

An Embedded Network Simulator to Support
Network Protocols' Development


Luigi Rizzo?.


Dip. di Ingegneria dell'Informazione, Universit�a di Pisa
via Diotisalvi 2 { 56126 Pisa (Italy) { email: l.rizzo@iet.unipi.it


Abstract. The development of network protocols, especially if designed
for use in very large scale networks, generally requires extensive simula-
tion and tests in operational environments to assess their performance
and correctness. Both approaches have limitations: simulation because
of possible lack of accuracy in modeling the system (and, especially, traf-
�c generators), tests in operating networks because of the di�culty of
setting up and controlling the experimental testbed.
In this paper we propose to embed network simulators in operational sys-
tems, so as to get the advantages of both simulators and real testbeds.
Such simulators can be built with minimal modi�cations to existing pro-
tocol stacks. They work by intercepting communications of the protocol
layer under test and simulating the e�ects of �nite queues, bandwidth
limitations, communication delays, noisy channels. As a result, experi-
ments can be run on a standalone system, while simulating arbitrarily
complex networks. Thanks to the ability of using real tra�c generators
and protocol implementations, doing experiments becomes as simple as
running the desired set of applications on a workstation.
An implementation of such a simulator, targeted to TCP and compatible
with BSD-derived systems, is available from the author.
Keywords: Protocol evaluation, TCP/IP, simulation


1 Introduction


Network protocols, especially if designed to be used on very large scale systems
such as the Internet, require careful analysis, both in design and implementation,
to ensure that they can work properly even in unusual operating conditions.
Almost unavoidably, theoretical analysis must be accompanied or followed by
simulations and tests in operational systems to evaluate the actual performance.


Experimental testbeds, when available, are extremely useful because they
allow testing real implementations of the protocol, and with real applications
used as tra�c generators. This way, no e�ort is required in modeling any part
of the system under test, increasing the con�dence in the tests' results. On the
other hand, often testbeds are hard to setup with the desired features, because
of cost or unavailability of suitable hardware/software. Also, experiments done


? Paper presented at the 9th International Conference on Computer Performance Eval-
uation: Modelling Techniques and Tools, St. Malo, France, June 1997, LNCS-1245
pp.97-107, Springer Verlag







in real testbeds might su�er from the lack of adequate control over operating
conditions (queue sizes, delays, external tra�c sources).


Simulations have complementary properties. They make it possible to over-
come the lack of a testbed with the desired features, at the expense of a greater
e�ort in modeling the whole system under test. As an example of the di�culties
in building an accurate simulator, consider a simple FTP transfer over TCP.
The ow of data is regulated by a number of factors, such as the speed of disks
at the sender and the receiver side, the scheduling of processes at the two nodes,
the size of send and receive windows, the acknowledgement generation policy.
The latter, in turn, depend on the behaviour of di�erent protocol layers, or even
on the result of previous communication.


In many cases, building an accurate model of a system is an extremely chal-
lenging task, and the unavoidable simpli�cations that are introduced might pos-
sibly result in inaccurate or unreliable results. Also, simulated environments
might not be available to debug and test the �nal implementation of a protocol,
when it is easy to introduce subtle implementation bugs. Nevertheless, the di�-
culties of setting up a real testbed with the desired features has stimulated the
development of a number of network simulators, such as REAL [1], Netsim [2, 3]
and ns [4]. The x-kernel framework [5] has also been used for the implementation
and testing of network protocols.


Experiments on network protocols are usually aimed to determine protocols'
behaviour in complex networks made of many nodes, routers and links, with
di�erent queueing policies, queue sizes, bandwidths, propagation delays. The
problems discussed above in building and/or modeling complex environments,
and, especially, in interpreting experimental results obtained in such settings,
often suggests the use of simpli�ed networks such as the ones shown in Figure 1.
There, a bottleneck router followed by a link with given bandwidth and delay
models the overall features of the network, and additional nodes simply generate
background tra�c on the network.


Quite often, in experiments on real testbeds, the bottleneck router is also
modi�ed to act as a \akeway", introducing arti�cial delays, random packet
losses and reordering. In some cases, the e�ects of bandwidth limitations can be
simulated [6].


S


S


S


S


S


S


S


R2R1


R1


S2S1


R2


S1 S2R1


Fig. 1. Typical settings used in the study of network protocols. The thin line represents
the bottleneck link.







In this paper we extend the concept of a akeway in order to build a testbed
which gives the advantages of both simulation and real-world testing. Our pro-
posal consists in embedding a exible network simulator into an operational
protocol stack. Under normal operating conditions, the simulator is disabled
and introduces a negligible overhead in system's operations. When running ex-
periments, the simulator can be con�gured to simulate arbitrary networks with
the desired features. Hence, experiments can be run on a standalone system,
without the need of a real testbed. Yet, real tra�c generators and protocol im-
plementations can be used to run experiments. This allows the tests to cover the
�nal implementation as well, something that is not generally possible by using
simulators. Also, the researcher has full control over the testbed, which makes
experimental results easier to understand.


In the next section we show the principle of operation of our simulator,
showing the way to simulate its basic components (routers and links). Section 3
shows how arbitrary networks can be built with a proper composition of the basic
components. Finally, we present some examples showing the ease of use and the
little intrusivity of the simulator, and illustrate some possible applications.


dummynet


rq_in


pq_inrq_out


pq_out


Network


Application


Fig. 2. The principle of operation of our simulator


2 Principle of Operation


In a typical protocol stack, each layer communicates with the adjacent ones (Fi-
gure 2), where the upper layer is generally on the path to one of the commu-
nicating peers, and the lower layer leads to the other peer via \the network".
The latter is made of two types of components, namely routers with bounded
queue size and a given queueing policy, and communication links (pipes) with
given bandwidth, delay and loss rate. A network is an arbitrary graph of routers







and pipes, and the presence of multiple paths between two nodes can lead to
out-of-order delivery of packets.


The simplest topologies used in experiments usually include just two routers
and one pipe. Both elements can be easily modeled (see Figure 2) by two pairs of
queues, rq and pq, inserted at some point in the protocol stack (typically, below
the transport layer). Let k be the maximum size of rq, B and tp the bandwidth
and propagation delay of the pipe, respectively. Tra�c exchanged between the
two layers is then subject to the following processing:


1. packets are �rst inserted in rq; insertions are bounded by the maximum
queue size, k, and are performed according to the queueing policy of choice
(usually FIFO with tail-drop, but other policies are also possible, such as
RED [7]).


2. packets are moved from rq to pq at a maximum rate of B bytes per second.
pq uses a FIFO policy;


3. packets remain in pq for tp seconds, after which they are dequeued and sent
to the next protocol layer. Random losses can be introduced at this stage,
by dropping packets according to the loss rate instead of delivering them to
the next stage.


Steps 2 and 3 can be performed by running a periodic task whose period T is a
suitable submultiple of tp. In this case, at each run at most BT bytes are moved
from rq to pq, while packets remain in pq for tp=T cycles.


B


tp


k


k


B


Fig. 3. Structure of a node using the basic simulator


The basic component of our simulator comprises two pairs rq/pq and is inserted
between protocol layers as shown in Figure 2. Since most systems implement a
loopback at the bottom of the stack, local communication (through the loopback)
is also subject to the queueing and delay introduced by the simulated network,
and the resulting system looks like the one in Figure 3. The presence of the
loopback is what lets experiments to be run on standalone systems, without the
need for a real network. By using such a simple setting, we can simulate most of
the settings used in the literature on TCP congestion control [5, 8, 9, 10, 11, 12].







3 Simulating Arbitrary Networks


More complex structures, involving multiple queues and links, can also be sim-
ulated, even when the simulator is running on a single node. To this purpose,
a model of the system must be de�ned in terms of queues and links. On each
router, and possibly on each simulated node, queues of bounded size are associ-
ated to the output links (or, depending on the bu�er-management policy used
in the router, a single queue may be used for all output links). Unidirectional
pipes with given bandwidth and delay are used to simulate communication links:
two pipes are used for full-duplex links (e.g. a point-to-point connection), while
a single one su�ces for half-duplex, shared links such as an Ethernet LAN (in
this case, we implicitly assume that all nodes transmitting to the shared medium
queue their data into an additional, shared queue). Routing tables must also be
de�ned, so that tra�c can be forwarded through the appropriate paths depend-
ing on the source and destination addresses. The system where the experiment is
run can be assigned multiple addresses in order to simulate a complete network
on a standalone system, or it can use a single address and simply simulate the
e�ect of di�erent paths to di�erent destinations.


P3


P4


P8


P7


P9 P10


P11
Q12


Q3
Q4 Q7


Q13


Q9


Q14
Q5


Q8


Q2


P5P1


P6 Q10


Q1


Q6 Q11


A


rest
of the net


B


C


D E


F


G
R1


R2


R3


R4


P2


Fig. 4. A sample network and the corresponding structure of the modules.


Figure 4 presents a sample topology, with three Ethernet networks (between
A, B, C and R1; D, E and R3; F, G and R4), and four point-to-point links.
In order to run a standalone simulation, the system is assigned seven addresses,
corresponding to the simulated end-nodes A..G. A total of 11 unidirectional pipes
is used to represent the various links and Ethernets. Queues are assigned to the
outputs of each router (and to the link coming from the rest of the network,







P10). Q1, Q6 and Q11 are the queues associated with the three Ethernets in
the system, whereas we have not provided queues for the end nodes. Finally, a
routing table is associated to the output end of each pipe to determine the ow
of packets, depending on source and destination addresses, and the direction of
ow in the protocol stack (e.g. from TCP to IP or from IP to TCP).


Tra�c is routed in the following way. Packets generated and received by \in-
ternal" nodes (A..G) are subject to queueing and delay on one direction only
(e.g. going from TCP to IP). Once they have reached the destination queue,
they are forwarded to the lower protocol layer. From here, through the loopback
interface, they move upwards and straight to the �nal destination. Packets orig-
inating from or directed to an external destination (the cloud labeled \rest of
the net") are subject to queueing and delays in the inbound and outbound path,
respectively.


4 Limitations


Our simulation technique produces, of course, only an approximate model of
a real network with given features. Most of the approximations introduced by
our technique derive from the granularity, T , and the precision of the operating
system's timer, and in many cases they have little inuence on the experiments.


T sets the resolution of all timing-related measurements. On modern systems,
a granularity of 1 ms or even smaller is easy to achieve, and is suitable for the
vast majority of networks except, perhaps, those with very high bandwidths and
short pipes.


On a non real-time system there is no guarantee that deadlines are honored;
thus, depending on the overall system's load, the periodic task might be run late,
or even miss one or more ticks. In our experiments, however, these events have
been extremely rare even on a relatively slow system running FreeBSD, which
is not a real-time OS. Besides, the same errors a�ect all protocol timers, which
are driven by the same clock interrupt.


Finally, it should be noted that network-related events occur synchronously
with the system's timer. This might hide or amplify some real-world phenomena
which occur because of race conditions. Such a problem can only be of some
concern in very special situations.


The accuracy of the simulation also depends on the correct computation
of packet sizes (needed in the computation of the simulated bandwidth). Our
technique makes it possible to account for link-layer \overheads", including the
e�ect of link-layer compression, a feature which makes the link appear as a
variable-bandwidth channel, and might have signi�cant e�ects on performance.


5 A Sample Implementation


We have developed a basic simulator [13] using the technique described in this
paper, working at the interface between TCP and IP; it intercepts calls to
ip output() made by TCP modules, and those to tcp input() made by the







protocol demultiplexer in IP. All the basic functionalities required to build arbi-
trary networks are included in less than 300 lines of kernel code.


When disabled (i.e. no bu�ering, delay or bandwidth limitation is required),
the overhead introduced by our tool corresponds to one function call per packet.
This is a negligible overhead, and allows one to have the simulator compiled
into the kernel at all times. When enabled, the overhead is directly proportional
to the work required to route packets through the simulated network: all queue
manipulations are in fact constant time operations, and no copies of data are
done at all. As it is shown from Figure 6, even when the simulator is enabled the
available communication bandwidth still remains much larger than the typical
Ethernet bandwidth, so that no sensible performance degradation is perceived.


There are only two practical limitations in running a simulation: the CPU
power required by all producers/consumers to generate the required tra�c, and
the memory required to bu�er all packets in transit (both in queues and pipes).


Since the simulator only intercepts calls between selected protocol layers,
other tra�c is left unmodi�ed. As an example, our implementation does not
interfere with UDP tra�c, allowing a system to mount disks using NFS over
UDP, yet leaving a clean simulation environment with only TCP tra�c.


b) c)a)


Fig. 5. Various con�gurations used for experiments


5.1 Examples of use


Depending on the complexity of the simulated network, di�erent techniques can
be used to con�gure the simulator. For the simple case shown in this Section,
comprising one pipe and one router, the operating parameters (k, B, tp) are set







using a single kernel variable (net.inet.tcp.dummynet). The sysctl command
allows an easy setting of the parameters. The value of net.inet.tcp.dummynet
is given as the decimal number BBBBkkddd, where BBBB is the bandwidth in
KB/s, kk is the queue size, ddd is the value of tp in units of T seconds (1 ms in
our case). For more complex setups, such as those shown in Section 3, a more
exible setup utility is required, to de�ne the structure of the simulated network
and set up the routing tables.


The simplest way of doing an experiment consists in running a communica-
tion between two processes on the same system. Since the loopback occurs at
the end of the pipe (Figure 5a), bu�ering and delays occur twice, and bu�ers
are shared by tra�c in the two directions.


An example of use of this setting is shown in Figure 6, where some FTP trans-
fers are done using ncftp; for each con�guration (except for the last three), we
show the average throughput value of 10 tests, to compensate for the variations
deriving from concurrent network and CPU activities. Lines beginning with ---


are normally part of the system's log�le. The system used for the experiments is
a Pentium100 with 32MB RAM, running FreeBSD 2.1. During the experiments,
both client and server were running on the same system (the author's worksta-
tion), together with the usual workload consisting of an X Server, a number of
X applications, a Web server and various other applications.


TCP communications use a 16KB window in this example, so in some cases
the throughput is limited by the window size rather than the available band-
width. The MSS for the interface is set to a low value, which limits performance
further but allows a larger number of packets to �t in the window in use.


In the �rst test, bandwidth and queue limits are set to a large value in or-
der to determine the maximum throughput. The second experiment limits the
bandwidth to 200KB/s, but the actual throughput is lower because the chan-
nel is shared by data and ACKs, and the TCP header (including RFC1323 and
RFC1644 extensions) consumes a portion of the bandwidth. In the third experi-
ment a short propagation delay is introduced, which has negligible e�ect on the
throughput. Increasing the delay to 50 ms (making the RTT 200 ms) causes the
connection to be limited by the window size (roughly one window per RTT or
80 KB/s, with various overheads and the cost of slow start reducing the through-
put even further). The next two experiments are run with very limited queue
sizes: here, frequent overows occur which reduce the throughput signi�cantly.
In the last run, Selective Acknowledgments are enabled.


In single-system experiments, both communication peers usually run the
same implementation of a protocol (unless the system allows the protocol pa-
rameters to be set individually for each process). Interoperability tests can be
done by using two nodes on the same LAN, with the simulator running on one
of them (Figure 5b). This resembles the typical setting for protocol evaluation
in real networks, consisting in two nodes on di�erent LANs connected by one or
two routers and a bottleneck link. Finally, more complex simulation settings can
be built by using several systems, some of which use the simulator con�gured
with di�erent parameters (Figure 5c).


One would expect that the use of our simulation technique { especially when
working on a single workstation { leads to completely deterministic and repro-







prova# ifconfig lo0 127.0.0.1 mtu 576 # small packets --> large windows


prova# ncftp -u localhost


...


ncftp> !sysctl -w net.inet.tcp.dummynet=999900000


--- 0 ms, 9999 KB/s, 0 buffers


ncftp> get 1M a


a: 1048576 bytes received in 0.66 seconds, 1552.17 K/s.


ncftp> !sysctl -w net.inet.tcp.dummynet=20000000


--- 0 ms, 200 KB/s, 0 buffers


ncftp> get 1M a


a: 1048576 bytes received in 6.17 seconds, 166.10 K/s.


ncftp> !sysctl -w net.inet.tcp.dummynet=20000001


--- 1 ms, 200 KB/s, 0 buffers


ncftp> get 1M a


a: 1048576 bytes received in 6.21 seconds, 165.01 K/s.


ncftp> !sysctl -w net.inet.tcp.dummynet=20000050


--- 50 ms, 200 KB/s, 0 buffers


ncftp> get 1M a


a: 1048576 bytes received in 15.53 seconds, 65.96 K/s.


ncftp> !sysctl -w net.inet.tcp.dummynet=20007050


--- 50 ms, 200 KB/s, 7 buffers


ncftp> get 1M a


--- tcp_ip_out drop, have 7 packets (3 times)


a: 1048576 bytes received in 28.01 seconds, 36.56 K/s.


ncftp> !sysctl -w net.inet.tcp.dummynet=20007001


--- 1 ms, 200 KB/s, 7 buffers


ncftp> get 1M a


--- tcp_ip_out drop, have 7 packets (40 times)


a: 1048576 bytes received in 10.88 seconds, 94.09 K/s.


ncftp> !sysctl -w net.inet.tcp.sack=0x10 # enable SACK


ncftp> get 1M a


--- tcp_ip_out drop, have 7 packets (40 times)


a: 1048576 bytes received in 10.14 seconds, 101.01 K/s.


Fig. 6. A sample session showing the use of the simulator







ducible results, since the behaviour of the network is simulated. These expec-
tations are wrong, because the tra�c sources and, especially, their interactions
with the simulator, are not fully deterministic.


5.2 Applications


The simulation technique used in this paper has been used extensively in the
development of Selective Acknowledgement options for TCP [14, 15], and is be-
ing actively used in experiments on new congestion control strategies. These
two applications reect the typical cases where such a simulated environment
is most useful. In the former (implementation of a protocol extension), building
a real testbed would be hard because it would require the availability of other
implementations. In the latter (analysis of the behaviour of a modi�ed or new
protocol), tests needs to be done �rst in a controlled environment, in order to
get a better understanding of the protocol's behaviour; only at a later time the
e�ects of (unknown) external tra�c can be accounted for. In both cases, it is
also very important to make sure that the �nal implementation has no unde-
sired interaction with other mechanism already present in the protocol stack.
Such experiments will be more and more necessary in the development of new
protocols such as IPv6, or multicast extensions, because of the unavailability of
a suitable infrastructure.


We would like to remark that, since the network simulator we have shown
introduces very little overhead, it can also be used during normal operations,
e.g. as a tool to provide rate-limitation for selected tra�c.


6 Conclusions


We have shown how experiments on network protocols can be done easily on a
standalone system using real world applications as tra�c generators. Our ap-
proach gives the advantages of both real-world testing and simulation: simplic-
ity of use, high control over operating parameters, high accuracy, no need for
complex hardware settings, no overhead for running simulations. Especially, ex-
periments can be run using a single workstation and do not require the presence
of a real network or expensive devices such as routers and delay emulators.


The convenience of use and the little intrusivity of the technique described
in this paper really encourages in having the network simulator available as a
standard part of the system, so that experiments with di�erent system con�g-
urations can be done as soon as there is a need, without requiring long times
to setup a suitable testbed. The simulator is especially useful when developing
completely new protocols, as a suitable testbed might simply not exist. The use
of our technique can speed up dramatically the analysis and development of
protocols, making the simulation environment readily available in a production
environment and easily interfaced with other working systems.







Acknowledgements


The work described in this paper has been supported in part by the Commission
of European Communities, Esprit Project LTR 20422 { \Moby Dick, The Mobile
Digital Companion (MOBYDICK)", and in part by the Ministero dell'Universit�a
e della Ricerca Scienti�ca e Teconologica of Italy.


References


1. S.Keshav: \REAL: A Network Simulator", Technical Report 88/472, Dept. of Com-
puter Science, UC Berkeley, 1988.
Available as (http://netlib.att.com/~keshav/papers/real.ps.Z)
Simulator sources available as ftp://ftp.research.att.com/dist/qos/REAL.tar


2. A.Heybey: \The network simulator", Technical Report, MIT, Sept.1990
3. J.Hoe: \Startup dynamics of TCP's Congestion Control and Avoidance Schemes",


Master's Thesis, MIT, June 1995
4. S.McCanne, S.Floyd: ns-LBNL Network Simulator.


Available from (http://www-nrg.ee.lbl.gov/ns/)
5. N.C.Hutchinson, L.L.Peterson: \The x-kernel: An architecture for implementing


network protocols", IEEE Trans. on Software Engineering, 17(1):64-76, Jan.1991.
6. E.Limin Yan: \The Design and Implementation of an Emulated WAN", Tech.


report, CS Dept., USC, 1995.
Available from http://catarina.usc.edy/lyan/delayemulator.tar.gz


7. S.Floyd, V.Jacobson: \Random Early Detection Gateways for Congestion Avoid-
ance", IEEE/ACM Trans. on Networking, 1(4):397-413, Aug.1993.
Available from http://www-nrg.ee.lbl.gov/nrg-papers.html


8. V.Jacobson, \Congestion Avoidance and Control", Proceedings of SIGCOMM'88


(Stanford, CA, Aug.88), ACM.
9. Z. Wang, J. Crowcroft, \Eliminating Periodic Packet Losses in the 4.3-Tahoe BSD


TCP Congestion Control Algorithm", ACM Computer Communications Review,
Apr '92.


10. L.S.Brakmo, L.Peterson: \Performance Problems in BSD4.4. TCP", 1994.
Available as ftp://cs.arizona.edu/xkernel/Papers/tcp_problems.ps


11. L.S.Brakmo, S.W.O'Malley, L.Peterson: \TCP Vegas: New Techniques for Conges-
tion Detection and Avoidance", Proceedings of SIGCOMM'94 Conference, pp.24-
35, Aug.94. Available as ftp://ftp.cs.arizona.edu/xkernel/Papers/vegas.ps


12. K. Fall, S.Floyd: \Comparison of Tahoe, Reno and SACK TCP", Tech. Report,
1995. Available from http://www-nrg.ee.lbl.gov/nrg-papers.html


13. L.Rizzo, Simulator's sources.
Available as http://www.iet.unipi.it/~luigi/dummynet.diffs


14. M. Mathis, J. Mahdavi, S. Floyd, A. Romanow: \RFC2018: TCP Selective Ac-
knowledgement Option", Oct.1996.


15. L.Rizzo: Sources for a SACK implementation for FreeBSD.
Available as http://www.iet.unipi.it/~luigi/sack.diffs


This article was processed using the LATEX macro package with LLNCS style






