
Mithridates: Peering into the Future
with Idle Cores

–Earl T. Barr
–Mark Gabel
–David J. Hamilton
–Zhendong Su

 2

The Multicore Future

! “The power wall + the memory wall + the ILP
wall = a brick wall for serial performance.''
David Patterson

! “If you build it, they will come.”

– 10, 100, 1000 cores

! There will be spare cycles.

! What do we do with them?

 3

Redundant Computation

! Cheap computation
changes the economics of
exploiting parallelism.

! Swap expensive
communication with
recomputation.

! Parallelize short “nuggets” of
code, such as invariants

 4

Sequential Execution

 5

Concurrent Execution

 6

Concurrent Execution

communication
cost

communication
cost

Communcation cost =
synchronization + sending

Z z z

 7

Traditional Parallelism

input
available

result
required

Z z z

 8

Narrow Window

input
available

result
required

Traditional techniques fail to
parallelize code when

overlap < 2 * comm. cost

Z z z

 9

Mithridates

input
available

result
required

Eliminate input
communication
cost.

overlap < 1 * comm. cost

 10

What about result communication?

result
required

! Run ahead to reduce the
synchronization cost of
result communication

– Specialize via slicing

– Schedule result calculation
across n threads

! Small results

– invariants ! one bit

 11

Slicing

input
available

input
available

input
available

result
required

Z z z

 12

Slicing

input
available

input
available

result
required

Z z z

 13

Approach

Transform a checked program into

! A worker

– Core application logic, shorn of invariant checks

! Scouts

– Minimum code necessary to check invariants
assigned to them

Then execute in parallel

 14

Architecture

 15

Coordination

int a[10];
...
for(int i; i < 10; i++) {

t = f(i);
assert (t < 10);
assert (t >= 0);
sem.up();

}
...

int a[10];
...
for(int i; i < 10; i++) {

t = f(i);

sem.down();
sum += a[t];

}
...

Original Worker Scout

int a[10];
...
for(int i; i < 10; i++) {

t = f(i);
assert (t < 10);
assert (t >= 0);

sum += a[t];
}
...

 16

Scout Transformation

! Assign invariants to each scout

! Remove code not related to assigned invariants

– Program slicing

! Scouts do less work, so they can run ahead

! Short-sighted oracles

 17

Control Flow Graph

 18

Environment

! Any data not computed by the program

– I/O, embedded programs, entropy

...
sem.down();
d = q.dequeue();
...

...
d = prompt user;
...

...
d = prompt user;
q.enqueue(d);
sem.up();
...

Original Worker Scout

 19

Invariant Scheduling

...
"

0

...
"

1

...
"

2

...

"
n-1

...

int a[10];
...
for(int i; i < 10; i++) {

t = f(i);
":

assert (t < 10 && t >= 0);

sum += a[t];
}
...

Trace

s
0

s
1

s
2

s
n-1

 20

Linked List

 21

Linked List Results

 22

Apache Lucene

 23

Future Work

! Pre-compute expensive functions?

! Extend to multi-threaded code

! Automate the transformation

– Javassist

– Soot

– WALA

! Share Memory

 24

Memory Cost

! O(n * (|P| + e))

– n = number of scouts + 1

– |P| is the high-water size of

! Program

! Stack

! Heap

– e is

! input queue

! semaphores

! code to check invariants

 25

Memory Sharing

Worker s
1

s
0

w
0

w
1

w
0

w
0

w
1

w
1

w
0

w
0

w
1

w
1

 26

Questions?

 27

Related Work

! Thread level speculation (TLS)

– Specialized hardware

– Rollback implies expected performance gain

! Mithridates: Language-level, source-to-source

– Runs on commercially-available, commodity
machines today

– Predictable performance gain

 28

Related Work

! Shadow processing

– Main and Shadow

– Shadow trails Main to produce debugging output

! Mithridates

– Enforces safety properties (sound)

– Formal transformation

– Invariant scheduling

 29

Summary Static Costs

Mithridates TLS Traditional

Input

Handling

Rewrite to synchronize

environmental

interactions

Identify guess

points

Identify input

available

Result

Handling

Identify result required

and rewrite to insert

milestones

Add logic to

detect and resolve

conflict and

identify result

required

Identify result

required

 30

Summary Runtime Costs

Mithridates TLS Traditional

Input

Handling

Synchronized

environmental

interaction

Communication

cost

Communication

cost

Result

Handling

Communication cost

- mitigation (slicing &

invariant scheduling)

Communication

cost + conflict

resolution

Communication

cost

 31

Questions?

 32

Issues – Handling Libraries

! Libraries – not applications

! Few Concerns / High Cohesion

Ps

Pw

! is too large

 33

Assumptions

! Cores run at same speed

! Cores share main memory

! We do not model cache effects

! We have source code

 34

Related Work: TLS

input
available

input
available

input
available

result
required

Z z z

input
available

result
required

Z z z

guessed
input

