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The Multicore Future

! “The power wall + the memory wall + the ILP 
wall = a brick wall for serial performance.'' 
David Patterson

! “If you build it, they will come.”

– 10, 100, 1000 cores

! There will be spare cycles.

! What do we do with them?
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Redundant Computation

! Cheap computation 
changes the economics of 
exploiting parallelism.

! Swap expensive 
communication with 
recomputation.

! Parallelize short “nuggets” of 
code, such as invariants
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Sequential Execution
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Concurrent Execution
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Concurrent Execution

communication
cost

communication
cost

Communcation cost = 
synchronization + sending

Z z z
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Traditional Parallelism
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Narrow Window

input
available

result
required

Traditional techniques fail to 
parallelize code when
 
overlap < 2 * comm. cost 

Z z z
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Mithridates

input
available

result
required

Eliminate input 
communication
cost.

overlap < 1 * comm. cost
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What about result communication?

result
required

! Run ahead to reduce the 
synchronization cost of 
result communication

– Specialize via slicing

– Schedule result calculation 
across n threads

! Small results

– invariants ! one bit
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Slicing
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Slicing
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Approach

Transform a checked program into

! A worker

– Core application logic, shorn of invariant checks

! Scouts

– Minimum code necessary to check invariants 
assigned to them 

Then execute in parallel
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Architecture
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Coordination

int a[10];
...
for(int i; i < 10; i++) {

t = f(i);
assert (t < 10);
assert (t >= 0);
sem.up();

}
...

int a[10];
...
for(int i; i < 10; i++) {

t = f(i);

sem.down();
sum += a[t];

}
...

Original Worker Scout

int a[10];
...
for(int i; i < 10; i++) {

t = f(i);
assert (t < 10);
assert (t >= 0);

sum += a[t];
}
...
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Scout Transformation

! Assign invariants to each scout

! Remove code not related to assigned invariants

– Program slicing

! Scouts do less work, so they can run ahead

! Short-sighted oracles
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Control Flow Graph
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Environment

! Any data not computed by the program

– I/O, embedded programs, entropy

...
sem.down();
d = q.dequeue();
...

...
d = prompt user;
...

...
d = prompt user;
q.enqueue(d);
sem.up();
...

Original Worker Scout
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Invariant Scheduling
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int a[10];
...
for(int i; i < 10; i++) {

t = f(i);
":

 
assert (t < 10 && t >= 0);

sum += a[t];
}
...

Trace

s
0 

s
1

s
2

s
n-1

  20

Linked List
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Linked List Results
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Apache Lucene
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Future Work

! Pre-compute expensive functions?

! Extend to multi-threaded code

! Automate the transformation

– Javassist

– Soot

– WALA

! Share Memory
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Memory Cost

!  O(n * (|P| + e))

– n = number of scouts + 1

– |P| is the high-water size of

! Program

! Stack

! Heap

– e is

! input queue

! semaphores

! code to check invariants
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Memory Sharing
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Questions?
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Related Work

! Thread level speculation (TLS)

– Specialized hardware

– Rollback implies expected performance gain

! Mithridates:  Language-level, source-to-source

– Runs on commercially-available, commodity 
machines today

– Predictable performance gain
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Related Work

! Shadow processing

– Main and Shadow

– Shadow trails Main to produce debugging output

! Mithridates

– Enforces safety properties (sound)

– Formal transformation

– Invariant scheduling
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Summary Static Costs

Mithridates TLS Traditional

Input

Handling

Rewrite to synchronize

environmental

interactions

Identify guess

points

Identify input

available

Result

Handling

Identify result required

and rewrite to insert

milestones

Add logic to

detect and resolve

conflict and

identify result

required

Identify result

required
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Summary Runtime Costs

Mithridates TLS Traditional

Input

Handling

Synchronized

environmental

interaction

Communication

cost

Communication

cost

Result

Handling

Communication cost

- mitigation (slicing &

invariant scheduling)

Communication

cost + conflict

resolution

Communication

cost
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Questions?
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Issues – Handling Libraries

! Libraries – not applications

! Few Concerns / High Cohesion

Ps

Pw

!       is too large
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Assumptions

! Cores run at same speed

! Cores share main memory

! We do not model cache effects

! We have source code
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Related Work: TLS
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