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Abstract link speed, available bandwidth, queueing levels, and even hop-by-
hop link speed [Ke91, B0o93, Mu94, CC96, Pa97a, Ja97]. These
We discuss the problem of detecting errors in measurements of themeasurements are usually made using “echo” techniques, in which
total delay experienced by packets transmitted through a wide-areapackets sent to a given target result in the target returning replies
network. We assume that we have measurements of the transmisback to the sender. The analysis is then made on the timing struc-
sion times of a group of packets sent from an originating hést, ture of the replies.
and a corresponding set of measurements of their arrival times at ~ Echo-based techniques, however, suffer from a fundamental
their destination hos#3, recorded by two separate clocks. We also problem: they unavoidably conflate properties of the network path
assume that we have a similar series of measurements of packetsn the forward direction (which perturbs the sender's original pack-
sent fromB to A (as might occur when recording a TCP connec- ets, and hence the times at which the target generates its replies),
tion), but we do not assume that the clockdais synchronized with with the properties of the reverse direction. Consequently, these
the clock atB, nor that they run at the same frequency. We develop measurements are subject to considerable inaccuracy. Furthermore,
robust algorithms for detecting abrupt adjustments to either clock, a large-scale study of Internet routing found that paths through the
and for estimating the relative skew between the clocks. By ana- Internet are ofterasymmetric meaning that the series of routers
lyzing a large set of measurements of Internet TCP connections, wevisited in the two directions often differ [Pa96]. Subsequent work
find that both clock adjustments and relative skew are sufficiently discusses other asymmetries (such as link speeds and queueing
common that failing to detect them can lead to potentially large levels), and argues strongly for “receiver-based” measurement, in
errors when analyzing packet transit times. We further find that which packet receivers cooperate with packet senders in order to
synchronizing clocks using a network time protocol such as NTP accurately measure network traffic [Pa97al.
does not free them from such errors. Accurate receiver-based measurement, however, depends on ac-
curate comparisons of timestamps produced by a clock at the packet
sender with those produced at the receiver. It is easy to assume
that to ensure accuracy we merely require synchronization between

In this paper we tackle the problem of how to calibrate transit times these clocks; but, while a considerable body of work has addressed
measured for packets traveling through a network. We assume thath€ problem of synchronizing clocks to true time (see especially
we have a series of pairs of timings, recording each packet's de-the work of Mills [Mi92a, Mi92b, Mi95]), these algorithms main-
parture time from its sender and arrival time at its receiver, but that t@in good time over time scales of hours to days. Theyloas-

the clocks used at the sender and receiver to generate these timeSure synchronization on the small time scales of individual network
stamps are not necessarily accurate: they may not keep true timeconnections (a point we develop§rr). Consequently, the problem
they may be subject to abrupt adjustments, and they may run atOf calibrating the timestamps produced by pairs of network clocks
different rates. remains interesting and important.

Calibrating transit times might at first blush appear to be afairly  fundetected, clock adjustments and rate mismatches can intro-
minor measurement problem, but in fact it is potentially central duce significant measurement errors. For example, if the sender's
to the accuracy of a number of wide-area network measurementclock runs slower than the receiver's clock, then the series of one-
techniques. The timing structure of packets transmitted through Way transit times (OTTs) that we compute from their timestamps
a network is very rich: by carefully analyzing this structure one will show a systematic increase across the measurement interval. It
can infer fundamental network properties such as delay, bottleneck!S €asy to mistake this increase for a genuine increase in networking
delays due to a gradual buildup of queues at a router along the net-
* A shorter version of this paper appears in the Proceedings of SIGMETRICS '98. \work path. Similarly, a clock adjustment, if undetected, can lead to
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AC03-76SF00098. To develop our algorithms we used the data we gathered for

the Internet packet dynamics study mentioned above [Pa97a). We
recorded two datasets, each consisting of traces of TCP transfers
conducted at random between a number sites around the Internet.
For each transfer, packet arrivals and departures were recorded at
both the sender and the receiver usingthgdump utility [JLM89].

The clocks used at the different sites were not necessarily synchro-
nized.

1 Introduction




We term the sender and receiver traces collectively as a “trace2 Basic clock terminology
pair.” Transfers entailed the sender transmitting 100 KB of data to
the receiver. Because of the use of TCP, this results in a stream ofln this section we define basic terminology for discussing the char-
large data packets flowing from the sender to the receiver, and aacteristics of the clocks used in our study. The Network Time Pro-
smaller stream of acknowledgement (“ack”) packets flowing in the tocol (NTP; [Mi92a]) defines a nomenclature for discussing clock
other direction, all of which were recorded. characteristics, which we will use as appropriate. It is important

The first dataset)1, recorded at the end of 1994, consists of to note, however, that the main goal of NTP is to provide accurate
2,335 trace pairs between 25 sites. The secafd recorded at the timekeeping over fairly long time scales, such as minutes to days,
end of 1995, consists of 15,492 trace pairs between 31 sites. (Forwhile for our purposes we are concerned with much shorter-term
brevity, we do not list the sites here, but will use the same names accuracy, namely between the beginning of a network transfer and
and font as in [Pa97al—e.gadstr ".) its end. This difference in goals sometimes leads to different defi-

We wrote a programicpanaly , for automating much of the  nitions of terminology, as discussed below.
analysis of the trace pairs, and [Pa97b] discusses a number of packet Resolution. A clock'sresolutionis the smallest unit by which
filter measurement errors detected by it. Part of the development ofthe clock’s time is updated (a “tick”). It gives a lower bound on
tcpanaly  included devising and implementing the clock calibra- the clock's uncertainty. Note that we define resolution relative to
tion algorithms we discuss in this paper. the clock’s reported time and not to true time, so, for example, a

Limitations of the study. There are a number of important lim-  resolution of 10 msec only means that the clock updates its notion
itations of our study that must be kept in mind. The first is that the of time in 0.01 second increments, not that this is the true amount
data we had available for analysis had been previously recorded,of time between updates.
and did not include any clock information (such as whether the We estimate a clock's resolution by inspecting the differences
clocks were synchronized using NTP, nor any logs of clock adjust- between successive packet timestamps. In general, we take the
ments by the operating systems). Because we were confined tosmallest positive difference as an upper bound on the clock's reso-
post facto analysis, we were unable to evalute the accuracy of ourlution. However, we must not confuse “monotonicity increments”
algorithms in any absolute sense. Until the algorithms can be eval- with true clock advances. These increments are added by some
uated in a controlled fashion, they can at best only be regarded assystem clocks when the clock is read multiple times within the
promising but unproven. same tick, so that instead of reporting that zero time has elapsed,

The post facto analysis also means that we could not designthey always report monotone-increasing timestamps. These artifi-
our measurement traffic to best support the problem of calibrating cial increments are generally the smallest representable timestamp
the packet timings. Instead, we had to deal with TCP bulk transfer advance—Iusec for Unix systems such as those in our study. So
traffic, which often introduces its own timing distortions along the to robustly estimate resolution, we need to disregard very small ap-
data transfer path by contributing to queueing. Consequently, we parent clock increments. Finally, we note that this approach for
must deal with noise issues that we could otherwise avoid. estimating clock resolution produces at best an upper bound on the

Another limitation is that we found we needed to introduce a clock's true resolution, because it may happen that the packet fil-
number of heuristics into the algorithms. We believe for the most ter never receives back-to-back packets separated by only one tick.
part that doing so is unavoidable, because the goal of the heuristicsFor measurement purposes, this inaccuracy is often acceptable, be-
is to deal with noise induced on the packet transit timings by net- cause the extra error introduced is conservative in the sense that it
work conditions, and there is no known method for removing such only widens the uncertainties associated with any subsequent tim-
noise. ing analysis.

Finally, one might argue that inexpensive, high precision tim- Offset. We define a clock'sffsetat a particular moment as the
ing synchronization devices, such as GPS units, obviate the needdifference between the time reported by the clock and the “true”
for calibration technigues such as those we develop. However, eventime as defined by national standards. If the clock reports afime
though these units are now relatively cheap, it is not clear that we and the true time i§7%, then the clock's offset i, — 7.
can yet presume their ubiquity, because: their cost remains non-  Accuracy. We will refer to a clock asccurateat a particular
negligible; they cannot always be deployed due constraints on an-moment if the clock's offset is zero, and more generally a clock's
tenna placement; and many sites might instead use NTP to synchro-accuracyis how close the absolute value of the offset is to zero. For
nize most of their machines to a few GPS-endowed machines. WeNTP, accuracy also includes a notion of the frequency of the clock;
also argue in our summary that, even given a directly-attached GPSfor our purposes, we split out this notion into thaskéw because
unit, checking the ultimate clock readings derived from it remains we define accuracy in terms of a single moment in time rather than

prudent. over an interval of time.
We begin our discussion by defining §n2 basic terminology Skew. A clock's skewat a particular moment is the frequency
for describing different clock attributes. |3 we introduce “rela- difference (first derivative of its offset with respect to true time)

tive” counterparts of these terms, for discussing potential disagree- between the clock and national standards.
ments between two network clocks. We next conduct an assessment  Drift. As noted in [Mi92a], real clocks exhibit some variation
of relative clock accuracy§(4), before turning to the development in skew. That is, the second derivative of the clock's offset with
of methods for detecting clock adjustmen] and relative clock respect to true time is generally non-zero. [Mi92a] defines this
skew § 6). As mentioned above, clock adjustments and skew can quantity as the clock'drift. We in general will only talk about this
introduce large, artificial network “dynamics,” so it is important to  notion in terms of cloclkadjustmentsduring which the clock’s time
detect and remove these effects. is rapidly altered, because during the small time scales of interest
We finish in§ 7 with a look at how well a clock's synchroniza-  for our study, only large drift values have discernible effécts.
tion Corr6|ates- with stable clock behavio_r (lack of adjustments -and 1 we will see in§ 6 that, for the time scale of a single TCP connection in our study,
qf skew). We find that, unfortunately, a high qegree of synchroniza- relative clock skew is nearly always very close to linear, indicating near-zero relati\}e
tion between two clocks does not necessarily mean that the clocksgrift over small time scales.
are free of relative errors.
Finally, the topics in this paper are discussed in greater depth in
[Pag7c].




3 Terminology for comparing clocks

In this section we develop terminology for discussing differences
between two clocks producing timestamps. The definitions are, for
the most part, analogous to thosesir2, except that, instead of
comparing a single clock against true time, we are comparing one
clock against another.

We first introduce the meta-notation of a subscrigtdenoting
time measured at the packstnder and “r” denoting time at the
packetreceiver Let C; andC, refer to the clocks at the sender and
receiver, withR; and R, their respective resolutions.

We defineC','s offset relative t@’; at a particular true tim& as
T, — Ts, that is, the instantaneous difference between the readings
of C. and(C at timeT'. For convenience we will sometimes refer
to this asC,'s relative offset at tim@&, with Cs implicitly being the
clock to whichC, is compared. We discuss assessing the relative
offset of one clock to another 4.

Similarly, C.'s relative skew is the first derivative 6f.'s rel-
ative offset with respect to true time. Since we do not assume an

independent means of measuring true time, we can only estimate

C.'s relative skew in terms of time as measured by eitfigior
C,. See§ 6 for further discussion.

If C, is accurate relative t@'s (their relative offset is zero),
then we will refer to the pair of clocks as “synchronized.” Note
that clocks can be highly synchronized yet arbitrarily inaccurate in
terms of how well they tell true time. For network measurement,
often what is most important adifferencesn time as computed by
comparing the timestamps from two different clocks. The process
of computing the difference removes any error due to clock inaccu-
racies with respect to true time; but it is crucial that the differences
themselves reflect good approximations to differences in true time.

For resolution what we care about is not “relative resolution”
but joint resolution which we define af;, = Rs + R,. This
definition reflects the fact that, when comparing timestamps from
C; with those fromC,., the corresponding uncertainties must be
addedto properly propagate the resulting total uncertainty.

4 Assessing relative clock offset

In this section we discuss how to estimate the relative offset be-
tween two network clocks. The closer the offset is to zero, the
greater the relative clock accuracy (degree of synchronization).

An important point is that for analyzing network dynamics, es-
timating relative offset accurately generallynist crucial, because
the dynamics mostly concedifferencesn transit times rather than
absolute transit times. For our purposes, we only need to do esti-
mate relative offsets in order to construct legible plots of the two-
way flow of packets, and to qualitatively investigate the relationship
between large relative offset and other clock problems such as rela-
tive skew. Accordingly, we are satisfied with the method developed
in this section even though it is not highly accurate.

4.1 Method for assessing relative offset

We now develop an algorithm for estimating the relative offset
AC, s of a clockC, at hostr with respect to a clockC’s at host
s. We assume that both clocks have zero skew with respect to true
time. We also assume that the one-way transit time (OTT) across
the network froms to r and also fromr to s is AT (we return to
this assumption of symmetry shortly). Note that wenddassume
that we knowAT itself.

Suppose a packet is sent from hestt times; (with respect to
C,) and arrives at host at timer;, and that a second packet sent
in the opposite direction is measured to deparnt.atind arrive at
s2. Then we have:

1 s1 + AT + AC’V‘,S (1)

S ro + AT — ACT,S

@)

Subtracting the second equation from the first then gives us:

(r1—s1) = (52 = 12)
2

ACT‘,S = (3)
That is, from the raw, measured timestamps of the two packets
alone we can estimat&C, 5, even if we don't knowAT'.

The accuracy of Eqn 3 depends, however, on how closely the
OTTs of the two packets fit with the assumption that they are equal.
In order to minimize variations in the OTTs due to extraneous net-
work delays such as queueing, we select for our packets those with
theminimalvalues (over all of the packets) 6f: — s1) and(s> —
r2). Selecting minimal values works well because (most) network-
induced noise isadditive and positive (§ 5.2), so minimal values
tend to have the least noise.

Even after reducing inequalities due to additional network de-
lays, we still are not on firm ground assuming that we can lo-
cate two packets with the same propagation time. Previous studies
have found that Internet routes often exhibit significant asymme-
tries [Pa96], so even in the absence of noise, packets sent in oppo-
site directions along a path may experience considerably different
delays. (See also Claffy et al. for discussion of measuring one-way
transit times using synchronized clocks [CPB93].) Furthermore,
Eqn 3 is necessarily inaccurate in the presence of relative clock
skew, since then there is simply no fixed relative offset.

However, since we only try to achieve a rough rectification of
the relative offset between the two clocks, we find these remaining
inaccuracies acceptable.

4.2 Results of assessing relative offset

Using the methodology developed .1, we evaluated the rela-
tive clock offsets inV; and > to see what sort of variation they
exhibited. Our goal is to identify groups of closely-synchronized
clocks, as we want to determine the degree to which these clocks
are less plagued by inaccuracies than less well-synchronized clocks
(§ 7). A single computation oAC). ; does not tell anything about
the absolute accuracy of eith€t. or C,, but we would expect that
many computations of differenhC’., ,'s will reveal clusterings
among the truly accurate clocks, and a large spread among the in-
accurate clocks.

Note that in the presence of relative skew, the relative clock
offset is not well-defined. However, if we find a pair of clocks that
frequently enjoy a low relative offset, then it is plausible that they
do not generally suffer significant relative skew, as otherwise their
readings would tend to drift apart and they would not be able to
preserve their low relative offset.

We proceed by clustering host clocks based on the median of
the magnitude of their relative clock offset, over all the transfers in
which they participated. We use the median offset in order to isolate
hosts that consistently had large relative offsets, instead of those
that only occasionally had large offsets, since the latter could be
skewed by unfortunately-frequent pairing of a host with an accurate
clock together with a host with a poor clock. We use the median of
the absolute value of the offset rather than the median of the offset
itself as a way of detecting clocks that often “swing” from being
too slow to too fast.

We first inspect the median magnitudes of each host's relative
clock offset. For both datasets, the same clock emerges as a clear
outlier, being typically 5-15 minutes different from the other clock.
We next remove the connections involving this outlier and recom-
pute the medians, repeating this process until we converge on a
set of clocks that have small median offsets relative to one another.
For V1, this process removes 8 clocks as outliers. After eliminating
these clocks, the remainder all have median offgels25 sec. We
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nating six more of these leaves a group of 18 clocks with median
offsets below 50 msec. We can further winnow the group down to
a final set of 10 highly synchronized hosts, all of which have me-
dian offsets between each other of less than 10 msec. This group
includes hosts on both coasts of North America as well as two in
Europe, indicating synchronization well below that of the propa-
gation time between the hosts—very good, and around the accuracy_ . , )
limit for NTP reported in [Mi92b], even though we are performing Figure 3: Evolution ofimont 's relative clock offset over the course
a cruder estimate of accuracy (and of relative accuracy rather than©' /V2

absolute accuracy).

We will make use of these different groups of closely-synchronized . N .
and highly-synchronized hosts §n7 when we test whether close onds. Apparently what is happening is that the clock has a fairly

synchronization tends to correlate with low relative clock skew. ~ Nefty intrinsic skew, but NTP synchronization is detecting this and

We finish with a look at how a host's relative offset evolves over Periodically resetting the clock as it strays too far.
the course of an experimental run. The evolution is interesting be-
cause it provides a large-scale look at how clock accuracy changes5 Detecting clock adjustments
Our interest here is phenomenological—to develop an appreciation
for clock inaccuracies and an awareness of how they occur. As shown quite strikingly in Figure 2, computer clocks are some-

To assess offset evolution, for each host we constructed a plottimes subject to abrupt adjustments in which the clock’s notion of
with the relative offsets (in seconds) computed for those connec- the current time is changed, either gradually or instantaneously.
tions for which it served as the data source ongifais, versus the  Gradual change is produced by artificially altering the clock's skew,
time of the connection (days since the beginning of the experiment) so that it slowly shifts its offset towards the target. Instantaneous
on thez-axis. Positive values indicate the host's clock was running change is produced by simply loading a new value into the clock
behind the receiver's clock, negative that is was running ahead.  register.

Figure 1 shows such a plot for thestr tracing host's clock Backward clock adjustments, in which a clock is set to a value
over the course of th&/; experimental run. Up until the 14th day, it already registered in the past, can sometimes be easily detected
it kept good time, but after that point its clock came unglued and if the adjustment is largeby the presence of a pair of timestamps
ran very slowly, such that the clocks of the other hosts to which it T1 andT: for whichT> < T even thougll> was recorded after
transferred data ran further and further ahead of it (hence, higherT:. In this section we tackle the harder problem of clock adjust-
and higher offsets). Surprisingly, this is one of the clocks identi- ments (both forward and backward) that acg apparent by trivial
fied above akighly synchronizedThat assessment, however, was inspection of the timestamp sequences.
based omedianrelative offset, which filters out the aberrant be-
havior. We look at this phenomenon furtheri6.6.

Figure 2 shows the evolution dfii ‘s clock duringV>. While
overall the clock has a clear persistent skew, the skew is reversedSuppose we have a trace pair betweeandr. One simple way
around day 8, perhaps in an effort to correct the clock's inaccu- to detect whether a clock adjustment occurred during the trace is
racy (or perhaps just due to a temperature fluctuation). But the ef- to plot both the OTTs for the packets fronto r and those in the
fort ends a few days later and the original skew returns. However, reverse direction. (Packets that are dropped by the network have no
around day 27 the clock's relative offset jumps by over a minute, OTT associated with them and are omitted from the plot.)
reflecting a different sort of correction. (This host synchronizesits ~ Figure 4 shows such a plot made for a connection feost
clock upon reboot.) to usc in NV;. The solid black squares indicate the OTT for data

Figure 3 presents our last example of interesting clock offset packets sent from the sender to the receiver, and the hollow squares
evolution, for anotheN> clock. What is striking here are the pres-  reflect the OTTs of the acknowledgement packets sent from the re-
ence of offset “towers” that, over the course of hours, slowly ele- ceiver to the sender (note that these are significantly smaller than
vate the relative offset from nearly zero to several hundred millisec- the data packets). The OTTs have been adjusted using Eqgn 3 to
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5.1 Detecting adjustments graphically
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Figure 4: OTT-pair plot illustrating a clock adjustment (sender
packets are filled, receiver packets are hollow)

approximately synchronize the two clocks. (In this case, the ap-
proximation does not work particularly well, since there is more
than one clock offset to estimate!)

The figure shows a striking level-shift occurring for the sender's
OTTs around tim&” = 0.7 seconds, a fall of about 10 msec. Fur-
thermore, the OTTs in the opposite direction show an equal and
oppositechange. This equal and opposite change is a crucial as-
pect of the plot, as it is the signature of a clock adjustment. If the
shift were due to a change in network path properties (for exam-
ple, a route change), then in general we would expect that either
(1) itwould occur in only one direction, or (2) if it occurred in both
directions due to a coupled effect, it would have the same sign.

For a networking change to result in an equal-but-opposite level

shift, some resource needs to have been shifted between the two dif
rections of the network path, and furthermore the resource needs.

to affect the transit times of the small acks equally with those of
the large data packets. It is difficult to see what sort of network-

ing change could do this. The change, however, makes perfect

sense if, at around tim& = 0.7 secondssdsc 's clock was set
ahead 10 msec, asc's clock was set back 10 msec. In either of
these cases, the difference in the timestamps for packets sent fro
sdsc to usc, i.e., the quantityr; — s; per Eqn 1, will decrease
by 10 msec, and similarly> — r» (per Eqn 2) willincreaseby

10 msec. This is exactly the behavior shown in the plot.

5.2 Removing noise from OTT measurements

Two other points concerning Figure 4 merit attention. The first is

the presence of a few unusually small sender packet OTTs, one

of about 7 msec aroun® = 0, and the other of around3 msec
aroundT = 2.3. Both of these reflect sender packets that did not

carry any data (the SYN and FIN connection management packets).

These travel through the network more quickly than full-sized data

packets. Hence our techniques need to be careful to not weigh their,

OTT values the same as those for full-sized packets.
The second important point shown in the plot is the largéa-
tionin OTTs, both for the full-sized sender packets and the smaller

receiver packets. For example, note that the OTTs of both some
of the acks before the adjustment, and some the data packets af
ter the adjustment, are larger than many of the OTTs on the other

side of the adjustment. This variation is the first suggestion that
we will require robust algorithms in order to not be fooled by noise
when analyzing OTT data. The eye quite readily picks out the twin
level shifts in this plot, but doing so algorithmically requires care
to screen out noise such as these large OTT values.

OTTs often exhibit considerable network-induced noise in terms
of deviation of a given OTT from the value expected if the network

were unloaded. The noise, however, has one crucial property that

often makes it tractable: barring a significant change in the net-

of an additive positiveincrease. This means that, given a set of
OTT measurements, we can often hope to find those with very lit-
tle network-induced noise by looking at the smallest values in the
set.

We used this property of OTT noise §n4.1 above when we
picked minimal values of(r; — s1) and (s2 — r2) to use when
estimating the relative clock offset. We will use it again when de-
veloping methods to detect clock adjustments and skew. For these
latter, what is interesting arteendsin how the OTT values (with
noise removed) change over the course of the connection. Thus,
we cannot simply de-noise the OTT values by selecting the global
minimum, or we will obliterate the trend. Instead we divide the
series of OTT values up into intervals and de-noise each interval
by selecting the minimum value observed during the interval. The
question then becomes which intervals to use.

One natural way of devising intervals is to allocate them so that
each has the same number of packets. Another is to choose them
so that they each span the same amount of time. For assessing
trends in OTT values over time, the latter seems to be the natural
choice. But using fixed-time intervals has a fundamental problem.
Sometimes a connection's activity primarily occurs during only a
small portion of the connection's total duration, with the rest of the
time mostly inactive due to lengthy retransmission timeout lulls.

To address this difficulty, we combine the two approaches by
choosing both a packet-count interva}, and a duration interval,

I;. We then advance through the OTT timings and group timings
into a single interval whenever we have either encountéyeuhck-

ets, or we have reached a polpfrom the beginning of the interval.

At this point, if we have any packets at all, we take their minimum
as the de-noised OTT value for the interval, and we begin a new
interval by resetting the packet count and setting the start of the
interval to coincide with the next OTT measurement.

A final issue is how to pickl, and I;. For a set ofn OTT
measurements spanning an interdl’, we used:

I, = L\/ﬁJv I = AT/\/H

rrUsing these choices means that the number of de-noised OTT val-

ues scales as the square-root of the total number of values. This
struck us as a good compromise between preserving sufficient de-
tail without using too fine a resolution (which could mean we do
not effectively remove noise). Furthermore, we anticipate subse-
quently applying a number of robust algorithms to the de-noised
values, some of which have running times(xn?) or higher. For
these, if we present them with onty(,/n) values, then the total
running time will remainO(n) or only slightly higher, which is
important for performing fast automatic analysis.

We will refer to a measured series of OTT valuesrasand
denote the de-noised series derived fropasz,. For eachi,, the
indext corresponds to the same index as where in the interval we
found the (first) minimal value of;. This is an important point—if
we instead adjusted the index to reflect, say, the middle of the in-
terval, then we might introduce inaccuracies in the trends. The key
idea is that the “best” (least noisy) value of during the interval
occurred at a particular and we want to take that point and discard
all the others in the interval.

Figure 5 shows the results of applying this de-noising method
to the measurements plotted in Figure 4.

5.3 An algorithm for detecting adjustments

We now turn to attempting to detect adjustments algorithmically
(though we will be forced to also introduce heuristics, for reasons
discussed below). The central notion we will use is that ofsige
natureof the OTTs in the two directions showing equal but opposite
level shifts.

work path (such as a route change), the noise always takes the form
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Figure 5: Same measurements after de-noising pair-plot

Identifying pivots. The foundation of our approach lies in
identifying pivots points in time before which the OTTs all lie
predominantly above or below all the OTTs after the given point
in time. In Figure 4, the pivot we aim to identify occurs around
T = 0.7 sec. We now develop a heuristic for identifying pivots in
the series of OTTs for packets sent in a single direction (fsdim
r or vice versa). We then will analyze the pivots identified in both
directions to test for a clock adjustment.

Let z; be a series of de-noised OTT values occurring at titnes
ordered by the time index Let z,;, be the same series numbered
from: = 1...n, wheret; is theith measurement time. We define
apivot partitionof #; as a partition ofi, into two disjoint setsg}
andz , for which the maximum of one set is less than the minimum
of the other. Without loss of generality, le} be the “larger” of the
two sets, i.e., its minimum is larger than the maximung f

We further require that the time intervals spannedifyand
&/ are disjoint, namely either the largesin #, is less than the
smallestj in m@’] or vice versa.

We term the pivot partitiopositiveif the measurements; oc-
curredafter those inz;, andnegativeotherwise.

Geometrically, this definition corresponds to being able to draw
horizontal and vertical lines on a plot like that in Figure 5 such that
either all of the points lie in the first and third quadrants formed by
the lines (if positive), or in the second and fourth quadrants (nega-
tive).

It is important to note that a given serig¢s may have more
than one pivot partition. For example, it is strictly decreasing,
then every value of gives rise to a pivot partition. In addition, any
time the largest or smallest value ®f occurs at the lowest value
of ¢, i.e., &,, then there is a pivot partition that isolates that one
value versus placing all the other values in the other partition set.
Generally, this is not a pivot partition of interest.

We proceed as follows. First, we determine whether to search
for a positive or negative pivot by inspecting whethigy is less
than or greater tha#;,, . From here on, we assume without loss of

the smallest after the candidate. \lf is less thany,+1, then we
conclude thafk, k + 1] does indeed straddle a pivot; otherwise, we
conclude they do not.

If we find a pivot partition, then we define its magnitudé
as the absolute value of the difference between the median of the
points after the pivot with the median of those before. We also
associate a pivot widthy = tj41 — tg.

Identifying adjustment signatures. We now turn to identify-
ing the signature of a clock adjustment for the clocks of two hosts,
s andr. The method we developed is not entirely satisfying, as it
uses some heuristics in order to accommodate residual noise in the
OTT measurements, while attempting to not mistake genuine net-
working effects for a clock adjustment. However, the method ap-
pears to work well in practice (s€e.4). We note, though, that the
method assumes that clock adjustments are relatively rare events:
rare enough that our traces are likely to exhibit at most one adjust-
ment, and that the likelihood dfoth of the clocks we are compar-
ing exhibiting an adjustment during the trace is negligible. This
also appears to generally hold (again, $&e4).

Suppose we have two sets of de-noised OTT measurensents,
andr.. If either of ; or 7, doesnot exhibit a pivot, or if the piv-
ots are both positive or negative, then we conclude there was not
any clock adjustment. Otherwise, &f;, W, M,, andW,. be the
magnitudes and widths of the corresponding pivots. We next check
whether the pivotsverlap Lets; ands», denote the packets brack-
eting 3;'s pivot region, and likewise far; andr,. Let s] denote
the time at whichs; was sent frons (according tos's clock), and
s7 the time at which it arrived at (according tor's clock). With
analogous definitions for the other packets, we then conclude that
the pivots overlap if either of the following holds:

and sj + 6t > r7,
and r; + 6t > si,

81 < ry+ 0t

or ri < 55+ 0t

wheredt is the allowed “slop,” which we set to:

max(Ws, W)

ot = 5

4
The idea behind the slop is to help detect other-than-instantaneous
adjustments (illustrated below).

If the pivots do not overlap, then we conclude there was no
adjustment. If they do, we then next look at the magnitudes of
the pivots. If either magnitude is less than the larger of twice the
joint clock resolutionR;,. (§ 3), or 2 msec (an arbitrary value to
weed out fairly insignificant adjustments), then we declare the pivot
“insignificant” and ignore it.

Finally, we check whetheM, and M, are within a factor of
two of each other. If not, then we term the pivot a “disparity pivot,”
meaning that it may be due to unusual networking dynangibsg).

If the two agree within a factor of two (which experience has shown

generality that we wish to detect a positive pivot, such as the one is a good cut-off point), then we conclude that the trace pair exhibits

exhibited by the receiver packets (hollow squares) in Figure 4.

We search through the measurements to find the poivitere
min(Z¢,, ,, Zt,,,) — max(&e,_,, &y, is largest. Conceptually,
we are looking for the intervals that have the greatest difference

a clock adjustment with a magnitude of abdgtt =

5.4 Checking the algorithm’s accuracy

between them in the same direction as the pivot; we spread theWe now turn to the important question bow do we know the

differencing over the additional intervals on either side to combat
the problem of the intervals right at the pivot misleading us due

algorithm actually works? Since we are restricted to post-facto
analysis, we need to develop other means for detecting likely clock

to noise. Note that this spreading operation also means that weadjustments, and use them to gauge the algorithm's accuracy.

cannot detect a pivot that occurs right at the beginning or end of a

connection  5.6).

k is now the candidate pivot (actually, the potential pivot occurs
at a point in time between measureménand measuremerit +
1). We then inspect the points & to find x, the largest point
before the candidate pivot, and likewise thosek to find xx+1,

We can divide our accuracy concerns into two tygatse pos-
itives in which the algorithm claims a clock adjustment occurred
when in fact one did not, anfhlse negativesin which it fails to
detect that an adjustment actually did occur.

Since the algorithm only flags adjustments in a relatively small
number of traces§(5.5), we can deal with the possiblity of false
positives by manually inspecting each of these using a plot like in
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Figure 6: Clock adjustment via temporary skew Figure 7: Likely clock adjustment masked by network delays

were again equal, but the relative offsets between the clocks shifted

Figure 4 to determine whether we find compelling evidence that an ;
by nearly 1 sec in the process.

adjustment really did occur. The process of doing so led to some
of the finer points of the algorithm, such as rejecting “disparity
pivots.” After these additions, we find virtually no apparent false 5.6 Problems with detection method
positives (though who knows how many we are missing because
their presence is not visually compelling).

The possiblity of false negatives is more difficult to address.
Since we have too many traces to inspect by hand (though we di
apply random sampling to hand-inspect a large number of traces),
we developed two other heuristics for identifying clock adjustments.
The first is to compute the minimum round-trip time (RTT) that
could be derived from differences between the timestamps for any
pair of packets between the two hosts. If this was significantly
lower than the minimum observed round-trip time (using a single
clock), and especially if it was ever non-positive, thepanaly
flags the trace as requiring manual inspection. The second is to
compute the cross-correlation between the denoised OTT times in
the two directions, and then to flag traces with strong negative cor-
relations. The use of these heuristics also led to refinements in the
detection algorithm, such as spreading out the pivot differencing
over multiple intervals when searching for candidate pivots, and al-
lowing “slop” per Eqn 4. After these additions, we find very few
false negatives (s€g5.6 for examples).

The method given i§ 5.3 appears to work well in practice, at least

in terms of the checking discussed above. However, it does some-
dtimes fail to detect clock adjustments. In this section we look at
some cases where we identified this happening.

Failure to detect adjustment via skew.In Figure 6 we illus-
trated how sometimes a clock adjustment can occur due to tempo-
rary skew. However, in such cases there are multiple pivots in each
direction (any location along the skew line is a pivot), and some-
times, due to noise, the two pivots located by the method do not
overlap, and the possibility of an adjustment is rejected. In general,
this sort of failure will only occur with adjustments using tempo-
rary skew; abrupt adjustments have sharply defined pivots. (This
example was detected due to a non-positive minimum RTT, as dis-
cussed ir§ 5.4.)

Excessive network-induced delayFigure 7 shows a case where
the reverse path exhibits a clear level shift arofihe 70 sec, with
a magnitude of about 250 msec, but the corresponding shift on the
forward path is less clear because it is accompanied by an increase
in networking delays, too. In that directiompanaly assesses the
. . magnitude of the shift as about 730 msec. Since this is more than
5.5 Results of checking for adjustments twice the magnitude in the other directianpanaly  rejects the

tcpanaly  uses the method given |n5.3 to check each trace pair ~ POSSiPility of a clock adjustment. . . .

it analyzes for clock adjustments. Doing so, we found 36 trace _tcpanaly flags a trace pair like this as having a “disparity
pairs in\; out of 2,335 (1.5%) that exhibited apparent clock ad- PVOL” namely common pivots that have too great a difference in
justments, and 128 out of 15,492\, (0.8%). While these pro- their magnitudes to be considered a clock adjustment. Disparity

portions are fairly low, they are high enough to argue that a large- PIVOtS are quite rare (only 61 i2). We inspected each one and
scale measurement study for which accurate timestamps are imporfound that only the one shown above was a plausible clock adjust-
tant needs to take into account the possibility of clock adjustments. MeNt. The rest appear simply due to unfortuitous patterns of noise.
Furthermorethe adjustments are only detectable due to the use of | Adiustment too close to connection edgeSince our method

a pair of clocks If a study uses timestamps from only one measure- [oF identifying pivots § 5.3) will not accept a pivot right at the
ment endpoint, then checking the timestamps for ciock adjustmentsPedinning or at the end of a connectiacpanaly  naturally will
becomes much more difficult. miss thl_s sort o_f adjustment should it occur. _

The median adjustments were on the order of 10-20 msec, the _Multiple adjustments. The development of the clock adjust-
mean around 100 msec, and the maxima close to 1 sec. Thesdent detection algorithm presumes that there is a single clock ad-
magnitudes are unfortunately small enough to sometimes not beluStment to be detected. Sometimes a trace pair suffers from more
glaringly obvious, but large enough to be comparable to wide-area tan one adjustment, and the algorithm either only detects one of
packet transit times, so they can introduce quite large analysis er-them. or fails to detect any of them. The latter is particularly likely
rors if undetected. if there are two adjustments in opposite directions. Figure 8 shows

While clock adjustments are usually abrupt, this is not always 2 Striking example of a trace pair with two adjustments, both ef-

the case. The adjustment-detection method found some clock ad-fected using temporary skew. (This example was likewise detected

justments that occurred due to a short period of altered clock fre- dU€ 0 @ non-positive minimum RTT; the strong negative correla-
quency (i.e., temporary skew). Figure 6 shows a striking example. tion test also detects it.) . . .
Here, around tim& = 40 sec the sender's clock began running Clock “hiccups.” ~ Related to the multiple adjustments dis-
more quickly than the receiver's, leading to lower sender OTTs and Cussed above are clock *hiccups,” in which one of the clocks in a
higher receiver OTTs. Less than 20 seconds later, the frequenciedf@c€ pair momentarily either ceases to advance or advances very
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Figure 9: Clock adjustment “hiccup”

quickly. Figure 9 shows an example, occurring at tifhe= 6 sec.

It is possible that this example is actually due to surprising network
dynamics, as the 4 acks with lowered OTTs come right after the
only packet reordering event in the trace. (While a clock glitch can
change the value of OTTs, @annotreorder packets on the wire!

But see [Pa97b] for measurement errors that can indeed reorder

packets.) It is difficult to see what networking mechanism could
lead to the data packets in the opposite direction simultaneously
experiencing increased delay.

6 Assessing relative clock skew

Errors in relative clock skew, which often introduce inaccuracies
on the order of perhaps a few seconds a day, might seem trivial
and perhaps not worth the effort of characterizing. For purposes of
keeping fairly good absolute time, this is true, but for purposes of
assessing network dynamics, it is not.

To illustrate why skew is a crucial concern, consider evaluating
OTTs between two hostsandr, for whichr's clock runs 0.01%
faster thars's. That is, over the course of a das clock will gain
about 9 seconds relative t0s clock, not a particularly large error
for many purposes. If, however, we are computing OTTs between
s andr, then over the course of only 10 minutés clock will gain
60 msec oves's clock.If we assume that variations in OTT reflect
queueing delays in the network, then this minor clock drift could
lead to a large false interpretation of growing congestiéar ex-
ample, ifs sends 512 byte packets toand the bandwidth of the
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Figure 10: An OTT pair plot showing relative clock skew

Figure 10 shows an OTT pair plot that exhibits a clear skew sig-
nature: the OTTs in one direction show a steady overall increase,
while those in the opposite direction show a steady decrease. Both
changes have a magnitude of about 120 msec over the 2 minute
course of the connection, consistent with the receiver's clock ad-
vancing about 0.1% faster than the sender's clock. It is difficult
to see what sort of network dynamics could introduce such a true
combined inflation and deflation of OTTs over a two-minute pe-
riod, so we conclude that the OTT pair plot shows strong evidence
of relative clock skew.

We now turn to developing robust algorithms for detecting and
removing relative clock skew.

6.1 Defining canonical sender/receiver skew

We begin by defining exactly what quantity it is that we wish to
estimate. First, we assume that the skew trends we identify will be
linear. While we might possibly encounter non-linear skew, we did
not find any clear examples of suchAi or AV». For linear skew,

we can summarize the skew using a single value that reflects the
excess rate at which one clock advances compared to the other.
To avoid ambiguity (in terms of which clock we are comparing
to which), we will always quantify hov;, the receiver's clock,
advances with respect 0;. SupposeC', runs a factom faster
thanC5, by which we mean that, i's reports that an intervahT

has elapsed, thati. will have reported the same interval as having
lengthnAT.

The algorithms we develop are based on how OTT measure-
ments expand or shrink with respect to time. It is important to rec-
ognize that the phrase “with respect to time” does mean “with
respect to true time,” since we have no way of measuring true time.
Instead, it means “with respect to the clock at the packet origina-
tor.”

When discussing a linear trend in the measured OTTs of the
packets sent by host we will quantify the trend in terms offs,
the growth in the OTTs of the packets sentdySuppose packet
p1 is sent at timeT’}, according toC,, and arrives at timd;,
according toC,. Likewise, suppose packeb is sent atT’?> and
arrives atT}?. Suppose further that the transit times of the packets
are identical (no network-induced noise), so the only variations in
their OTTs are due to clock skew.

The measured OTTs for the two packets are:

¢1 :T'r‘l _T317 ¢2 :T'V‘Z _T32~

path between them is T1 (1.544 Mbps), then a true 60 msec increase
in delay reflects the equivalent of an additional 23 packets’ worth of As G, quantifies the linear growth in measured OTTs over time,
gueueing. Thus, quite “minor” skew differences between the two e have:
endpoint clocks can lead to quite large, erroneous assessments of b2 = p1 + G (T2 = T)).
gueueing delay. .

The first issue for detecting skew is to identify a skew “sig- !N the absence of relative skew betwe&nandC;, Gs = G = 0.0,
nature” similar to that for clock adjustments shown in Figure 4. WhereG, quantifies the growth in OTTs of packets sentrbyf C'»



path completely obscures the relative clock skew, which is apparent
- from the enlargement of the return path shown in Figure 12. Such
. noise most often obscures the forward path (presumably due to ex-
- tra queueing induced by the data packets), but it can also obscure
H the reverse path. Thus, we cannot always rely on the signature of
- dual equivalent-but-opposite OTT trends; sometimes we must set-
1 = tle instead for simply a compelling trend in one direction.
i Furthermore, network-induced noise also scuttles what might
DT o e seem the most straightforward approach to detecting skew, namely
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fitting a line to the de-noised OTT measuremegtsandr; (§ 5.2).
Even using de-noised measurements, least-squares fitting fails to
provide solid skew detection, because residual noisg &nd;
makes it too difficult to reliably distinguish between a skewing
trend and coincidental opposite queueing trends. All it takes is one
, period of elevated queueing at either end of a connection to throw
o a off the fit.
| 6 o = Unfortunately, the same also occurs using robust fitting tech-
PR o g S nigues, such as estimating the line's slope as the median of all of
o B0 B ™ o o the pairwise slopes between the individual de-noised measurements
® ] T Pees o [HMT83]. The difficulty lies in both false positives and false neg-
e %@ﬁgﬁ@% atives generated due to queueing fluctuations. Clearly, we need an
- s even more robust technique.
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Figure 11: Clock skew obscured by network delays
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‘ ‘ ‘ ‘ 6.3 A test based on cumulative minima
0 10 20 30
Time (sec) Eventually we recognized that the most salient feature of relative
clock skew is not simply the overall trend (slope) of the OTT mea-
Figure 12: Enlargement of reverse path surements, but the fact that the smallest such measurements contin-
ually increase or decrease. This observation suggests the following
statistical test, the strength of which is that it is nearly immune to
runs faster tha@, then the packets sent bywill exhibit increas- transient increases in OTT measurements due to queueing buildups.
ing OTTs and those sent bywill exhibit decreasingdTTs, so we Suppose we have observationsX:,, 1 < ¢ < n, wheret; is
will have G5 > 0 andG, < 0. Naturally, the reverse holds . the time of the observation arXi;, is the value of the observation.
runs slower thar®;. We assume that thg's are monotone increasing, and that fe
It can be shown that: are distinct. Further, we assume without loss of generality that we
wish to test for a negative trend iki;,. We discuss applying the
Gs = n—-1 5) same test for a positive trend §r6.4 below.
Consider the indicator:
G, = -1 6)

1
n I, = { 1, if Xy, < min;<; Xy, orif j =1, and
_ 1 1 ) g 0 otherwise.

s+1 . L o .
Gs + That is,Iy; is 1 if X¢; represents a new “cumulative minimum” if
Forn =1 + ¢, where|e| < 1, we have: we inspectX,;, from 1 up toj (but not all the way up ta), and O
if there is an earlieX;, that is less tharX; .
G, =, G, = _1i ~ —e. If the X}, are independent, then:
€

PlI,; =1] =1/j,
Because clock skews are often only a few parts per thousand or

ten thousand, we are usually in this regime (but $6e6 below). because the probability that any particulés, out of j observations
Consequently, an easy inaccuracy to introduce is to assume that: is the minimum of the group is simpliy/j.

Consider now the function:

Gs = -G, ‘
J
(i.e., the slopes are equal but opposite), since this often appears to M; = Z Iy,
be the case when inspecting OTT pair plots. To ensure full accu- P

racy, we instead take care to always use Egns 5 and 6 to express

relative clock skew in terms af, or Eqn 7 to translatés, to G. which is the number of cumulative minima seen as we inspect

We will refer to values ofG, and G, that are consistent with re-  from the first value up to thgth value. The key observation we

spect to Eqn 7 as “equivalent but opposite trends.” make is that, in the absence of a negative trend, the distribution of
M; will tend to be close to that for independeRy;; that is, we

6.2 Difficulties with noise will find a few cumulative minima but not a great number; while,

in the presence of a negative trend, we should find many cumulative
One particular problem with testing for clock skew is that, due to minima, since theX,, tend to get smaller and smaller.
queueing fluctuations, one direction of a path can have such highly ~ Suppose we find/,, = k, that is, theX,, exhibitk cumulative
variable OTTs that these completely mask the smaller-scale trendminima. We wish to compute the probability that we would have
of OTT increase or decrease due to skew, even after de-noising.observed this many or more minima, given the independence as-
Figure 11 shows an example, in which congestion on the forward sumption. If we find the probability sufficiently low, we will reject



1.0

=K]
04 06 08

PIM(n) >

00 02

10 15

k

Figure 13: Distribution ofR(n, k) for n = 15

the null hypothesis that th&,, are independent. In its place we
will accept the tentative hypothesis (which we will further test in
§ 6.5) that theX,, exhibit a negative trend.

Let R(n,k) = P[M, > k]. Given0 < k < n, we can
computeR(n, k) recursively, as follows:

1, if k=0,
R(n,k) = { 1/nl, if k=n,and (8)
R(n—l,k—l)-&-in—l)R(n—l,k) if k< n.

The first case is the degenerate one that grounds the recursive defi-

nition: the probability that there are at least 0 cumulative minima is
always 1. The second case corresponds to every sikigléeing

a cumulative minimum. This only occurs if th€;;'s are sorted in
descending order, which, if they are independent, has probability
1/nl.

The last case corresponds to conditioning on wheffigris a
cumulative minimum or not. For independekit,, it will be a cu-
mulative minimum with probabilityl /=, and not with probability
(n—1)/n.

Figure 13 shows the distribution @t(n, k) for n = 15. The
key feature of the distribution that makes it a powerful test for a
negative trend is the rapid fall-off in probability above a certain
point, in this case arounkl = 8. Because if theXy,'s do indeed
have a negative trend we should fikdjuite close ta, this means

6.5

With the cumulative minima test we finally have a robust algorithm
for detecting trends. These trends, however, might not be due to
clock skew but to networking effects, so we need to develop further
heuristicchecks to correctly detect linear skew.

Suppose we have two sequences of de-noised OTT measure-
ments,3; andr, corresponding as usual to the full-sized data pack-
ets sent from the connection sender to the receiver, and the acks sent
back from the receiver to the data sender. For each sequence, we
first determine whether it is skew candidates follows.

Let u; denote the given sequence. LRt (n, k) be the proba-
bility that the sequence; matches the null hypothesis of no trend
(independence) given by Egn 8. We consider skew candidate
if either:

Identifying skew trends

1. Ry(n,k) < 1075 andu is eithers;, or u; is 5, and its
trend is negative. This latter test is because queueing buildup
due to the data packets sent along the forward path can often
produce a strong positive trend; or

. R,(n,k) < 107* andu, is tightly clusteredaround the
“trend line,” which is computed using a robust linear fit (per
the algorithm discussed above) to just the (denoised) timings
corresponding to the cumulative minima or maxima.

The goal here is to allow for a skew candidate if thgoints

fit quite closely to a (linear) trend, even though their cumula-
tive minima probability is not so small. This can happen, for
example, if we do not have a large number of pointan

Note that the limit ofl0 2 precludes assuming a skew candi-
date if there are fewer thanpoints, sincel /6! ~ 1.4-1073
(but see below).

It remains to define “tightly clustered.” To do so, we com-
pute the inter-quartile range (75th percentile minus 25th per-
centile) of the distance between tlagand the trend line. If it

is less than or equal to the larger of the joint clock resolution,
R, -, or 1 msec, then a large number of the de-noised OTTs
lie very closely to a pure linear trend.

We next determine whether eith&ror 7, is compelling enough
by itself to accept as evidence of a skew trend; or if the pair form a

we can readily distinguish between the case of a negative trend and/©int skew candidate, to be investigated further; or if there is insuf-

that of no trend, without requiring thatl of the X, be increas-
ingly negative. Thus, we can accommodate considerable noise.

6.4 Applying the test to a positive trend

The test developed i 6.3 for detecting a negative trend can also
be applied to detecting a positive trend, with one subtlety. At first
blush one might think that, to do so, one simply uses maxima in lieu
of minima. This works in principle, but fails when applied to OTT

sequences, because of the positive additive nature of OTT noise

(§ 5.2). That is, the maxima will be often dominated by the noisiest
OTT values, rather than by OTT values that slowly rise due to skew,
so the noise will obscure any positive trend due to clock skew. This

remains a problem even after de-noising, since all it takes is a single
period of elevated OTT values, long enough to span an entire de-

noising interval, to pollute the de-noised values with what will in

some cases be a global maximum. When searching for a negative

trend, such an interval will, on the other hand, simply not include
a cumulative minimum; but it will not prevent the test from finding
other minima due to clock skew.

There is a simple fix for this problem, though: we apply the
cumulative minima test td%; = X, _,,,, which is simply X,
viewed in reverse. The reversal converts a positive trendldn
to a negative trend iz, which the cumulative minima algorithm
then readily detects.

10

ficient evidence for a skew trend. To do so, we first consider which
of them is individually a skew candidate, as follows:

1. If neither is a candidate, then we check to see whether
max(Rs(n, k), R-(n,k)) < 1072, If so, then the joint
probability that both have no trend (or, more precisely, are
fully independent) is< 10™*, which we consider sufficiently
low to consider them as joint skew candidates and proceed as
discussed below. If either probability excedds 2, then we
reject the trace pair as a candidate for exhibiting a skew trend.

. If 7, is a skew candidate but is not, then we accept; as
reflecting clock skew quantified using the correspondig
We do so because sometimes we have no hope of detecting
a skew trend irs; due to queueing buildup, as illustrated in
Figure 11 and Figure 12.

. If 5, is a skew candidate but; is not, then we check the
direction of3;'s trend. If it is negative, then this goes against
the networking tendency for a positive trend induced by the
queueing of the data packets along the forward path, and we
accepts, as reflecting clock skew quantified usi6g .

If the trend is positive, we must proceed carefully to screen
out a false skew trend due to queueing. First, we require

2 2
O3, < Oy



that is, the variance of the de-noised OTT values along the
forward path is less than that in the reverse path. If this is
not the case, then we reject the trace pair as a candidate for
exhibiting a skew trend.

Next we splits; into two halves s, ands,,, with the divi-
sion coming at % | if s; hasn values. IfR(n, k) for either
half exceedd0~2, or if the trends for the two halves do not
agree in direction, then we also reject the possibility of a
skew trend.

If 5, passes these tests, then we consigeands;, as com-
prising a joint skew candidate. We revetse so it now has
the opposite trend of;, , and proceed as discussed below.

2000 4000
a
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-4000 -2000
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Figure 14: Example of extreme clock skew

4. If both 5; andr; are skew candidates, then we consider them

together a joint skew candidate. "om,, PR b
B L

400

If the above procedure yields a joint skew candidate, we then
evaluate the candidate as follows:

200

1. If both candidates have the same trend direction, then we
reject the possibility of a skew trend.

One-way Delay (msec)

2. If not, then we translate the first candidate's skew quantifi-
cation into terms of the second candidate using Eqn 7. Let ‘ ‘ ‘ ‘ ‘
G1 andG- be the corresponding skew quantifications (one of 0 2 4 6 8 10
which has been translated, so they can be directly compared). Time (sec)

If

G1+G»
2 )
that is, the difference between the two exceeds their average,
then we reject the pair as having too much variation in their This example is more than just an amusing curiosity. It oc-
slopes for them to be trustworthy indicators of skew. Other- curred not once but 43 times ik (see Figure 1). We note, how-
wise, we accept the pair as indicative of a skew quantified as ever, that this clock (which corresponds to #str  site) was one
G = % of the ones identified i§ 4.2 as beindnighly synchronized with a
number of the other sites, indicating care was being taken to keep
accurate time with it (presumably using NTP). Thus, this clock's
behavior is a compelling argument thast because a clock is be-
tcpanaly uses the method given 6.5 to check each trace pairit  lieved to be well-synchronized does not render it immune from ex-
analyzes for clock skew. As we did for detecting clock adjustments, treme error!
we gauged its accuracy by visually inspecting many of the skews  Aside fromaustr 's clock, the next largest skew we observed
it found (to detect false positives), and also (for false negatives) in V1 wasn = 0.991, a frequency difference of about 0.9%. This
by hand-inspecting randomly chosen traces, as well as those withled to an OTT change of about 70 msec during an 8 sec connec-
strong, negative cross-correlations in their OTTs or excessively low tion. Allin all, after removing connections involvirastr , in Ay
minimum RTTs (pe 5.4). These last, as for clock adjustments, the median skew had a magnitude of about 0.023%, and the mean
often occur in the presence of significant clock skew. Making these 0.035%. These are small, but not negligible.
checks led to a number of the heuristics outlined above, andwe now  In N>, the prevalence of trace pairs exhibiting skew was sig-
find the algorithm appears reliable, at least in terms of plausible nificantly lower (3% versus 13%), perhaps due to the use among

-200
L |
-

|G — Ga| > Figure 15: Strong relative clock skew of 6%

6.6 Results of checking for skew

skew trends we can detect visually. the participating sites of newer hardware with more reliable clocks.
The method indicates that 295 trace pairs\in out of 2,335 After removing one site that either had a very broken clock or very
(13%) exhibited clock skews, and 487 out of 15,492 did s&/in unusual network dynamics (we were unable to determine which;
(3%). These proportions are high enough to argue for considerableperhaps it was both), the largest skews we observed were on the
caution when comparing timestamps from two different clocks. order of 6%. Figure 15 shows an example. The pattern is quite

In both 7 and\>, about three-quarters of the skews were de- striking, and clearly could lead to grossly inaccurate conclusions
tected on the basis of; alone, not particularly surprising since  about network dynamics if undetected. Note that both sites in-
often a skew trend i, will be lost in the OTT variations due to  Vvolved in this connection were among those identified as closely
queueing induced by the data packets. (We could avoid this prob- synchronized inV> (§ 4.2), again emphasizing that clocks that are
lem if we could choose the particulars of our measurement traffic, in generalwell-synchronized can still exhibit very large errors.
rather than analyzing TCP bulk transfer traffic.) The largest skew After removing these connections, the median skew magnitude
in A1 was a whopping; = 5.5, meaning that one clock ranore of the remainder inV> is about 0.011%, and the mean around
than five times faster than the otheFigure 14 shows how skew  0.016%. These are a factor of two smaller than thos&/in but
like this appears in an OTT pair plot. (Note that the reverse path still not completely negligible for assessing queueing in longer-
starts a timeél’ = —4 sec becausgpanaly could not figure out lived connections.
any sort of useful relative clock offset.) In the forward direction,
the connection's elapsed time was only 2 sec, but in the reverse
direction it took 10 sec!
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| Dataset| Relative offset| Likelihood of adjustment

N1 < 1sec 1.4%
N > 1sec 1.6 %
No < 1sec 0.75 %
No > 1sec 0.95 %

Table 1: Relationship between relative clock accuracy and clock
adjustments

6.7 Removing relative skew

As discussed in the previous section, a non-negligible proportion
of the trace pairs in our study suffer from relative clock skew. We
would like to remove this skew so we can then reliably include
those traces in subsequent analysis of network dynamics. Fortu-
nately, the skew almost always appears well-described as linear,
which means it is straight-forward to remove it.

To remove skew of magnitudg we simply modify all the time-
stamps<t! generated by, using:

ti' =t; + G (ti —t5), ©)
whereG, is given by Eqn 6 and is the first timestamp generated
by C.,.

A key point is that applying Eqn 9 doe®t necessarily rectify
C,'s skew with respect true time It only rectifies it with re-
spect toCs. It could be that the correct action to take in terms of
true skew removal is to apply an analogous transformatiarite
timestampsnstead We have no way of knowing which clock is in
error, but by Egn 9 we can still make the two sets of timestamps
consistent, and eliminate artificial trends in the network delays we
compute, even if some absolute skew remains.

Aftertcpanaly removes relative skew, it re-analyzes the clock.

If it still detects relative skew, then either its initial assessment that

the trace pair had relative skew was wrong, or the skew was not lin-

ear. It flags this case separately, and also then refrains from any fur-
ther timing analysis. Thus, re-analysis provides a self-consistency
test for the soundness of our skew detection. This test failed less
than 2% of the time.

7 Clock synchronization vs. stability

| Dataset| Relative offset| Likelihood of skew |

N1 < 0.01 sec 0.95%
M < 0.1 sec 5.6%
N < 1sec 13 %
Ni > 1sec 12%
N2 < 0.001 sec 1.3%
N2 < 0.01 sec 0.88 %
N < 0.1 sec 1.3%
N2 < 1sec 1.8%
N > 1sec 5.3%

Table 2: Relationship between relative clock accuracy and clock
skew

Table 1 shows the relationship between relative clock accuracy
and the likelihood of observing a clock adjustment. We see that
closely synchronized clocks, i.e., those with a relative offset under
1 sec, are only slightly less likely to exhibit a clock adjustment than
less closely synchronized clocks. Thus, relative clock accuracy is
not a good predictor of the absence of clock adjustments.

Table 2 shows the relationship between relative clock accuracy
and the likelihood of observing relative clock skew. Bdr, clock
synchronization only provides an advantage if the clocks are highly
synchronized, with a relative offset under 100 msec and preferably
under 10 msec. FoN>, however, synchronization of under 1 sec
provides a definite advantage in predicting a lower likelihood of
skew, though much better synchronization provides little additional
predictive power. For boti\; and V>, not even very close syn-
chronization reduces the likelihood of encountering clock skew to
a negligible level (i.e., appreciably lower than 1%).

We conclude that relative clock accuracy provides no benefit in
assuring that clock adjustments will be unlikely, and some benefit
in assuring that clock skew is less likely, but not to such a degree
that we can ignore the possibility of clock skew when analyzing
more than a handful of measurements.

In addition, we conjecture that the closely-synchronized hosts
in our study are most likely synchronized using NTP. If so, then
the use of NTP doesotreduce the likelihood of clock adjustments
introducing systematic errors when measuring packet transit times,
and reduces but does not eliminate the likelihood of clock skew
introducing systematic errors. This finding dowd mean that NTP

fails to keep good time. Rather, the timescales on which it does so
We finish our study with an investigation into the question of whethersignificantly exceed those of our connections. NTP keeps good
highly-synchronized clocks tend to be free of problems such as ad-time on large time scales precisely by altering clock behavior on
justments and skew. We will term clocks free of such problems as small time scales.
“stable.”

We might hope that highly-synchronized clocks would also be
stable, because freedom from such problems would tend to greatly
aid a clock in maintaining synchronization. On the other hand,
if good synchronization is maintained by frequently adjusting an
errant clock to match an external notion of accurate time, then such
clocks might bemore likely to exhibit adjustments or skew, and
hence be less stable than other clocks.

The issue is an important one because it is quite cheap to de-
termine whether a remote clock's offset is close to that of a local

8 Summary

The problem of comparing timestamps between unsynchronized
clocks might at first appear relatively minor. But, as we devel-

oped in the introduction, it actually has significant impact on the

accuracy of wide-area network measurement. If we can compare
such timestamps reliably, then we can use “receiver-based” mea-
surement in order to directly measure the properties along one di-
rection of a network path, rather than unavoidably conflating these

clock (§ 4.1). If relative accuracy is a good indicator that the re- ; ; P
mote ((:§iock)is stable. then we sz uigkl determine that we can properties with those along the reverse path, as happens with “echo-
! 4 y based” measurement.

rely on the soundness of the timestamps generated by the remote Unsynchronized clocks are subject to at least two types of er-

glockl, wit(;nc_;uttr?_aving to ng éhioutgh alldt_he teffor: of ti:je rknethosds hrors: clock adjustments, in which one of the clocks rapidly changes
eveloped in this paper for detecting aqustments and SKew.  SUChjiq ¢yrrent setting, and relative clock skew, in which one clock runs

a quick determination ‘.:OUId prove i_nvaluable for a ransport pro- agier than the other. |If undetected, both of these can introduce
.tOC°| tha_t needs to decide whether it can trust the timing feedback measurement artifacts that can masquerade as changes in delay due
information being returned from a remote peer. to genuine networking effects. In this paper we have undertaken to
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develop robust algorithms for detecting both adjustments and rel- [Pa96] V. Paxson, “End-to-End Routing Behavior in the Inter-

ative skew, even in the presence of significant noise in the timing net,” Proc. SIGCOMM '96pp. 25-38, Aug. 1996.

measurements. While our algorithms require some heuristic tuning .

to minimize inaccuracies in terms of false positives and false nega- [Pa97a] V. Paxson, “End-to-End Internet Packet Dynamics,”

tives, with this tuning in place we find that they appear reliable, as Proc. SIGCOMM 97 Sep. 1997.

best as we can judge without a source of independent callbrathn. T{Pa97b] V. Paxson, “Automated Packet Trace Analysis of TCP
In summary, pruden_t large-scale measurement and analysis o Implementations, Proc. SIGCOMM '97Sep. 1997.

packet timings should include algorithms such as these as self-

consistency checks to detect possible systematic errors, even in thgPa97c] V. Paxson, “Measurements and Analysis of End-to-End

presence of synchronization via algorithms such as NTP, which we Internet Dynamics,” Ph.D. dissertation, University of

find does not render clocks immune from errdy¥). We further California, Berkeley, April 1997.

argue that even pairs of clocks using a more direct external synchro-

nization source such as GPS should be subjected to such checks, as

a means of assuring that no timing errors have crept in between the

original, highly accurate time source, and the packet timestamps

ultimately produced by the inevitably imperfect computer clocks.
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