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Abstract

We discuss the problem of detecting errors in measurements of the
total delay experienced by packets transmitted through a wide-area
network. We assume that we have measurements of the transmis-
sion times of a group of packets sent from an originating host,A,
and a corresponding set of measurements of their arrival times at
their destination host,B, recorded by two separate clocks. We also
assume that we have a similar series of measurements of packets
sent fromB to A (as might occur when recording a TCP connec-
tion), but we do not assume that the clock atA is synchronized with
the clock atB, nor that they run at the same frequency. We develop
robust algorithms for detecting abrupt adjustments to either clock,
and for estimating the relative skew between the clocks. By ana-
lyzing a large set of measurements of Internet TCP connections, we
find that both clock adjustments and relative skew are sufficiently
common that failing to detect them can lead to potentially large
errors when analyzing packet transit times. We further find that
synchronizing clocks using a network time protocol such as NTP
does not free them from such errors.

1 Introduction

In this paper we tackle the problem of how to calibrate transit times
measured for packets traveling through a network. We assume that
we have a series of pairs of timings, recording each packet's de-
parture time from its sender and arrival time at its receiver, but that
the clocks used at the sender and receiver to generate these time-
stamps are not necessarily accurate: they may not keep true time,
they may be subject to abrupt adjustments, and they may run at
different rates.

Calibrating transit times might at first blush appear to be a fairly
minor measurement problem, but in fact it is potentially central
to the accuracy of a number of wide-area network measurement
techniques. The timing structure of packets transmitted through
a network is very rich: by carefully analyzing this structure one
can infer fundamental network properties such as delay, bottleneck
�A shorter version of this paper appears in the Proceedings of SIGMETRICS ' 98.
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link speed, available bandwidth, queueing levels, and even hop-by-
hop link speed [Ke91, Bo93, Mu94, CC96, Pa97a, Ja97]. These
measurements are usually made using “echo” techniques, in which
packets sent to a given target result in the target returning replies
back to the sender. The analysis is then made on the timing struc-
ture of the replies.

Echo-based techniques, however, suffer from a fundamental
problem: they unavoidably conflate properties of the network path
in the forward direction (which perturbs the sender's original pack-
ets, and hence the times at which the target generates its replies),
with the properties of the reverse direction. Consequently, these
measurements are subject to considerable inaccuracy. Furthermore,
a large-scale study of Internet routing found that paths through the
Internet are oftenasymmetric, meaning that the series of routers
visited in the two directions often differ [Pa96]. Subsequent work
discusses other asymmetries (such as link speeds and queueing
levels), and argues strongly for “receiver-based” measurement, in
which packet receivers cooperate with packet senders in order to
accurately measure network traffic [Pa97a].

Accurate receiver-based measurement, however, depends on ac-
curate comparisons of timestamps produced by a clock at the packet
sender with those produced at the receiver. It is easy to assume
that to ensure accuracy we merely require synchronization between
these clocks; but, while a considerable body of work has addressed
the problem of synchronizing clocks to true time (see especially
the work of Mills [Mi92a, Mi92b, Mi95]), these algorithms main-
tain good time over time scales of hours to days. They donot as-
sure synchronization on the small time scales of individual network
connections (a point we develop inx 7). Consequently, the problem
of calibrating the timestamps produced by pairs of network clocks
remains interesting and important.

If undetected, clock adjustments and rate mismatches can intro-
duce significant measurement errors. For example, if the sender's
clock runs slower than the receiver's clock, then the series of one-
way transit times (OTTs) that we compute from their timestamps
will show a systematic increase across the measurement interval. It
is easy to mistake this increase for a genuine increase in networking
delays due to a gradual buildup of queues at a router along the net-
work path. Similarly, a clock adjustment, if undetected, can lead to
completely erroneous conclusions that the network suffered from
sustained periods of high delay.

To develop our algorithms we used the data we gathered for
the Internet packet dynamics study mentioned above [Pa97a]. We
recorded two datasets, each consisting of traces of TCP transfers
conducted at random between a number sites around the Internet.
For each transfer, packet arrivals and departures were recorded at
both the sender and the receiver using thetcpdump utility [JLM89].
The clocks used at the different sites were not necessarily synchro-
nized.
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We term the sender and receiver traces collectively as a “trace
pair.” Transfers entailed the sender transmitting 100 KB of data to
the receiver. Because of the use of TCP, this results in a stream of
large data packets flowing from the sender to the receiver, and a
smaller stream of acknowledgement (“ack”) packets flowing in the
other direction, all of which were recorded.

The first dataset,N1, recorded at the end of 1994, consists of
2,335 trace pairs between 25 sites. The second,N2, recorded at the
end of 1995, consists of 15,492 trace pairs between 31 sites. (For
brevity, we do not list the sites here, but will use the same names
and font as in [Pa97a]—e.g., “austr ”.)

We wrote a program,tcpanaly , for automating much of the
analysis of the trace pairs, and [Pa97b] discusses a number of packet
filter measurement errors detected by it. Part of the development of
tcpanaly included devising and implementing the clock calibra-
tion algorithms we discuss in this paper.

Limitations of the study. There are a number of important lim-
itations of our study that must be kept in mind. The first is that the
data we had available for analysis had been previously recorded,
and did not include any clock information (such as whether the
clocks were synchronized using NTP, nor any logs of clock adjust-
ments by the operating systems). Because we were confined to
post facto analysis, we were unable to evalute the accuracy of our
algorithms in any absolute sense. Until the algorithms can be eval-
uated in a controlled fashion, they can at best only be regarded as
promising but unproven.

The post facto analysis also means that we could not design
our measurement traffic to best support the problem of calibrating
the packet timings. Instead, we had to deal with TCP bulk transfer
traffic, which often introduces its own timing distortions along the
data transfer path by contributing to queueing. Consequently, we
must deal with noise issues that we could otherwise avoid.

Another limitation is that we found we needed to introduce a
number of heuristics into the algorithms. We believe for the most
part that doing so is unavoidable, because the goal of the heuristics
is to deal with noise induced on the packet transit timings by net-
work conditions, and there is no known method for removing such
noise.

Finally, one might argue that inexpensive, high precision tim-
ing synchronization devices, such as GPS units, obviate the need
for calibration techniques such as those we develop. However, even
though these units are now relatively cheap, it is not clear that we
can yet presume their ubiquity, because: their cost remains non-
negligible; they cannot always be deployed due constraints on an-
tenna placement; and many sites might instead use NTP to synchro-
nize most of their machines to a few GPS-endowed machines. We
also argue in our summary that, even given a directly-attached GPS
unit, checking the ultimate clock readings derived from it remains
prudent.

We begin our discussion by defining inx 2 basic terminology
for describing different clock attributes. Inx 3 we introduce “rela-
tive” counterparts of these terms, for discussing potential disagree-
ments between two network clocks. We next conduct an assessment
of relative clock accuracy (x 4), before turning to the development
of methods for detecting clock adjustments (x 5) and relative clock
skew (x 6). As mentioned above, clock adjustments and skew can
introduce large, artificial network “dynamics,” so it is important to
detect and remove these effects.

We finish inx 7 with a look at how well a clock's synchroniza-
tion correlates with stable clock behavior (lack of adjustments and
of skew). We find that, unfortunately, a high degree of synchroniza-
tion between two clocks does not necessarily mean that the clocks
are free of relative errors.

Finally, the topics in this paper are discussed in greater depth in
[Pa97c].

2 Basic clock terminology

In this section we define basic terminology for discussing the char-
acteristics of the clocks used in our study. The Network Time Pro-
tocol (NTP; [Mi92a]) defines a nomenclature for discussing clock
characteristics, which we will use as appropriate. It is important
to note, however, that the main goal of NTP is to provide accurate
timekeeping over fairly long time scales, such as minutes to days,
while for our purposes we are concerned with much shorter-term
accuracy, namely between the beginning of a network transfer and
its end. This difference in goals sometimes leads to different defi-
nitions of terminology, as discussed below.

Resolution. A clock's resolutionis the smallest unit by which
the clock's time is updated (a “tick”). It gives a lower bound on
the clock's uncertainty. Note that we define resolution relative to
the clock's reported time and not to true time, so, for example, a
resolution of 10 msec only means that the clock updates its notion
of time in 0.01 second increments, not that this is the true amount
of time between updates.

We estimate a clock's resolution by inspecting the differences
between successive packet timestamps. In general, we take the
smallest positive difference as an upper bound on the clock's reso-
lution. However, we must not confuse “monotonicity increments”
with true clock advances. These increments are added by some
system clocks when the clock is read multiple times within the
same tick, so that instead of reporting that zero time has elapsed,
they always report monotone-increasing timestamps. These artifi-
cial increments are generally the smallest representable timestamp
advance—1�sec for Unix systems such as those in our study. So
to robustly estimate resolution, we need to disregard very small ap-
parent clock increments. Finally, we note that this approach for
estimating clock resolution produces at best an upper bound on the
clock's true resolution, because it may happen that the packet fil-
ter never receives back-to-back packets separated by only one tick.
For measurement purposes, this inaccuracy is often acceptable, be-
cause the extra error introduced is conservative in the sense that it
only widens the uncertainties associated with any subsequent tim-
ing analysis.

Offset. We define a clock'soffsetat a particular moment as the
difference between the time reported by the clock and the “true”
time as defined by national standards. If the clock reports a timeTc
and the true time isTt, then the clock's offset isTc � Tt.

Accuracy. We will refer to a clock asaccurateat a particular
moment if the clock's offset is zero, and more generally a clock's
accuracyis how close the absolute value of the offset is to zero. For
NTP, accuracy also includes a notion of the frequency of the clock;
for our purposes, we split out this notion into that ofskew, because
we define accuracy in terms of a single moment in time rather than
over an interval of time.

Skew. A clock'sskewat a particular moment is the frequency
difference (first derivative of its offset with respect to true time)
between the clock and national standards.

Drift. As noted in [Mi92a], real clocks exhibit some variation
in skew. That is, the second derivative of the clock's offset with
respect to true time is generally non-zero. [Mi92a] defines this
quantity as the clock'sdrift. We in general will only talk about this
notion in terms of clockadjustments, during which the clock's time
is rapidly altered, because during the small time scales of interest
for our study, only large drift values have discernible effects.1

1We will see inx 6 that, for the time scale of a single TCP connection in our study,
relative clock skew is nearly always very close to linear, indicating near-zero relative
drift over small time scales.
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3 Terminology for comparing clocks

In this section we develop terminology for discussing differences
between two clocks producing timestamps. The definitions are, for
the most part, analogous to those inx 2, except that, instead of
comparing a single clock against true time, we are comparing one
clock against another.

We first introduce the meta-notation of a subscript “s” denoting
time measured at the packetsender, and “r” denoting time at the
packetreceiver. LetCs andCr refer to the clocks at the sender and
receiver, withRs andRr their respective resolutions.

We defineCr 's offset relative toCs at a particular true timeT as
Tr � Ts, that is, the instantaneous difference between the readings
of Cr andCs at timeT . For convenience we will sometimes refer
to this asCr 's relative offset at timeT , withCs implicitly being the
clock to whichCr is compared. We discuss assessing the relative
offset of one clock to another inx 4.

Similarly,Cr 's relative skew is the first derivative ofCr 's rel-
ative offset with respect to true time. Since we do not assume an
independent means of measuring true time, we can only estimate
Cr 's relative skew in terms of time as measured by eitherCs or
Cr. Seex 6 for further discussion.

If Cr is accurate relative toCs (their relative offset is zero),
then we will refer to the pair of clocks as “synchronized.” Note
that clocks can be highly synchronized yet arbitrarily inaccurate in
terms of how well they tell true time. For network measurement,
often what is most important aredifferencesin time as computed by
comparing the timestamps from two different clocks. The process
of computing the difference removes any error due to clock inaccu-
racies with respect to true time; but it is crucial that the differences
themselves reflect good approximations to differences in true time.

For resolution, what we care about is not “relative resolution”
but joint resolution, which we define asRs;r � Rs + Rr. This
definition reflects the fact that, when comparing timestamps from
Cs with those fromCr, the corresponding uncertainties must be
addedto properly propagate the resulting total uncertainty.

4 Assessing relative clock o�set

In this section we discuss how to estimate the relative offset be-
tween two network clocks. The closer the offset is to zero, the
greater the relative clock accuracy (degree of synchronization).

An important point is that for analyzing network dynamics, es-
timating relative offset accurately generally isnot crucial, because
the dynamics mostly concerndifferencesin transit times rather than
absolute transit times. For our purposes, we only need to do esti-
mate relative offsets in order to construct legible plots of the two-
way flow of packets, and to qualitatively investigate the relationship
between large relative offset and other clock problems such as rela-
tive skew. Accordingly, we are satisfied with the method developed
in this section even though it is not highly accurate.

4.1 Method for assessing relative o�set

We now develop an algorithm for estimating the relative offset
�Cr;s of a clockCr at hostr with respect to a clockCs at host
s. We assume that both clocks have zero skew with respect to true
time. We also assume that the one-way transit time (OTT) across
the network froms to r and also fromr to s is �T (we return to
this assumption of symmetry shortly). Note that we donot assume
that we know�T itself.

Suppose a packet is sent from hosts at times1 (with respect to
Cs) and arrives at hostr at timer1, and that a second packet sent
in the opposite direction is measured to depart atr2 and arrive at
s2. Then we have:

r1 = s1 +�T +�Cr;s (1)

s2 = r2 +�T ��Cr;s (2)

Subtracting the second equation from the first then gives us:

�Cr;s =
(r1 � s1)� (s2 � r2)

2
: (3)

That is, from the raw, measured timestamps of the two packets
alone we can estimate�Cr;s, even if we don' t know�T .

The accuracy of Eqn 3 depends, however, on how closely the
OTTs of the two packets fit with the assumption that they are equal.
In order to minimize variations in the OTTs due to extraneous net-
work delays such as queueing, we select for our packets those with
theminimalvalues (over all of the packets) of(r1 � s1) and(s2 �
r2). Selecting minimal values works well because (most) network-
induced noise isadditiveandpositive(x 5.2), so minimal values
tend to have the least noise.

Even after reducing inequalities due to additional network de-
lays, we still are not on firm ground assuming that we can lo-
cate two packets with the same propagation time. Previous studies
have found that Internet routes often exhibit significant asymme-
tries [Pa96], so even in the absence of noise, packets sent in oppo-
site directions along a path may experience considerably different
delays. (See also Claffy et al. for discussion of measuring one-way
transit times using synchronized clocks [CPB93].) Furthermore,
Eqn 3 is necessarily inaccurate in the presence of relative clock
skew, since then there is simply no fixed relative offset.

However, since we only try to achieve a rough rectification of
the relative offset between the two clocks, we find these remaining
inaccuracies acceptable.

4.2 Results of assessing relative o�set

Using the methodology developed inx 4.1, we evaluated the rela-
tive clock offsets inN1 andN2 to see what sort of variation they
exhibited. Our goal is to identify groups of closely-synchronized
clocks, as we want to determine the degree to which these clocks
are less plagued by inaccuracies than less well-synchronized clocks
(x 7). A single computation of�Cr;s does not tell anything about
the absolute accuracy of eitherCr orCs, but we would expect that
many computations of different�Cri;sj 's will reveal clusterings
among the truly accurate clocks, and a large spread among the in-
accurate clocks.

Note that in the presence of relative skew, the relative clock
offset is not well-defined. However, if we find a pair of clocks that
frequently enjoy a low relative offset, then it is plausible that they
do not generally suffer significant relative skew, as otherwise their
readings would tend to drift apart and they would not be able to
preserve their low relative offset.

We proceed by clustering host clocks based on the median of
the magnitude of their relative clock offset, over all the transfers in
which they participated. We use the median offset in order to isolate
hosts that consistently had large relative offsets, instead of those
that only occasionally had large offsets, since the latter could be
skewed by unfortunately-frequent pairing of a host with an accurate
clock together with a host with a poor clock. We use the median of
the absolute value of the offset rather than the median of the offset
itself as a way of detecting clocks that often “swing” from being
too slow to too fast.

We first inspect the median magnitudes of each host's relative
clock offset. For both datasets, the same clock emerges as a clear
outlier, being typically 5–15 minutes different from the other clock.
We next remove the connections involving this outlier and recom-
pute the medians, repeating this process until we converge on a
set of clocks that have small median offsets relative to one another.
ForN1, this process removes 8 clocks as outliers. After eliminating
these clocks, the remainder all have median offsets< 1:25 sec. We
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Figure 1: Evolution ofaustr 's relative clock offset over the course
of N1

consider this group of 17 clocks asclosely synchronized. We can
continue the process to find a core group of 5highly synchronized
clocks, all with median offsets< 10 msec between one another.

ForN2, removing 7 outliers leaves a group of 24 closely syn-
chronized clocks, all with median offsets below 250 msec. Elimi-
nating six more of these leaves a group of 18 clocks with median
offsets below 50 msec. We can further winnow the group down to
a final set of 10 highly synchronized hosts, all of which have me-
dian offsets between each other of less than 10 msec. This group
includes hosts on both coasts of North America as well as two in
Europe, indicating synchronization well below that of the propa-
gation time between the hosts–very good, and around the accuracy
limit for NTP reported in [Mi92b], even though we are performing
a cruder estimate of accuracy (and of relative accuracy rather than
absolute accuracy).

We will make use of these different groups of closely-synchronized
and highly-synchronized hosts inx 7 when we test whether close
synchronization tends to correlate with low relative clock skew.

We finish with a look at how a host's relative offset evolves over
the course of an experimental run. The evolution is interesting be-
cause it provides a large-scale look at how clock accuracy changes.
Our interest here is phenomenological—to develop an appreciation
for clock inaccuracies and an awareness of how they occur.

To assess offset evolution, for each host we constructed a plot
with the relative offsets (in seconds) computed for those connec-
tions for which it served as the data source on they-axis, versus the
time of the connection (days since the beginning of the experiment)
on thex-axis. Positive values indicate the host's clock was running
behind the receiver's clock, negative that is was running ahead.

Figure 1 shows such a plot for theaustr tracing host's clock
over the course of theN1 experimental run. Up until the 14th day,
it kept good time, but after that point its clock came unglued and
ran very slowly, such that the clocks of the other hosts to which it
transferred data ran further and further ahead of it (hence, higher
and higher offsets). Surprisingly, this is one of the clocks identi-
fied above ashighly synchronized! That assessment, however, was
based onmedianrelative offset, which filters out the aberrant be-
havior. We look at this phenomenon further inx 6.6.

Figure 2 shows the evolution oflbli 's clock duringN2. While
overall the clock has a clear persistent skew, the skew is reversed
around day 8, perhaps in an effort to correct the clock's inaccu-
racy (or perhaps just due to a temperature fluctuation). But the ef-
fort ends a few days later and the original skew returns. However,
around day 27 the clock's relative offset jumps by over a minute,
reflecting a different sort of correction. (This host synchronizes its
clock upon reboot.)

Figure 3 presents our last example of interesting clock offset
evolution, for anotherN2 clock. What is striking here are the pres-
ence of offset “towers” that, over the course of hours, slowly ele-
vate the relative offset from nearly zero to several hundred millisec-
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Figure 2: Evolution oflbli 's relative clock offset over the course
of N2
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Figure 3: Evolution ofumont 's relative clock offset over the course
of N2

onds. Apparently what is happening is that the clock has a fairly
hefty intrinsic skew, but NTP synchronization is detecting this and
periodically resetting the clock as it strays too far.

5 Detecting clock adjustments

As shown quite strikingly in Figure 2, computer clocks are some-
times subject to abrupt adjustments in which the clock's notion of
the current time is changed, either gradually or instantaneously.
Gradual change is produced by artificially altering the clock's skew,
so that it slowly shifts its offset towards the target. Instantaneous
change is produced by simply loading a new value into the clock
register.

Backward clock adjustments, in which a clock is set to a value
it already registered in the past, can sometimes be easily detected
if the adjustment is large, by the presence of a pair of timestamps
T1 andT2 for which T2 < T1 even thoughT2 was recorded after
T1. In this section we tackle the harder problem of clock adjust-
ments (both forward and backward) that arenot apparent by trivial
inspection of the timestamp sequences.

5.1 Detecting adjustments graphically

Suppose we have a trace pair betweens andr. One simple way
to detect whether a clock adjustment occurred during the trace is
to plot both the OTTs for the packets froms to r and those in the
reverse direction. (Packets that are dropped by the network have no
OTT associated with them and are omitted from the plot.)

Figure 4 shows such a plot made for a connection fromsdsc
to usc in N1. The solid black squares indicate the OTT for data
packets sent from the sender to the receiver, and the hollow squares
reflect the OTTs of the acknowledgement packets sent from the re-
ceiver to the sender (note that these are significantly smaller than
the data packets). The OTTs have been adjusted using Eqn 3 to
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Figure 4: OTT-pair plot illustrating a clock adjustment (sender
packets are filled, receiver packets are hollow)

approximately synchronize the two clocks. (In this case, the ap-
proximation does not work particularly well, since there is more
than one clock offset to estimate!)

The figure shows a striking level-shift occurring for the sender's
OTTs around timeT = 0:7 seconds, a fall of about 10 msec. Fur-
thermore, the OTTs in the opposite direction show an equal and
oppositechange. This equal and opposite change is a crucial as-
pect of the plot, as it is the signature of a clock adjustment. If the
shift were due to a change in network path properties (for exam-
ple, a route change), then in general we would expect that either
(1) it would occur in only one direction, or (2) if it occurred in both
directions due to a coupled effect, it would have the same sign.

For a networking change to result in an equal-but-opposite level
shift, some resource needs to have been shifted between the two di-
rections of the network path, and furthermore the resource needs
to affect the transit times of the small acks equally with those of
the large data packets. It is difficult to see what sort of network-
ing change could do this. The change, however, makes perfect
sense if, at around timeT = 0:7 seconds,sdsc 's clock was set
ahead 10 msec, orusc 's clock was set back 10 msec. In either of
these cases, the difference in the timestamps for packets sent from
sdsc to usc , i.e., the quantityr1 � s1 per Eqn 1, will decrease
by 10 msec, and similarlys2 � r2 (per Eqn 2) will increaseby
10 msec. This is exactly the behavior shown in the plot.

5.2 Removing noise from OTT measurements

Two other points concerning Figure 4 merit attention. The first is
the presence of a few unusually small sender packet OTTs, one
of about 7 msec aroundT = 0, and the other of around�3 msec
aroundT = 2:3. Both of these reflect sender packets that did not
carry any data (the SYN and FIN connection management packets).
These travel through the network more quickly than full-sized data
packets. Hence our techniques need to be careful to not weigh their
OTT values the same as those for full-sized packets.

The second important point shown in the plot is the largevaria-
tion in OTTs, both for the full-sized sender packets and the smaller
receiver packets. For example, note that the OTTs of both some
of the acks before the adjustment, and some the data packets af-
ter the adjustment, are larger than many of the OTTs on the other
side of the adjustment. This variation is the first suggestion that
we will require robust algorithms in order to not be fooled by noise
when analyzing OTT data. The eye quite readily picks out the twin
level shifts in this plot, but doing so algorithmically requires care
to screen out noise such as these large OTT values.

OTTs often exhibit considerable network-induced noise in terms
of deviation of a given OTT from the value expected if the network
were unloaded. The noise, however, has one crucial property that
often makes it tractable: barring a significant change in the net-
work path (such as a route change), the noise always takes the form

of an additive, positiveincrease. This means that, given a set of
OTT measurements, we can often hope to find those with very lit-
tle network-induced noise by looking at the smallest values in the
set.

We used this property of OTT noise inx 4.1 above when we
picked minimal values of(r1 � s1) and (s2 � r2) to use when
estimating the relative clock offset. We will use it again when de-
veloping methods to detect clock adjustments and skew. For these
latter, what is interesting aretrendsin how the OTT values (with
noise removed) change over the course of the connection. Thus,
we cannot simply de-noise the OTT values by selecting the global
minimum, or we will obliterate the trend. Instead we divide the
series of OTT values up into intervals and de-noise each interval
by selecting the minimum value observed during the interval. The
question then becomes which intervals to use.

One natural way of devising intervals is to allocate them so that
each has the same number of packets. Another is to choose them
so that they each span the same amount of time. For assessing
trends in OTT values over time, the latter seems to be the natural
choice. But using fixed-time intervals has a fundamental problem.
Sometimes a connection's activity primarily occurs during only a
small portion of the connection's total duration, with the rest of the
time mostly inactive due to lengthy retransmission timeout lulls.

To address this difficulty, we combine the two approaches by
choosing both a packet-count interval,Ip, and a duration interval,
It. We then advance through the OTT timings and group timings
into a single interval whenever we have either encounteredIp pack-
ets, or we have reached a pointIt from the beginning of the interval.
At this point, if we have any packets at all, we take their minimum
as the de-noised OTT value for the interval, and we begin a new
interval by resetting the packet count and setting the start of the
interval to coincide with the next OTT measurement.

A final issue is how to pickIp and It. For a set ofn OTT
measurements spanning an interval�T , we used:

Ip = bpnc; It = �T=
p
n:

Using these choices means that the number of de-noised OTT val-
ues scales as the square-root of the total number of values. This
struck us as a good compromise between preserving sufficient de-
tail without using too fine a resolution (which could mean we do
not effectively remove noise). Furthermore, we anticipate subse-
quently applying a number of robust algorithms to the de-noised
values, some of which have running times ofO(n2) or higher. For
these, if we present them with onlyO(

p
n) values, then the total

running time will remainO(n) or only slightly higher, which is
important for performing fast automatic analysis.

We will refer to a measured series of OTT values asxt, and
denote the de-noised series derived fromxt as�xt. For each�xt, the
index t corresponds to the same index as where in the interval we
found the (first) minimal value ofxt. This is an important point—if
we instead adjusted the index to reflect, say, the middle of the in-
terval, then we might introduce inaccuracies in the trends. The key
idea is that the “best” (least noisy) value ofxt during the interval
occurred at a particulart, and we want to take that point and discard
all the others in the interval.

Figure 5 shows the results of applying this de-noising method
to the measurements plotted in Figure 4.

5.3 An algorithm for detecting adjustments

We now turn to attempting to detect adjustments algorithmically
(though we will be forced to also introduce heuristics, for reasons
discussed below). The central notion we will use is that of thesig-
natureof the OTTs in the two directions showing equal but opposite
level shifts.
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Figure 5: Same measurements after de-noising pair-plot

Identifying pivots. The foundation of our approach lies in
identifying pivots: points in time before which the OTTs all lie
predominantly above or below all the OTTs after the given point
in time. In Figure 4, the pivot we aim to identify occurs around
T = 0:7 sec. We now develop a heuristic for identifying pivots in
the series of OTTs for packets sent in a single direction (froms to
r or vice versa). We then will analyze the pivots identified in both
directions to test for a clock adjustment.

Let �xt be a series of de-noised OTT values occurring at timest,
ordered by the time indext. Let �xti be the same series numbered
from i = 1 : : : n, whereti is theith measurement time. We define
a pivot partitionof �xt as a partition of�xt into two disjoint sets,�x0t
and�x00t , for which the maximum of one set is less than the minimum
of the other. Without loss of generality, let�x0t be the “larger” of the
two sets, i.e., its minimum is larger than the maximum of�x00t .

We further require that the time intervals spanned by�x0t and
�x00t are disjoint, namely either the largesti in �x0ti is less than the
smallestj in �x00tj , or vice versa.

We term the pivot partitionpositiveif the measurements�x0t oc-
curredafter those in�x00t , andnegativeotherwise.

Geometrically, this definition corresponds to being able to draw
horizontal and vertical lines on a plot like that in Figure 5 such that
either all of the points lie in the first and third quadrants formed by
the lines (if positive), or in the second and fourth quadrants (nega-
tive).

It is important to note that a given series�xt may have more
than one pivot partition. For example, if�xt is strictly decreasing,
then every value oft gives rise to a pivot partition. In addition, any
time the largest or smallest value of�xt occurs at the lowest value
of t, i.e., �xt1 , then there is a pivot partition that isolates that one
value versus placing all the other values in the other partition set.
Generally, this is not a pivot partition of interest.

We proceed as follows. First, we determine whether to search
for a positive or negative pivot by inspecting whether�xt1 is less
than or greater than�xtn . From here on, we assume without loss of
generality that we wish to detect a positive pivot, such as the one
exhibited by the receiver packets (hollow squares) in Figure 4.

We search through the measurements to find the pointk where
min(�xtk+1 ; �xtk+2)�max(�xtk�1 ; �xtk) is largest. Conceptually,
we are looking for the intervals that have the greatest difference
between them in the same direction as the pivot; we spread the
differencing over the additional intervals on either side to combat
the problem of the intervals right at the pivot misleading us due
to noise. Note that this spreading operation also means that we
cannot detect a pivot that occurs right at the beginning or end of a
connection (x 5.6).

k is now the candidate pivot (actually, the potential pivot occurs
at a point in time between measurementk and measurementk +
1). We then inspect the points� k to find �k, the largest point
before the candidate pivot, and likewise those> k to find �k+1,

the smallest after the candidate. If�k is less than�k+1, then we
conclude that[k; k + 1] does indeed straddle a pivot; otherwise, we
conclude they do not.

If we find a pivot partition, then we define its magnitudeM
as the absolute value of the difference between the median of the
points after the pivot with the median of those before. We also
associate a pivot width,W = tk+1 � tk.

Identifying adjustment signatures. We now turn to identify-
ing the signature of a clock adjustment for the clocks of two hosts,
s andr. The method we developed is not entirely satisfying, as it
uses some heuristics in order to accommodate residual noise in the
OTT measurements, while attempting to not mistake genuine net-
working effects for a clock adjustment. However, the method ap-
pears to work well in practice (seex 5.4). We note, though, that the
method assumes that clock adjustments are relatively rare events:
rare enough that our traces are likely to exhibit at most one adjust-
ment, and that the likelihood ofbothof the clocks we are compar-
ing exhibiting an adjustment during the trace is negligible. This
also appears to generally hold (again, seex 5.4).

Suppose we have two sets of de-noised OTT measurements,�st
and�rt. If either of �st or �rt doesnot exhibit a pivot, or if the piv-
ots are both positive or negative, then we conclude there was not
any clock adjustment. Otherwise, letMs, Ws, Mr, andWr be the
magnitudes and widths of the corresponding pivots. We next check
whether the pivotsoverlap. Lets1 ands2 denote the packets brack-
eting �st's pivot region, and likewise forr1 andr2. Let ss1 denote
the time at whichs1 was sent froms (according tos's clock), and
sr1 the time at which it arrived atr (according tor's clock). With
analogous definitions for the other packets, we then conclude that
the pivots overlap if either of the following holds:

sr1 < rr2 + �t and sr2 + �t > rr1 ;

or rs1 < ss2 + �t and rs2 + �t > ss1;

where�t is the allowed “slop,” which we set to:

�t =
max(Ws;Wr)

2
: (4)

The idea behind the slop is to help detect other-than-instantaneous
adjustments (illustrated below).

If the pivots do not overlap, then we conclude there was no
adjustment. If they do, we then next look at the magnitudes of
the pivots. If either magnitude is less than the larger of twice the
joint clock resolutionRs;r (x 3), or 2 msec (an arbitrary value to
weed out fairly insignificant adjustments), then we declare the pivot
“insignificant” and ignore it.

Finally, we check whetherMs andMr are within a factor of
two of each other. If not, then we term the pivot a “disparity pivot,”
meaning that it may be due to unusual networking dynamics (x 5.6).
If the two agree within a factor of two (which experience has shown
is a good cut-off point), then we conclude that the trace pair exhibits
a clock adjustment with a magnitude of aboutMs+Mr

2
.

5.4 Checking the algorithm's accuracy

We now turn to the important question ofHow do we know the
algorithm actually works? Since we are restricted to post-facto
analysis, we need to develop other means for detecting likely clock
adjustments, and use them to gauge the algorithm's accuracy.

We can divide our accuracy concerns into two types:false pos-
itives, in which the algorithm claims a clock adjustment occurred
when in fact one did not, andfalse negatives, in which it fails to
detect that an adjustment actually did occur.

Since the algorithm only flags adjustments in a relatively small
number of traces (x 5.5), we can deal with the possiblity of false
positives by manually inspecting each of these using a plot like in
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Figure 6: Clock adjustment via temporary skew

Figure 4 to determine whether we find compelling evidence that an
adjustment really did occur. The process of doing so led to some
of the finer points of the algorithm, such as rejecting “disparity
pivots.” After these additions, we find virtually no apparent false
positives (though who knows how many we are missing because
their presence is not visually compelling).

The possiblity of false negatives is more difficult to address.
Since we have too many traces to inspect by hand (though we did
apply random sampling to hand-inspect a large number of traces),
we developed two other heuristics for identifying clock adjustments.
The first is to compute the minimum round-trip time (RTT) that
could be derived from differences between the timestamps for any
pair of packets between the two hosts. If this was significantly
lower than the minimum observed round-trip time (using a single
clock), and especially if it was ever non-positive, thentcpanaly
flags the trace as requiring manual inspection. The second is to
compute the cross-correlation between the denoised OTT times in
the two directions, and then to flag traces with strong negative cor-
relations. The use of these heuristics also led to refinements in the
detection algorithm, such as spreading out the pivot differencing
over multiple intervals when searching for candidate pivots, and al-
lowing “slop” per Eqn 4. After these additions, we find very few
false negatives (seex 5.6 for examples).

5.5 Results of checking for adjustments

tcpanaly uses the method given inx 5.3 to check each trace pair
it analyzes for clock adjustments. Doing so, we found 36 trace
pairs inN1 out of 2,335 (1.5%) that exhibited apparent clock ad-
justments, and 128 out of 15,492 inN2 (0.8%). While these pro-
portions are fairly low, they are high enough to argue that a large-
scale measurement study for which accurate timestamps are impor-
tant needs to take into account the possibility of clock adjustments.
Furthermore,the adjustments are only detectable due to the use of
a pair of clocks. If a study uses timestamps from only one measure-
ment endpoint, then checking the timestamps for clock adjustments
becomes much more difficult.

The median adjustments were on the order of 10–20 msec, the
mean around 100 msec, and the maxima close to 1 sec. These
magnitudes are unfortunately small enough to sometimes not be
glaringly obvious, but large enough to be comparable to wide-area
packet transit times, so they can introduce quite large analysis er-
rors if undetected.

While clock adjustments are usually abrupt, this is not always
the case. The adjustment-detection method found some clock ad-
justments that occurred due to a short period of altered clock fre-
quency (i.e., temporary skew). Figure 6 shows a striking example.
Here, around timeT = 40 sec the sender's clock began running
more quickly than the receiver's, leading to lower sender OTTs and
higher receiver OTTs. Less than 20 seconds later, the frequencies
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Figure 7: Likely clock adjustment masked by network delays

were again equal, but the relative offsets between the clocks shifted
by nearly 1 sec in the process.

5.6 Problems with detection method

The method given inx 5.3 appears to work well in practice, at least
in terms of the checking discussed above. However, it does some-
times fail to detect clock adjustments. In this section we look at
some cases where we identified this happening.

Failure to detect adjustment via skew. In Figure 6 we illus-
trated how sometimes a clock adjustment can occur due to tempo-
rary skew. However, in such cases there are multiple pivots in each
direction (any location along the skew line is a pivot), and some-
times, due to noise, the two pivots located by the method do not
overlap, and the possibility of an adjustment is rejected. In general,
this sort of failure will only occur with adjustments using tempo-
rary skew; abrupt adjustments have sharply defined pivots. (This
example was detected due to a non-positive minimum RTT, as dis-
cussed inx 5.4.)

Excessive network-induced delay.Figure 7 shows a case where
the reverse path exhibits a clear level shift aroundT = 70 sec, with
a magnitude of about 250 msec, but the corresponding shift on the
forward path is less clear because it is accompanied by an increase
in networking delays, too. In that direction,tcpanaly assesses the
magnitude of the shift as about 730 msec. Since this is more than
twice the magnitude in the other direction,tcpanaly rejects the
possibility of a clock adjustment.

tcpanaly flags a trace pair like this as having a “disparity
pivot,” namely common pivots that have too great a difference in
their magnitudes to be considered a clock adjustment. Disparity
pivots are quite rare (only 61 inN2). We inspected each one and
found that only the one shown above was a plausible clock adjust-
ment. The rest appear simply due to unfortuitous patterns of noise.

Adjustment too close to connection edge.Since our method
for identifying pivots (x 5.3) will not accept a pivot right at the
beginning or at the end of a connection,tcpanaly naturally will
miss this sort of adjustment should it occur.

Multiple adjustments. The development of the clock adjust-
ment detection algorithm presumes that there is a single clock ad-
justment to be detected. Sometimes a trace pair suffers from more
than one adjustment, and the algorithm either only detects one of
them, or fails to detect any of them. The latter is particularly likely
if there are two adjustments in opposite directions. Figure 8 shows
a striking example of a trace pair with two adjustments, both ef-
fected using temporary skew. (This example was likewise detected
due to a non-positive minimum RTT; the strong negative correla-
tion test also detects it.)

Clock “hiccups.” Related to the multiple adjustments dis-
cussed above are clock “hiccups,” in which one of the clocks in a
trace pair momentarily either ceases to advance or advances very
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Figure 8: Double clock adjustment via temporary skew
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Figure 9: Clock adjustment “hiccup”

quickly. Figure 9 shows an example, occurring at timeT = 6 sec.
It is possible that this example is actually due to surprising network
dynamics, as the 4 acks with lowered OTTs come right after the
only packet reordering event in the trace. (While a clock glitch can
change the value of OTTs, itcannotreorder packets on the wire!
But see [Pa97b] for measurement errors that can indeed reorder
packets.) It is difficult to see what networking mechanism could
lead to the data packets in the opposite direction simultaneously
experiencing increased delay.

6 Assessing relative clock skew

Errors in relative clock skew, which often introduce inaccuracies
on the order of perhaps a few seconds a day, might seem trivial
and perhaps not worth the effort of characterizing. For purposes of
keeping fairly good absolute time, this is true, but for purposes of
assessing network dynamics, it is not.

To illustrate why skew is a crucial concern, consider evaluating
OTTs between two hostss andr, for which r's clock runs 0.01%
faster thans's. That is, over the course of a day,r's clock will gain
about 9 seconds relative tos's clock, not a particularly large error
for many purposes. If, however, we are computing OTTs between
s andr, then over the course of only 10 minutesr's clock will gain
60 msec overs's clock.If we assume that variations in OTT reflect
queueing delays in the network, then this minor clock drift could
lead to a large false interpretation of growing congestion.For ex-
ample, ifs sends 512 byte packets tor and the bandwidth of the
path between them is T1 (1.544 Mbps), then a true 60 msec increase
in delay reflects the equivalent of an additional 23 packets' worth of
queueing. Thus, quite “minor” skew differences between the two
endpoint clocks can lead to quite large, erroneous assessments of
queueing delay.

The first issue for detecting skew is to identify a skew “sig-
nature” similar to that for clock adjustments shown in Figure 4.

Time (sec)

O
ne

-w
ay

 D
el

ay
 (m

se
c)

0 20 40 60 80 100 120

10
0

20
0

30
0

Figure 10: An OTT pair plot showing relative clock skew

Figure 10 shows an OTT pair plot that exhibits a clear skew sig-
nature: the OTTs in one direction show a steady overall increase,
while those in the opposite direction show a steady decrease. Both
changes have a magnitude of about 120 msec over the 2 minute
course of the connection, consistent with the receiver's clock ad-
vancing about 0.1% faster than the sender's clock. It is difficult
to see what sort of network dynamics could introduce such a true
combined inflation and deflation of OTTs over a two-minute pe-
riod, so we conclude that the OTT pair plot shows strong evidence
of relative clock skew.

We now turn to developing robust algorithms for detecting and
removing relative clock skew.

6.1 De�ning canonical sender/receiver skew

We begin by defining exactly what quantity it is that we wish to
estimate. First, we assume that the skew trends we identify will be
linear. While we might possibly encounter non-linear skew, we did
not find any clear examples of such inN1 orN2. For linear skew,
we can summarize the skew using a single value that reflects the
excess rate at which one clock advances compared to the other.

To avoid ambiguity (in terms of which clock we are comparing
to which), we will always quantify howCr, the receiver's clock,
advances with respect toCs. SupposeCr runs a factor� faster
thanCs, by which we mean that, ifCs reports that an interval�T
has elapsed, thenCr will have reported the same interval as having
length��T .

The algorithms we develop are based on how OTT measure-
ments expand or shrink with respect to time. It is important to rec-
ognize that the phrase “with respect to time” doesnot mean “with
respect to true time,” since we have no way of measuring true time.
Instead, it means “with respect to the clock at the packet origina-
tor.”

When discussing a linear trend in the measured OTTs of the
packets sent by hosts, we will quantify the trend in terms ofGs,
the growth in the OTTs of the packets sent bys. Suppose packet
p1 is sent at timeT 1

s , according toCs, and arrives at timeT 1
r ,

according toCr. Likewise, suppose packetp2 is sent atT 2
s and

arrives atT 2
r . Suppose further that the transit times of the packets

are identical (no network-induced noise), so the only variations in
their OTTs are due to clock skew.

The measured OTTs for the two packets are:

�1 = T 1
r � T 1

s ; �2 = T 2
r � T 2

s :

As Gs quantifies the linear growth in measured OTTs over time,
we have:

�2 = �1 +Gs(T
2
s � T 1

s ):

In the absence of relative skew betweenCr andCs,Gs = Gr = 0:0,
whereGr quantifies the growth in OTTs of packets sent byr. If Cr
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Figure 11: Clock skew obscured by network delays
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Figure 12: Enlargement of reverse path

runs faster thanCs, then the packets sent bys will exhibit increas-
ing OTTs and those sent byr will exhibit decreasingOTTs, so we
will haveGs > 0 andGr < 0. Naturally, the reverse holds ifCr

runs slower thanCs.
It can be shown that:

Gs = � � 1 (5)

Gr =
1

�
� 1 (6)

=
1

Gs + 1
� 1: (7)

For� = 1 + �, wherej�j � 1, we have:

Gs = �; Gr = � �

1 + �
� ��:

Because clock skews are often only a few parts per thousand or
ten thousand, we are usually in this regime (but seex 6.6 below).
Consequently, an easy inaccuracy to introduce is to assume that:

Gs = �Gr;

(i.e., the slopes are equal but opposite), since this often appears to
be the case when inspecting OTT pair plots. To ensure full accu-
racy, we instead take care to always use Eqns 5 and 6 to express
relative clock skew in terms of�, or Eqn 7 to translateGr to Gs.
We will refer to values ofGs andGr that are consistent with re-
spect to Eqn 7 as “equivalent but opposite trends.”

6.2 Di�culties with noise

One particular problem with testing for clock skew is that, due to
queueing fluctuations, one direction of a path can have such highly
variable OTTs that these completely mask the smaller-scale trend
of OTT increase or decrease due to skew, even after de-noising.
Figure 11 shows an example, in which congestion on the forward

path completely obscures the relative clock skew, which is apparent
from the enlargement of the return path shown in Figure 12. Such
noise most often obscures the forward path (presumably due to ex-
tra queueing induced by the data packets), but it can also obscure
the reverse path. Thus, we cannot always rely on the signature of
dual equivalent-but-opposite OTT trends; sometimes we must set-
tle instead for simply a compelling trend in one direction.

Furthermore, network-induced noise also scuttles what might
seem the most straightforward approach to detecting skew, namely
fitting a line to the de-noised OTT measurements,�st and�rt (x 5.2).
Even using de-noised measurements, least-squares fitting fails to
provide solid skew detection, because residual noise in�st and �rt
makes it too difficult to reliably distinguish between a skewing
trend and coincidental opposite queueing trends. All it takes is one
period of elevated queueing at either end of a connection to throw
off the fit.

Unfortunately, the same also occurs using robust fitting tech-
niques, such as estimating the line's slope as the median of all of
the pairwise slopes between the individual de-noised measurements
[HMT83]. The difficulty lies in both false positives and false neg-
atives generated due to queueing fluctuations. Clearly, we need an
even more robust technique.

6.3 A test based on cumulative minima

Eventually we recognized that the most salient feature of relative
clock skew is not simply the overall trend (slope) of the OTT mea-
surements, but the fact that the smallest such measurements contin-
ually increase or decrease. This observation suggests the following
statistical test, the strength of which is that it is nearly immune to
transient increases in OTT measurements due to queueing buildups.

Suppose we haven observationsXti , 1 � i � n, whereti is
the time of the observation andXti is the value of the observation.
We assume that theti's are monotone increasing, and that theXti

are distinct. Further, we assume without loss of generality that we
wish to test for a negative trend inXti . We discuss applying the
same test for a positive trend inx 6.4 below.

Consider the indicator:

Itj =
n
1; if Xtj < mini<j Xti , or if j = 1, and
0 otherwise.

That is,Itj is 1 if Xtj represents a new “cumulative minimum” if
we inspectXti from 1 up toj (but not all the way up ton), and 0
if there is an earlierXti that is less thanXtj .

If theXti are independent, then:

P [Itj = 1] = 1=j;

because the probability that any particularXti out ofj observations
is the minimum of the group is simply1=j.

Consider now the function:

Mj =

jX
i=1

Iti ;

which is the number of cumulative minima seen as we inspectXti

from the first value up to thejth value. The key observation we
make is that, in the absence of a negative trend, the distribution of
Mj will tend to be close to that for independentXti ; that is, we
will find a few cumulative minima but not a great number; while,
in the presence of a negative trend, we should find many cumulative
minima, since theXti tend to get smaller and smaller.

Suppose we findMn = k, that is, theXti exhibitk cumulative
minima. We wish to compute the probability that we would have
observed this many or more minima, given the independence as-
sumption. If we find the probability sufficiently low, we will reject

9



k

P[
M

(n
) >

= 
k]

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 13: Distribution ofR(n; k) for n = 15

the null hypothesis that theXti are independent. In its place we
will accept the tentative hypothesis (which we will further test in
x 6.5) that theXti exhibit a negative trend.

Let R(n; k) = P [Mn � k]. Given 0 � k � n, we can
computeR(n; k) recursively, as follows:

R(n; k) =

(
1; if k = 0,
1=n!; if k = n, and
R(n�1;k�1)+(n�1)R(n�1;k)

n
if k < n.

(8)

The first case is the degenerate one that grounds the recursive defi-
nition: the probability that there are at least 0 cumulative minima is
always 1. The second case corresponds to every singleXti being
a cumulative minimum. This only occurs if theXti 's are sorted in
descending order, which, if they are independent, has probability
1=n!.

The last case corresponds to conditioning on whetherXtn is a
cumulative minimum or not. For independentXti , it will be a cu-
mulative minimum with probability1=n, and not with probability
(n � 1)=n.

Figure 13 shows the distribution ofR(n; k) for n = 15. The
key feature of the distribution that makes it a powerful test for a
negative trend is the rapid fall-off in probability above a certain
point, in this case aroundk = 8. Because if theXti 's do indeed
have a negative trend we should findk quite close ton, this means
we can readily distinguish between the case of a negative trend and
that of no trend, without requiring thatall of theXti be increas-
ingly negative. Thus, we can accommodate considerable noise.

6.4 Applying the test to a positive trend

The test developed inx 6.3 for detecting a negative trend can also
be applied to detecting a positive trend, with one subtlety. At first
blush one might think that, to do so, one simply uses maxima in lieu
of minima. This works in principle, but fails when applied to OTT
sequences, because of the positive additive nature of OTT noise
(x 5.2). That is, the maxima will be often dominated by the noisiest
OTT values, rather than by OTT values that slowly rise due to skew,
so the noise will obscure any positive trend due to clock skew. This
remains a problem even after de-noising, since all it takes is a single
period of elevated OTT values, long enough to span an entire de-
noising interval, to pollute the de-noised values with what will in
some cases be a global maximum. When searching for a negative
trend, such an interval will, on the other hand, simply not include
a cumulative minimum; but it will not prevent the test from finding
other minima due to clock skew.

There is a simple fix for this problem, though: we apply the
cumulative minima test toYtj = Xtn�j+1

, which is simplyXti

viewed in reverse. The reversal converts a positive trend inXti

to a negative trend inYtj , which the cumulative minima algorithm
then readily detects.

6.5 Identifying skew trends

With the cumulative minima test we finally have a robust algorithm
for detecting trends. These trends, however, might not be due to
clock skew but to networking effects, so we need to develop further
heuristicchecks to correctly detect linear skew.

Suppose we have two sequences of de-noised OTT measure-
ments,�st and�rt, corresponding as usual to the full-sized data pack-
ets sent from the connection sender to the receiver, and the acks sent
back from the receiver to the data sender. For each sequence, we
first determine whether it is askew candidateas follows.

Let ut denote the given sequence. LetRu(n; k) be the proba-
bility that the sequenceut matches the null hypothesis of no trend
(independence) given by Eqn 8. We considerut a skew candidate
if either:

1. Ru(n; k) < 10�6 andut is either�rt, or ut is �st and its
trend is negative. This latter test is because queueing buildup
due to the data packets sent along the forward path can often
produce a strong positive trend; or

2. Ru(n; k) < 10�3 and ut is tightly clusteredaround the
“trend line,” which is computed using a robust linear fit (per
the algorithm discussed above) to just the (denoised) timings
corresponding to the cumulative minima or maxima.

The goal here is to allow for a skew candidate if theut points
fit quite closely to a (linear) trend, even though their cumula-
tive minima probability is not so small. This can happen, for
example, if we do not have a large number of points inut.

Note that the limit of10�3 precludes assuming a skew candi-
date if there are fewer than7 points, since1=6! � 1:4 � 10�3
(but see below).

It remains to define “tightly clustered.” To do so, we com-
pute the inter-quartile range (75th percentile minus 25th per-
centile) of the distance between theut and the trend line. If it
is less than or equal to the larger of the joint clock resolution,
Rs;r, or 1 msec, then a large number of the de-noised OTTs
lie very closely to a pure linear trend.

We next determine whether either�st or �rt is compelling enough
by itself to accept as evidence of a skew trend; or if the pair form a
joint skew candidate, to be investigated further; or if there is insuf-
ficient evidence for a skew trend. To do so, we first consider which
of them is individually a skew candidate, as follows:

1. If neither is a candidate, then we check to see whether
max(Rs(n; k); Rr(n; k)) � 10�2. If so, then the joint
probability that both have no trend (or, more precisely, are
fully independent) is� 10�4, which we consider sufficiently
low to consider them as joint skew candidates and proceed as
discussed below. If either probability exceeds10�2, then we
reject the trace pair as a candidate for exhibiting a skew trend.

2. If �rt is a skew candidate but�st is not, then we accept�rt as
reflecting clock skew quantified using the correspondingGr.
We do so because sometimes we have no hope of detecting
a skew trend in�st due to queueing buildup, as illustrated in
Figure 11 and Figure 12.

3. If �st is a skew candidate but�rt is not, then we check the
direction of�st's trend. If it is negative, then this goes against
the networking tendency for a positive trend induced by the
queueing of the data packets along the forward path, and we
accept�st as reflecting clock skew quantified usingGs.

If the trend is positive, we must proceed carefully to screen
out a false skew trend due to queueing. First, we require

�2�st � �2�rt ;
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that is, the variance of the de-noised OTT values along the
forward path is less than that in the reverse path. If this is
not the case, then we reject the trace pair as a candidate for
exhibiting a skew trend.

Next we split�st into two halves,�st1 and�st2 , with the divi-
sion coming atbn

2
c if st hasn values. IfR(n; k) for either

half exceeds10�2, or if the trends for the two halves do not
agree in direction, then we also reject the possibility of a
skew trend.

If �st passes these tests, then we consider�st1 and�st2 as com-
prising a joint skew candidate. We reverse�st2 so it now has
the opposite trend of�st1 , and proceed as discussed below.

4. If both�st and�rt are skew candidates, then we consider them
together a joint skew candidate.

If the above procedure yields a joint skew candidate, we then
evaluate the candidate as follows:

1. If both candidates have the same trend direction, then we
reject the possibility of a skew trend.

2. If not, then we translate the first candidate's skew quantifi-
cation into terms of the second candidate using Eqn 7. Let
G1 andG2 be the corresponding skew quantifications (one of
which has been translated, so they can be directly compared).
If

jG1 �G2j > G1 +G2

2
;

that is, the difference between the two exceeds their average,
then we reject the pair as having too much variation in their
slopes for them to be trustworthy indicators of skew. Other-
wise, we accept the pair as indicative of a skew quantified as
G = G1+G2

2
.

6.6 Results of checking for skew

tcpanaly uses the method given inx 6.5 to check each trace pair it
analyzes for clock skew. As we did for detecting clock adjustments,
we gauged its accuracy by visually inspecting many of the skews
it found (to detect false positives), and also (for false negatives)
by hand-inspecting randomly chosen traces, as well as those with
strong, negative cross-correlations in their OTTs or excessively low
minimum RTTs (perx 5.4). These last, as for clock adjustments,
often occur in the presence of significant clock skew. Making these
checks led to a number of the heuristics outlined above, and we now
find the algorithm appears reliable, at least in terms of plausible
skew trends we can detect visually.

The method indicates that 295 trace pairs inN1 out of 2,335
(13%) exhibited clock skews, and 487 out of 15,492 did so inN2

(3%). These proportions are high enough to argue for considerable
caution when comparing timestamps from two different clocks.

In bothN1 andN2, about three-quarters of the skews were de-
tected on the basis of�rt alone, not particularly surprising since
often a skew trend in�st will be lost in the OTT variations due to
queueing induced by the data packets. (We could avoid this prob-
lem if we could choose the particulars of our measurement traffic,
rather than analyzing TCP bulk transfer traffic.) The largest skew
in N1 was a whopping� = 5:5, meaning that one clock ranmore
than five times faster than the other! Figure 14 shows how skew
like this appears in an OTT pair plot. (Note that the reverse path
starts a timeT = �4 sec becausetcpanaly could not figure out
any sort of useful relative clock offset.) In the forward direction,
the connection's elapsed time was only 2 sec, but in the reverse
direction it took 10 sec!
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Figure 14: Example of extreme clock skew
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Figure 15: Strong relative clock skew of 6%

This example is more than just an amusing curiosity. It oc-
curred not once but 43 times inN1 (see Figure 1). We note, how-
ever, that this clock (which corresponds to theaustr site) was one
of the ones identified inx 4.2 as beinghighly synchronized with a
number of the other sites, indicating care was being taken to keep
accurate time with it (presumably using NTP). Thus, this clock's
behavior is a compelling argument thatjust because a clock is be-
lieved to be well-synchronized does not render it immune from ex-
treme error!

Aside fromaustr 's clock, the next largest skew we observed
in N1 was� = 0:991, a frequency difference of about 0.9%. This
led to an OTT change of about 70 msec during an 8 sec connec-
tion. All in all, after removing connections involvingaustr , inN1

the median skew had a magnitude of about 0.023%, and the mean
0.035%. These are small, but not negligible.

In N2, the prevalence of trace pairs exhibiting skew was sig-
nificantly lower (3% versus 13%), perhaps due to the use among
the participating sites of newer hardware with more reliable clocks.
After removing one site that either had a very broken clock or very
unusual network dynamics (we were unable to determine which;
perhaps it was both), the largest skews we observed were on the
order of 6%. Figure 15 shows an example. The pattern is quite
striking, and clearly could lead to grossly inaccurate conclusions
about network dynamics if undetected. Note that both sites in-
volved in this connection were among those identified as closely
synchronized inN2 (x 4.2), again emphasizing that clocks that are
in generalwell-synchronized can still exhibit very large errors.

After removing these connections, the median skew magnitude
of the remainder inN2 is about 0.011%, and the mean around
0.016%. These are a factor of two smaller than those inN1, but
still not completely negligible for assessing queueing in longer-
lived connections.
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Dataset Relative offset Likelihood of adjustment
N1 < 1 sec 1.4 %
N1 � 1 sec 1.6 %
N2 < 1 sec 0.75 %
N2 � 1 sec 0.95 %

Table 1: Relationship between relative clock accuracy and clock
adjustments

6.7 Removing relative skew

As discussed in the previous section, a non-negligible proportion
of the trace pairs in our study suffer from relative clock skew. We
would like to remove this skew so we can then reliably include
those traces in subsequent analysis of network dynamics. Fortu-
nately, the skew almost always appears well-described as linear,
which means it is straight-forward to remove it.

To remove skew of magnitude�, we simply modify all the time-
stampstri generated byCr using:

tri
0 = tri +Gr(t

r
i � tr0); (9)

whereGr is given by Eqn 6 andtr0 is the first timestamp generated
byCr.

A key point is that applying Eqn 9 doesnot necessarily rectify
Cr 's skew with respect totrue time. It only rectifies it with re-
spect toCs. It could be that the correct action to take in terms of
true skew removal is to apply an analogous transformation toCs's
timestampsinstead. We have no way of knowing which clock is in
error, but by Eqn 9 we can still make the two sets of timestamps
consistent, and eliminate artificial trends in the network delays we
compute, even if some absolute skew remains.

After tcpanaly removes relative skew, it re-analyzes the clock.
If it still detects relative skew, then either its initial assessment that
the trace pair had relative skew was wrong, or the skew was not lin-
ear. It flags this case separately, and also then refrains from any fur-
ther timing analysis. Thus, re-analysis provides a self-consistency
test for the soundness of our skew detection. This test failed less
than 2% of the time.

7 Clock synchronization vs. stability

We finish our study with an investigation into the question of whether
highly-synchronized clocks tend to be free of problems such as ad-
justments and skew. We will term clocks free of such problems as
“stable.”

We might hope that highly-synchronized clocks would also be
stable, because freedom from such problems would tend to greatly
aid a clock in maintaining synchronization. On the other hand,
if good synchronization is maintained by frequently adjusting an
errant clock to match an external notion of accurate time, then such
clocks might bemore likely to exhibit adjustments or skew, and
hence be less stable than other clocks.

The issue is an important one because it is quite cheap to de-
termine whether a remote clock's offset is close to that of a local
clock (x 4.1). If relative accuracy is a good indicator that the re-
mote clock is stable, then we can quickly determine that we can
rely on the soundness of the timestamps generated by the remote
clock, without having to go through all the effort of the methods
developed in this paper for detecting adjustments and skew. Such
a quick determination could prove invaluable for a transport pro-
tocol that needs to decide whether it can trust the timing feedback
information being returned from a remote peer.

Dataset Relative offset Likelihood of skew
N1 < 0:01 sec 0.95%
N1 < 0:1 sec 5.6%
N1 < 1 sec 13 %
N1 � 1 sec 12 %
N2 < 0:001 sec 1.3 %
N2 < 0:01 sec 0.88 %
N2 < 0:1 sec 1.3 %
N2 < 1 sec 1.8 %
N2 � 1 sec 5.3 %

Table 2: Relationship between relative clock accuracy and clock
skew

Table 1 shows the relationship between relative clock accuracy
and the likelihood of observing a clock adjustment. We see that
closely synchronized clocks, i.e., those with a relative offset under
1 sec, are only slightly less likely to exhibit a clock adjustment than
less closely synchronized clocks. Thus, relative clock accuracy is
not a good predictor of the absence of clock adjustments.

Table 2 shows the relationship between relative clock accuracy
and the likelihood of observing relative clock skew. ForN1, clock
synchronization only provides an advantage if the clocks are highly
synchronized, with a relative offset under 100 msec and preferably
under 10 msec. ForN2, however, synchronization of under 1 sec
provides a definite advantage in predicting a lower likelihood of
skew, though much better synchronization provides little additional
predictive power. For bothN1 andN2, not even very close syn-
chronization reduces the likelihood of encountering clock skew to
a negligible level (i.e., appreciably lower than 1%).

We conclude that relative clock accuracy provides no benefit in
assuring that clock adjustments will be unlikely, and some benefit
in assuring that clock skew is less likely, but not to such a degree
that we can ignore the possibility of clock skew when analyzing
more than a handful of measurements.

In addition, we conjecture that the closely-synchronized hosts
in our study are most likely synchronized using NTP. If so, then
the use of NTP doesnot reduce the likelihood of clock adjustments
introducing systematic errors when measuring packet transit times,
and reduces but does not eliminate the likelihood of clock skew
introducing systematic errors. This finding doesnotmean that NTP
fails to keep good time. Rather, the timescales on which it does so
significantly exceed those of our connections. NTP keeps good
time on large time scales precisely by altering clock behavior on
small time scales.

8 Summary

The problem of comparing timestamps between unsynchronized
clocks might at first appear relatively minor. But, as we devel-
oped in the introduction, it actually has significant impact on the
accuracy of wide-area network measurement. If we can compare
such timestamps reliably, then we can use “receiver-based” mea-
surement in order to directly measure the properties along one di-
rection of a network path, rather than unavoidably conflating these
properties with those along the reverse path, as happens with “echo-
based” measurement.

Unsynchronized clocks are subject to at least two types of er-
rors: clock adjustments, in which one of the clocks rapidly changes
its current setting, and relative clock skew, in which one clock runs
faster than the other. If undetected, both of these can introduce
measurement artifacts that can masquerade as changes in delay due
to genuine networking effects. In this paper we have undertaken to
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develop robust algorithms for detecting both adjustments and rel-
ative skew, even in the presence of significant noise in the timing
measurements. While our algorithms require some heuristic tuning
to minimize inaccuracies in terms of false positives and false nega-
tives, with this tuning in place we find that they appear reliable, as
best as we can judge without a source of independent calibration.

In summary, prudent large-scale measurement and analysis of
packet timings should include algorithms such as these as self-
consistency checks to detect possible systematic errors, even in the
presence of synchronization via algorithms such as NTP, which we
find does not render clocks immune from errors (x 7). We further
argue that even pairs of clocks using a more direct external synchro-
nization source such as GPS should be subjected to such checks, as
a means of assuring that no timing errors have crept in between the
original, highly accurate time source, and the packet timestamps
ultimately produced by the inevitably imperfect computer clocks.
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