = 0.

And, from (17) and (18),

segs&(i) = cwndd,(i)

cuJndd,(i) = czundda(i - 1) + ccks&(i - 1)

CWndda(l) = 2.

Both segs&(i) and csegs&(i) are shown in the third
column of Table V. While csegsd,(i) is somewhat larger than
CSegSn&(i), it is Still much lower than csegs&i).

C. Amount of Wasted Eme

We would like to quantify the amount of time wasted during
each stall. An upper bound on wasted time is one rti per
stalk the time an ACK takes to retnm to the server and its
replacement segment to travel to the client. A more accurate
estimate would consider that the ACK which triggers the start
of the next period is generated by the first one or two segments
of the current period. Following the ACK, therefore, the client
spends time usefully receiving any other segments of the first
period. We can see this in Fig. 1; in the first stall, the second
segment is received after the first ACK has been sent. (The
client here must implement the AC&every-segment policy.)

We can quantify the amount ,of useful work accomplished
during a stall, and from there the exact amount of wasted time:

segs(i) - k
usejdstuZltime(i) = bw

wastedstalltime(i) = rtt - use$dstalltime(i)

where L is either 1 (if every segment is acknowledged) or 2
(if delayed acknowledgments are used).

To determine the amount of wasted time for an entire
transaction, we must know the number of stalls that occur over
transaction. Let sssegs be the number of segments sent while
TCP sIow-starts. A connection will slow-start until it either

630 IEEVACM TRANSACTIONS ON NETWORKING. VOL. 5, NO. 5. OCTODBR 1997

runs out of data to send, reaches muws (and so is sending
data continuously), or reaches ssfhresh and, therefore, begins
congestion avoidance. Thus,

sssegs = min (maws, replysize/mss, ssthresh).

The number of stalls across ss-segs, sfalls(ss-segs) is
then the smaIlest n such that

sssegs 2 csegs(i>. *

For a given sssegs, stulZs(ss-segs) can be obtained from
the first column in Table V using the appropriate receiver’s
ACK algorithm. Finally, we can determine the slow-start delay
for a transaction:

stalls(sslregs)
slowstutidelay,,, = c wastedstalZtime(i) .

id

ACKNOWLEDGMENT

The authors would like to thank K. Jog for his earIy work on
our H’ITP benchmarking scripts. They would also lie to thank
T. Faber for his discussions about web performance analysis
and B. C. Neuman, R. Van Meter, S. Augart, B. Tung, G.
Kuenning, J. Bannister, J. Pastel, and the anonymous referees
for comments about the paper. Finally, the authors are grateful
to A. Ma&in, D. DeLucia, and B. C. Neuman for access to
computer facilities for the Cross-Internet measurements.

The software used in the validation of these measurements
is available at {http://www.isi.ehu/ls~.

Cl] T. Bemers-Lee. R. Cailliae. A. Luotonen, H. F. Nielsen, and A. Secret,
“The World-Wide Web,” Conz>nun. AC&f, vol. 37, pp. 76-82, Aug. 1994.

[2] V. Paxson, “EmpiricalIy-derived analytic models of wide-area TCP
connections,” ACMnEEEE Trans. Nemwking, vol. 2. pp. 3I6-336, Aug.
1994.

[3] T. Bemers-Lee, R. Fielding, and’H. Ftystyk, “Hypertext transfer pro-
tocol-H?TpIl.O,” RFC 1945, Internet request for comments, May
1995.

[4] R. Fielding, J. Gettys, J. Mogul, I-I. Frystyk, and T. Berners-Lee,
“Hypertext transfer protocol-HTTPf1.1.” RFC 206X. Internet rouest

181

PI

WI

illI

WI

for~~omments, Jan. i997.
A

V. Jacobson, “Congestion avoidance and contro1.” in Proc. SIG-
COMM’88, Aug. 1988, pp. 314-329.
C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW
client-based traces,” Tech. Rep. 95-010, Boston Univ., Apr. 1995.
J. Touch, *‘Defining ‘high speed’ protocols: Five challenges and an
example that survives the challenges,” KEE 1. Se&. Areas Commun.,
vol. 13, pp. 828-835. June 1995.
M. F. Arlitt and C. L.. Williamson, “Web server workload characteri-
zation: The search for invariants:’ in Proc. ACM SIGMETRKS, May
1996, pp. 126-137.
R. Braden, “Extending TCP for transactions-Concepts,” RFC 1379,
Internet request for comments, Nov. 1992.
V. N. Padmtiabhan and J. C. Mogul, ‘Improving HTTP latency,” in
Pmt. 2nd ht. World Wide Web Con&, Oct. 1994.
J. Touch, J. Heidemann, and K. Obraczka, ‘*Analysis of HTTP per-
formance,” released as Web page http-Jlwww.isi.edunsam/publications-
/http-perfk currently submitted for publication, June 1996.
J. C. Mogul, ‘The case for persistent-connection HTTP,” in Proc.
SiGCOMM’PS. Aug. 1995, pp. 299-313. .

113) s. B. spero, “Analysis of HTTP performance problems,”
http://sunsite.unc.edulmdma-releas&http-prob.html, 1995.

[I41 H. F. Nidsen. J. Gettys. A. Baird-Smith, E. Pmd’hommeaux, H. W.
Lie, and C. Lilley, “Network performance effects of HTTP/1.1. CSSI.
and PNG.” NOT‘E-pipelining-$70207, available as Web pagd httyl/

www.w3.or~pnb~VW~V~~tocol~~~c~ormance~~pclinc,html,
Feb. 7, 1997.
R. Braden, “TflCP-TCP extensions for transactions functionnl speclfl-
cation,” RFC 1644, Internet reauest for comments. Julv 1994.
W, R. Stevens, TCP/IP Illustrbted, vol. 3. Reaiing: MA: Addison-
Wesley, 1996.
B. C. Neuman, ‘The virtual system model: A scalable approach IO
organizing large systems,” Ph.D. dissertation, Univ. Washington, Scat~lc,
1992.
D. DeLucia, “DirecPC performance,” personal communication, Ott,
1996.
R. Braden, ‘Requirements for Internet hosts-Communication layers,’
RFC 1122, Internet request for comments, Oct. 1989.
J. Mogul and S. Deering, “Path MALI discovery:’ Internet request for
comments, RFC 1191. Nov. 1990.
J. Heidemann, “Performance interactions between P-HITP and TCP
implementations,” ACM Cotnputer Cotnm~m. Rev., vol. 27, ppa 65-73,
Apr. 1997.
D. D. Clark, “Window and acknowledgment slrategy in TCP,” RFC 813,
Internet request for comments, July 1982,
J. Touch, “TCP control block interdependence,” RFC 2140, Intcruct
request for comments, Apr. 1997.
S. Shenker. L. Zhang, and D. D. Clark, “Some observntlons on tha
dynamics of a congestion control algorithm,” ACM Conrprrk-r Cumrwr.
Rev., vol. 20. pp. 30-39. Oct. 1990.

,

John Heidemnnn (M’90) received the B.S. degree
from the University of Ncbraskn, Lincoln, nnd the
M.S. and Ph.D. degrees fmm the University of
Cafifomia, Los Angeles (UCLA).

He is a Research Scientist at the Informntfon
Sciences Institute (ISI), Universitv of Southern CeI-
ifomia, Marina dei Rdi, where hi investigates nct-
work and web performance issues. Hc hns also
examined wide-area and replicated filing and Blc-
system layering at ISI and UCLA.

Katia Obranka received the B.S. and MS, degrees
in electrical and computer engineering from the
Federal University of Rio de Janeiro, Brazil, and tb
MS and Ph.D. degrees in computer science fmm
the University of Southern California (USC), Los
Angeles.

She currentIy is a member of the Gtobnl Opcmt-
ing Systems Technologies (GOST) gmup at USC’s
Information Sciences Institute, Marina de! Roy, and
is also a Research Assistant Professor nt USC.
Her research interests include multicast congestlon

contro1. computer networks, distibured systems, Internet information systems,
and operating systems.

Joe Touch (M’92) received the Ph.D. degree from
the University of Pennsvlvania. Philndelohfn.

He is a Prdject Lcade; in thcComp& Networks
Division, Information Sciences Institute, Univcrslty
of Southern California (USC), Marina dcl Rcy,
coordinating the ATOMIC-2 and Large-Scale Active
Middleware (LSAM) groups. His resenrch focuses
on high-speed protocols, multicast web caching,
protocol performance, and network managcmcnt. Hc
is also a Research Assistant Professor in the USC
Department of Computer Science.

Dr. Touch is a member of the program committees of IEEE Infocomm and
JEEE Global Internet, and is ch& if IEEE Gigabit Networks Workshop’98,
He serves as Technical Activities Chair of the IEEE Technical Committee on
Gigabit Networking and is on the editorial board of IEEE Network. He Is a
member of Sigma Xi.

