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Abstract 
For most TCP/UDP/IP applications, when a packet or a message 
arrives, usually only the payload portion of the original packet 
can be obtained by the application. For instance, if a packet has 
been delivered through some IPSec tunnels along the route path, 
then the application, in general, will not know exactly which 
tunnels have been used to deliver this particular packet. The 
IPSec/PHIL (Packet Header Information List) interface has 
been designed and implemented such that an “authorized” 
application is able to know which set of IPSec tunnels has been 
used to deliver a particular incoming packet. Furthermore, 
IPSec/PHIL enables the controllability over which set of IPSec 
tunnels will be used to send a particular outgoing packet. 
IPSec/PHIL is a key component in the DECIDUOUS 
decentralized source tracing system to correlate the IPSec 
information with intrusion detection results. Other IPSec/PHIL 
applications we have built include a SNMPv3 security module 
using IPSec as well as a IPSec tunnel switching router. 

1 Introduction 

IP security (IPSec) protocol suite [1, 2, 3, and 4] is a series of 
guidelines for the protection of Internet Protocol (IP) 
communications. It provides ways for securing private 
information transmitted over public networks. The currently 
available IPSec-based applications in the market are 
predominantly Virtual Private Networks (VPNs). VPNs 
provide Network-to-Network security by setting up SAs 
(Security Associations) in the tunnel mode between 
Gateways of the networks, and these tunnels secure the 
aggregated data flowing from one policy domain to another 
through IPSec gateways. 
 
For most TCP/UDP/IP applications, when a packet or a 
message arrives, usually only the payload portion of the 
original packet can be obtained by the application. If a packet 
has been delivered through some IPSec tunnels, then the 
application, in general, will not know exactly which tunnels 
have been used to deliver this particular packet. For instance, 
an intrusion source tracing system (such as DECIDUOUS [5, 
and 6] ) might be very interested in analyzing not only the 
payload but also which particular IPSec tunnels have been 
used to deliver these attack packets with obviously spoofed 
source IP addresses. 
 
For application-layer protocols such as SNMP and LDAP, it 
is usually not natural and feasible to use IPSec to secure the 
application-layer traffic, and thus a separate security 
mechanism is needed. In this paper, we will show that, with a 

simple extension of the socket API, the security mechanisms 
and capabilities of IPSec can support the security 
requirements of some applications. We called this new 
interface: IPSec/PHIL (Packet Header Information List [7]) 
API. 
 
A third issue is regarding the support of end-to-end security 
using IPSec, while it is impossible to directly build a IPSec 
security association from the source to the destination. For 
instance, in an inter-domain environment, it might not be 
always possible to negotiate directly between two IP nodes 
belonging to two different domains. Things get trickier if an 
intermediate gateway will perform network address 
translation (NAT). We will show later that how to utilize the 
PHIL API to support “packet switching” among a set of 
IPSec tunnels such that it is possible to use a set of tunnels 
collaboratively (an IPSec tunnel path, more specifically) to 
secure the information end-to-end. 

2 Background   

IPSec protocol suite [8] has been discussing and developing 
in IETF IPSec working group. The fundamental concept of 
IPSec is to provide authenticated or security IPSec tunnel, 
such that  any packet, going through this tunnel, has the 
confidentiality to verify that the packet is real be 
authenticated by the routers of the both end of the tunnel. If a 
packet goes through this tunnel, but not been authenticated 
will be dropped.  
 
In IPSec, there are two types of protocols in doing tunnel 
authentication: 
a. Authentication Header (AH) protocol provides support 

for data integrity and authentication of IP packets. 
b. Encapsulating Security Payload protocol provides 

confidentiality services, including confidentiality of 
message contents, and also provides options for 
authentication of IP header. 

 
Actually, IPSec protocol suite provides a flexible framework. 
For example, on AH protocol, users are allowed to use 
different AH algorithms —MD5, HMAC-MD5, …,etc. And 
for ESP protocol, the ESP algorithm could be triple DES or 
IDEA. 
 
For IPSec to do Authentication/Encryption, algorithms are 
important; but the key management is also very important as 
well. IPSec also provides a flexible way for users to do key 



exchange. Currently IPSec adapts ISAKMP protocol to do 
security information exchange.  
 
A key concept in both AH and ESP protocols is the Security 
Association (SA). An SA can be identify by three parameters: 
1. Security Parameters Index (SPI): A SPI is a number 

assigned to a security association. The SPI is carried in 
AH and ESP headers to enable receiving system to select 
the SA when it received a packet. 

2. IP Destination Address: the destination endpoint of A SA 
could be an end user or a network system such as a 
firewall or router. 

3. Security protocol Identifier: This indicates whether the 
SA is an AH association or ESP association. 

 
All SA are storage in Security Association database (SAdb). 
The SAdb has the relationship with Security policy. Security 
policy describes how this router will treat this packet. For 
example, the incoming packets could be dropped, could be 
routed without SA, or could be routed using another SA. All 
related security policies are stored in Security Policy database 
(SPdb). 
 
Fig 1 is a simple example to see how IPSec work. First, from 
policy server, system administrators are able to update 
security policy between router A and B. The policy could be: 
“ Any IP packet, going through A, will be encrypted (ESP 
protocol) and sent to B.” 
 
With this security policy, router A and B will look at their 
SAdb. If there existed the requested SA, then any packet, 
satisfying the security policy, will go through the 
authenticated tunnel using that SA. If there doesn’t exist any 
available SA, both A and B will negotiate to decide which 
ESP algorithm is available for both A and B. After the 
negotiation, both A and B will agree to use SA (SPI=100) to 
encrypt all IP traffic. 

 
In our research, instead of interested in the data integrity, we 
are more interested in the IP packet header authentication. 
For example, if we set up all policies between A and B, then 
if B received a  packet, B has  the  confidence  to say  that the 

Fig 1: a simple example to show how IPSec work. 
 

packet is actually from router A, even the Source address X is 
not trusted. Otherwise the packet will be dropped within  B. 

 

 
 

Fig 2: Applying IPSec to do attack source tracing 
 
With the merit of authenticated tunnel, we come out the idea 
to do source identification and attack source tracing. For 
example,  in Fig 2, if victim domain received a packet with 
the SPI=500, we can sure that the packet came from R4 
(tracing back to previous  router). Similarly, if R4 received a 
packet with SPI=400, he will know that the packet is from 
R3. Following the same process, we finally are able to know 
that the attacker is at A. 
 
The thing interested is that “if a router receive a IP packet, 
can he know which SA has been used?” The answer is “No”, 
he can just know that the packet has went through 
authenticated tunnel;  but he didn’t have any opportunity to 
know which SA has been used, and he even don’t know this 
packet went through which authenticated tunnel, if there are 
multiple tunnel connected with this router. So how can we 
do? To solve this problem, we should have a way to keep all 
IPSec information (SA, SPI…) after the IPSec processing. 
This is the motivation for us to design PHIL (Packet Header 
Information List). Furthermore, if end-users are able to access 
or choice a SA to secure their communication, we can ext end 
the IPSec to support end-to-end communication as well.  

3. Related works 

Currently people using IPSec are more focus on the data 
confidentiality. Today there is still few research using the 
merit of IPSec authenticated tunnel to do attack source 
tracing yet. In 1993, Wobber and Lampson [9] proposed a 
theoretical concept of API for authentication. They suggested 
that the Operating System (OS) should provide an interface  
(API) for sending and receiving authenticated messages. D. 
McDonald  [10] also proposed a draft of  API extension to 
BSD socket. GRIP[11] (Gigabit Rate IP Security) project also 
has a study to extend API for support host-to-host connection.  
However, again, I got to emphasize that these proposals of 
API extension did not support security information keeping, 
since different purposes of using IPSec. As our study, to keep 
the security information is very important for us to use IPSec 
framework doing attack source identification. If we can keep 
the security information after IPSec process, it  is nature for us 
to extend API to access the security information. 
Furthermore, if we have the design of API extension, it could 
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be possible for end-users to control IPSec security services in 
host-to-host connection.  

4. Motivation 

In the FreeSWAN implementation [12] of IPSec: 
 
a. At the time of processing the in-bound IPSec traffic, all 

the IPSec headers are discarded at the IP layer; and when 
the applications do receive data, the data is devoid of all 
IPSec headers, thus there is no way of knowing whether the 
incoming packets were secured. If the packets were 
secured, then it is also hard to figure out what level of 
security was afforded and which end host or Security 
Gateways provided the security. 

 
b. Also, there is no way for user applications to control the 

out-bound IPSec traffic through a specific SA (security 
association). More specifically, since we are unable to bind 
an SA to a particular socket port in the application layer, 
we cannot support end-to-end application-layer security 
using IPSec. 

 
Based on our observation and experience with IPSec, we 
believe that IPSec’s capabilities can be greatly extended if we 
have a good interface to access the security services provided 
in the IP layer. Naturally, we would like to have the 
following two capabilities: 
 
a. For incoming traffic it provides an API such that the 

application developers are able to extract security 
information such as the security afforded to a particular 
segment of data received at the application layer from the 
kernel.  

 
b. For the outgoing traffic, PHIL-API provides the 

functionality to interact with the kernel's Security 
Association database (SAdB) and Security Policy 
database (SPdB) to query information about the existing 
SAs and the security level afforded to their outgoing data. 
It should also provide a way for the outgoing process to be 
able to override the default security policy. 

5. Implementation 

The key feature in PHIL is the “PHIL” information, which is 
a “list” data structure containing the IPSec related 
information. In regular protocol stack processing, all header 
information about IPSec has been stripped out before the 
payload being passed to the transport and application layers. 
However, in PHIL, extra IPSec information will be attached 
to the payload all the way up or down. The architecture of 
PHIL and its relationship with the OS kernel is depicted in 
the following figure. The detail implementation, please refer 
to [7]. 
 
5.1 PHIL-API for socket control 

  

   
                                      Figure 3: The Conceptual Architecture of PHIL-API 
or UD   
A TCP  A TCP or UDP socket opened with a socket system call 

should first be enabled (or maybe later disabled) to receive 
the  PHIL   information   along   with   the   application   data. 
The following functions are designed to control the PHIL 
functions: 
 

 int phil_enable ( int sockfd, int mode )  
 int phil disable ( int sockfd  ) 

int phil bind (int sockfd, unsigned long *spi array, int size) 
      int phil unbind (int sockfd) 

 int phil_accept(parameters to accept( ), char phil_buf, int 
phil_len)  /* TCP only */ 

5.2  For receiving data 
 
 int phil_recvfrom(parameters to recvfrom( ), char *phil_buf, 

int phil_len,  int *dsegs) 
 

In addition to the return values of the corresponding normal 
call recvfrom( ), this call returns phil_buf, which is a character 
buffer that contains the PHIL information, and dsegs, which is 
the number of TCP data segments constituting the total data 
bytes being  read from this call. A phil_recvfrom( ) call is 
intended to be used to retrieve the data plus the PHIL 
information for both UDP and TCP applications. For sending 
data.  

5.3 For sending data 
 
int phil_sendto (parameters to sendto( ), long *spi_arr , int size)  

 
The spi_arr array describes the SPI value(s) of our preference 
in sending the data (in the case where we have a choice of 
sending the data over several possible SAs). If the application 
does not know the set of the possible SA’s, it can query the 
SAdB (Security Association database) for the SPI values 
through the query function of  spi( ) [7]. Through the 
phil_sendto( ), it is possible to send a stream of data bytes 
from a single application process over different SAs, which 
provides different levels and features of security for different 
data types. 
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6. Applications 

In today’s TCP/UDP connection, it seems to people that there 
is not necessary of any PHIL support. However, in this 
section, we show that some applications really do need PHIL 
support, for example, Deciduous project of North Carolina 
State University use PHIL to resolve inter-domain tracing. 
And some applications, like SNMP, are able to use PHIL to 
simplify the security mechanism design. Following we will 
present several example to show how can we use PHIL to 
provide flexible controllability in offering security service. 

6.1 PHIL Switching 

Traditionally, an IP router will forward packets solely based 
on their destination addresses. In the DECIDUOUS project 
[5,6], in order to support “inter-domain collaboration,” a 
router needs to switch the packets based on the “incoming” 
IPSec tunnels. Due to the space limitation, we will discuss 
very briefly how PHIL/PHIL switching technology is used in 
DECIDUOUS project. The functions of PHIL-switching can 
be summarized as: 
 
1. Any incoming IPSec traffic, if matched any entry of the 

PHIL-switching table, will be forwarded to a specific 
security path. 

2. If the incoming traffic is non-IPSec, it will be processed as 
normal IP traffic. 

3. A selected set of inbound SA’s can be aggregated into one 
outbound SA or dropped. 

 

6.1.1 PHIL-Switching controller 

The PHIL Switching controller provides an interface for users 
to add, delete or flush PHIL switching table. In our 
implementation, the controller has two different interfaces: 
one is a client-server model using UDP, the other is the 
SNMP MIB model. In the latter case, PHIL-switching is 
under the control of SNMP agent through the PHIL-switching 
MIB (Message Information Base). In either case, the user can 
“read, add, delete” and “flush” the PHIL-switching table. 

6.1.2 User-Level Switching Entity 

For any incoming packets with header fields such as [SPI, 
security protocol, source and destination addresses, protocol, 
source and destination ports], the switching entity looks up 
the PHIL switching table. Then, it will “switch” the incoming 
packets into different tunnels using specified SPI according to 
the switching table entry. To realize the concept of PHIL-
Switching in the user level, we use “divert socket]” to 
intercept IP packets from kernel to the user-level switching 
process. After the switching table look up, the intercepted 
packet will be forwarded using the phil_sendto( ) with a 
specified SPI/SA 

 
6.1.3. DECIDUOUS Collaboration  protocol 
 

In an intra-domain environment, it is easy to establish SA  
among routers. It is, in general, not possible to build up SA 
directly among any pair of routers in different domains.  With 
the realization of PHIL-switching, DECIDUOUS can 
collaborate with a security gateway in another domain to 
establish an IPSec SA tunnel path, which emulates a direct 
SA across multiple domains. 
 

 
Figure 4: Inter-domain collaboration using PHIL-switching 

 
We assume that SA can only be established between the 
border security gateways of collaborating domains. In Figure 
4, six SA’s (A1, A2, B1, B2, C1, C2) have been established 
between victim and local border router, between remote and 
local border routers, and within the remote domain. Now if 
IDS (Intrusion Detection System) detects attacks, it will 
report the detected attacks to local DECIDUOUS process. In 
the report, it will show that the attacks have been launched 
through SA C2. With the local PHIL-Switching table, we can 
tell that the attacks are indeed from SA B2. And, finally, the 
remote domain will be notified and it can further track down 
the source by correlating SA B2 with SA A2. 
 

              6.2 SNMP over IPSEC 

The earlier versions of SNMP (SNMPv1 and SNMPv2) 
[13,14, and 15] use the community feature for a simple and 
unsecured password-based authentication. To improve the 
security concern, therefore, SNMPv3 introduces the concepts 
of snmpEngineId  and securityName. snmpEngineId  
uniquely identifies an SNMP engine that provides services 
for sending and receiving messages, authenticating and 
encrypting messages, and controlling access to managed 
objects. securityName is a human readable string 
representing an individual on whose behalf the services are 
provided or processed. Each securityName is associated (or 
configured) with a securityLevel parameter, which is stored 
in the Local Configuration Database (LCD). When a user 
issues a command or requests  information, LCD is queried to  
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Figure 5:  SNMP security architecture using IPSec 
 
determine the security requirements for the given Figure 4:  
SNMP  security  architecture  using  IPSec securityName and  
snmpEngineID. If the securityLevel specifies that the 
message is to be authenticated, then the message is 
authenticated according to the user's authentication protocol. 
Privacy and timelines modules are called depending on the 
securityLevel. 
                 
For supporting SNMPv3 security on IPSec, first, we modified 
the SNMPv3 to support security information mapping (SIM) 
as shown on Figure 5. For example, The securityName(Bill) 
and snmpEngineID(Earth1) will generate two SPIs: SPI 
0x161 for incoming, and SPI 0x171 for outgoing. Hence the 
SNMP packet data unit from SNMP manager to SNMP agent 
will be encrypted/decrypted using SPI 0x171; and when 
SNMP agent receives the request from SNMP manager, 
SNMP agent will use securityName(Bill) to associate with 
the replying message and the replying security information 

(SPI 0x 161). With the PHIL-API (phil_sendto( ), and 
phil_recvfrom( )), we can apply the specified SPI (generated 
by SIM) in the IPSec process. 
 

7. Performance Evaluation 

In this section, we evaluate the latency introduced by PHIL. 
The major overhead introduced by PHIL is the PHIL process 
for both incoming side and outgoing side. 
  
Environments and methods 
The measurement includes two machines: both are 450MHz 
Pentium II equipped with 10Mbit/sec Ethernet cards, and run 
on Linux2.0.36 with FreeSwan 1.0[12]. We create echo 
client/server (TCP/UDP) to launch 100000 packets each 
times and then calculate the average time in each sending and 
receiving process. We also concern the different data sizes in 
16, 32, 64, 128, 256, 512, 1024 bytes. For any packet great 
than MTU (Maximum Transmission Unit), this packet will be 
fragmented and the PHIL process could be executed more 
than twice (depends upon the data size) in each packet. Hence 
we restrict the packet size to be less than MTU such that we 
can simply calculate the average time delay for each packet. 
Three cases are under testing: 
 
Case 1: Linux 2.0.36 kernel, no IPSec, and no PHIL. 
Case 2: Linux 2.0.36 kernel with FreeSwan IPSec (V1.0); no PHIL. 
Case 3: Linux 2.0.36 kernel with FreeSwan IPSec (V1.0)  and PHIL. 
 
The result is shown on table 7-1. From case1 and case 2, we 
show the IPSec overhead; and by comparing case2 and case3, 
we present the PHIL implementation overhead. Within Table 
7.1, we observed that the overhead introduced by PHIL 
(compare with Case2 and Case 3) is 1-2 microseconds. 

 
Table 7.1: The test result of PHIL 

 
 size(bytes) Case 1 Case 2 Case 3 Case3-Case2 
16 363 us ESP:    505 us ESP:    506 us ESP:  1 us 

  AH:     502 us AH:     502 us AH:   0 us 

32 398 us ESP:    538 us ESP:    539 us ESP:  1 us 
  AH:     535 us AH:     536 us AH:   1 us 
64 465 us ESP:    616 us ESP:    617 us ESP:  1 us 
  AH:     613 us AH:     613 us AH:   0 us 
128 601 us ESP:    761 us ESP:    762 us ESP:  1 us 
  AH:     756 us AH:     757 us AH:   1 us 
256 870 us ESP:  1050 us ESP:  1051 us ESP:  1 us 
  AH:   1045 us AH:   1046 us AH:   1 us 
512 1410 us ESP:  1628 us ESP:  1630 us ESP:  2 us 
  AH:   1625 us AH:   1625 us AH:   0 us 
1024 1410 us ESP:  1628 us ESP:  1630 us ESP:  2 us 
  AH:   1625 us AH:   1625 us AH:   0 us 
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8. Remarks and Conclusions 

IPSec has been standardized and widely deployed for 
securing private information over the Internet. Currently, 
VPN is the major application for IPSec since higher layers 
cannot easily access and control IPSec-layer security 
services. Our PHIL-API design and implementation provides 
a possible bridge between IPSec and other security 
applications. We have demonstrated the usefulness of this 
new API for applications such as DECIDUOUS and 
SNMPv3. We believe that many other secure Internet 
applications can be built directly on top of IPSec/PHIL, 
without having to re-develop yet another security module 
within the application layer. Furthermore, in the near future, 
we expect to see more and more hardware acceleration for 
IPSec (e.g., 3Com’s IPSec NIC, and CellTech’s Gigabit 
IPSec chip). Therefore, for high performance applications, it 
will be much more attractive to use IPSec/PHIL than the 
software-based lower-throughput transport/application layer 
protocols such as TLS or SSL. Practically, the PHIL-API is 
useful when the applications need to run on platforms not 
supporting other security protocols (e.g., TLS). Finally, 
through our implementation and evaluation, we have shown 
that the overhead (memory space and CPU time) in providing 
PHIL is quite reasonable – 1 to 2 microseconds per packet in 
software. The PHIL service has been integrated into the 
DECIDUOUS system, which can trace the true attack sources 
in a few seconds on top of a 10-node test-bed. 
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