Intruders and UNIX

Matt Bishop
Department of Computer Science
University of California
Davis, CA 95616-8562

phone: (916) 752-8060
email: bishop@cs.ucdavis.edu
Goals

• Give you an idea of how attackers get in
• Suggest some places to look for possible detritus
• A couple of case studies
Overview of Talk

- How attackers work
- How you find this out
- Case studies
- Suggestions and conclusions
Basic Rule: *Plus ca change* ...

- In past, attackers used keyboards
- Now use scripts
- Holes exploited are (usually) old ones
 - For example, *rootkit* uses password sniffing; some scripts check debug and wiz command on sendmail
- Scripts do clean-up and hiding
 - Rootkit generates fake du, ps, ifconfig, etc. to conceal its use on a system
What This Means

• Can't depend on catching attackers in the act
• Look for what they do
 – What was their goal?
 – What changes did they make to realize the goal?
Example: *rootkit*

- Distributed set of binary tools
 - patched versions of: `netstat`, `ps`, `login`, `ls`, (BSD and SYS V), `du` (BSD and SYS V), `ifconfig`
- Distributed set of concealment tools:
 - `fixer`: installs rigged programs, tries to fix up permissions and make new checksums
 - `zapper`: deletes `/etc/utmp`, `/etc/wtmp` entries for this user
 - `sunsniffer`: used to sniff network
So What to Do?

Look for anything that feels wrong

- Someone caught this because "ps" kept dumping core. If you look in the rootkit ps, this means a file in /dev is misconfigured and contains a carriage return
- Conclusion: the hacking tools aren't too robust in general
Emphasize This

• You rarely find successful attacks by looking for them; you usually find them when
 – you get a call from someone who is under attack from your site, or who found your site in the remnants of an attack at their site
 – something breaks and you can't figure out why
 – a very obvious attack is made
Goals May Dictate Visible Points

Example: Goal is to establish a site for pornographic pictures or pirated software
- takes up disk space, and if disk full write errors occur
- du may not show this (ex. in rootkit)
- df may show it (ex. not in not in rootkit)
One Experience

• Research/WWW host (used for editing, preparing, and posting documents, mainly) showed the following over 2 days
 – 50% decrease in free space on one disk
 – network connections increased by 100%

• What they did
 – Used "find" to scan file system; directories named "/usr/ftp/pub/inbound/<sp><^h>.." found
One Experience (2)

- Left it in place to see who came in from where
 - Used a clean version of netstat and tcp_wrappers
 - Stored logs on trusted system (another one!)
Results

• Found little of interest, "usual collection of suspects"
• Notified site administrators
• Deleted files (since they needed the space)
Another Obvious Attack

- Superuser tries to log in, but root password changed
- Got in by rebooting, resetting /etc/passwd
- Found attacker by checking syslog
 There was a record of a letter from "/dev/null" to "/bin/sed"
Logs and Such

- Attack scripts generally do not change logs
 - `/etc/utmp`, `/etc/wtmp` are exceptions
 - don't know of any syslog changer
 - could always edit by hand, of course …
How Common is Such Editing?

Really rare

- Attackers use out-of-the-box scripts
- You can still see attacks using sendmail debug, wiz
 - and yes, they still do work some places!!!
How Common is This?

But possible
– if to remain on host undetected, must do this
– if this happens, will need to take over machine completely to be undetected
– very likely one of a myriad of things will go wrong
– you will see unexplained problems
Example: A Subtle Change

• Not typical now, in that it doesn't involve a network and the attackers were there to stay
• Typical in the evasion attempt and subtlety of the attack
• Also, a good example of an insider attack
What Was Noticed

• Operating system crashed
 – Reason unknown; it had been stable for some months.
 – Core image taken, system rebooted
 – PM analysis begun

• Fault occurred in accounting section
 – Not changed recently
 – Source looked okay
The Clues

• On disassembly, found two UIDs not to be entered into accounting records
• Looked more, found same two UIDs to be treated as 0 (root)
• Froze users' accounts, looked in them ... nothing
The Answer

• Checked user backup tapes for those users, and found (in a dump made 6 months ago) a program to spoof a login banner
• Also found file of names and passwords; last one was root's
The Lesson

• Something not too rare (a system crash) led to the discovery of a major compromise
• Pay attention to the little things
• Ask, "Why?"
Depends on Goal

• Use system
 – leave backdoors, rig software to hide attack
• Pass-through
 – Hide trail in attacking other sites
• Access Network
 – As in "use system," change network programs too and install sniffers (use disk space)
• Infrastructure Attacks
 – Network access, changes to DNS, taking over firewalls
Rarely Only You

- College X got call from University Y
 - someone from a host at X was sweeping Y's hosts for vulnerable ports
 - reverse finger showed 2 users, one local, one from Z.edu
 - reverse finger to Z.edu showed one user, guest
This Meant …

• Conclusion: X had a compromised account
 – User's jobs terminated
 – Account password changed

Had Y not called, X would not have known this
A Remote Attack

• Goal is to get trust information
 – NIS server map is "hosts.bynname" or "hosts.byaddr"

• Run program to get domain name
 – need to know NIS server name, and any client that boots from it

• Get copy of desired map
 – Can get other information like password file
Characteristics

• No presence on host machine
• Used network, authorized features of system
• Very hard to trace
 – One shot: if you notice the information going out, or the request coming in, during the attack
More Likely …

• Notice what will follow when attacker tries to use that information
Routing Attack

- Send records to routers "updating" route to target saying that you have a much better route
- Router will happily send everything to you, which you read and forward on to target
Other Infrastructure Attacks

• Router: another computer
 – Can attack it like any other machine
 – Put a sniffer on it and read information

• Firewalls: these are trusted to keep things out
 – If it runs sendmail or NIS or NFS, or is not kept up-to-date, it's a good target
 – One reason why a firewall should never be seen as a solution, but only as a barrier
Again, This Means

- Attacks need not imply a presence on machine
- Attacks can be incredibly subtle, involving only a few modified files or programs
- Attacks usually involve more than one host
- Infrastructure attacks becoming more popular
Lessons from above

• Know your system's characteristics!
 – More formally, anomaly detection

• Have a clean set of tools handy
 – So you can trust these

• Know what files user interaction affects
 – Attackers sometimes miss things

• Check against a clean copy
 – Either an integrity-checking database or a clean copy of the system
Know your system's characteristics

- Compiles on a gateway are not cool
- There's lots of room on a disk one night, none on it the next
Have a clean set of tools handy

- Directory and file examining tools (ls, find, du, df, od, cat, lsof)
- Program examining tools (nm, strings, od, disassemblers, debuggers, core image viewers)
- Process examining tools (w, ps, iostat, vmstat)
More Handy Tools

• Network examining tools (ifconfig, netstat, cpm)
• Packet examining tools (tcpdump, snoop, etherfind, etc.)
• Log examining tools (depends on the log; cat is often good)
Where to Look

- passwd, group files
 accounts or groups added or changed; in particular, look for UIDs of 0 or system accounts, additions to group wheel

- utmp, wtmp files

- accounting files, if you use them

- syslog files
 unusual source, destination addresses for mail

- check for unexpected modules being loaded into operating system

 On Solaris, ttywatch is a common one
Other Good Things to Check

• sulog
 check for unusual locations or times
• all log files
 if they shrink, you're in trouble (unless you prune)
• root (or system) account startup files
• system directories may have files, subdirectories with funny names
• status info of system files, binaries
• environment of running processes
 ps -wwe
Some Network-Related Stuff

- users' .rhosts and /etc/host.equiv
 root is a user
- if running NIS, check your yp files
- check network interface
 - is it promiscuous and not supposed to be?
 - check connections, especially if trust is involved; lots of half-open ones may mean you are seeing an IP spoof in progress (**real** long shot)
- ident is a starting point **only** in this context
 too easy to fool
Clean Copy

- attackers have tools to modify system binaries to hide their presence
- have been known to recompile system with modifications and reinstall it

 one got caught because netstat -l dumped core unexpectedly, and they found the real tree under

 "<sp><^h>.." in /usr

- can modify kernel on the fly; use adb
- conclusion: can't trust binaries on a compromised system
Must Detect This: Integrity Checker

- on an isolated host, build an integrity checking database from a clean copy
 - clean is important
- store database, checking software on write-only media
 - if you need to change it, rebuild the disk after changing it on a clean system
- periodically, run this check
Problem: kernel could be modified to "read" file incorrectly

- when asked for executable's contents by a program, present correct data from hidden tree
- when executing, use rigged binary
 similar things are routinely done to defeat virus scanners on PCs
Solution: Supply Your own Kernel

• have a spare disk with a clean copy of the system, including kernel
• to check existing system, reboot it from the clean disk (with no network connections or users, of course)
• run the integrity checks from it; this could simply be a compare
It's All Relative

• Each attack has its own unique characteristics; need to roll with them
• Letting them come in and watching can teach you a lot
• The only rule: there are no rules
Conclusion

• This is still an art and not a science
 – It probably always will be, because the attackers are people
• As attacks are less interactive and more script-driven, detecting attacks from logs becomes more important
• We're in a very employable field!
Words of Wisdom

When it seems hopeless, remember Dorothy Parker's words:

Razors pain you;
Rivers are damp;
Acids stain you;
And drugs cause cramp.
Guns aren't lawful;
Nooses give.
Gas smells awful;
You might as well live.