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Abstract

Before data from the Web can be shared in a meaningful and effective way, we have to
deal with large amounts of legacy HTML documents. Information in the documents
is buried in the text because HTML is for visual rendering purpose only, not for
describing the semantics of data. State-of-the-art information retrieval techniques
rely on keyword-based search engines. They do not support structured queries on
documents. A user may prefer an integrated view that abstracts the heterogeneity
among the documents and that facilitates visual browsing and data management.
Existing approaches do not support an automated integration of highly heterogeneous

HTML documents.

This dissertation aims to address these issues to make information buried in the
HTML documents more accessible to users and applications. Building a practical
system to transform the whole Web into a structured collection of documents is very
difficult. Thus, we focus our attention on topic specific HTML documents - documents

pertaining to a specific topic and created by different authors from different web sites.

We present Quixote, an automated document integration and schema discovery tool
that transforms heterogeneous topic specific HTML documents into homogeneous
XML documents conforming to a global schema. Quixote consists of three compo-

nents:



(1) Document Converter: It extracts information from HTML documents and encodes
such information in XML repository. It automatically extracts the information by
rules that are insensitive to changes of the data formats and are applicable to diverse
sources of data. It does not assume that topic specific documents follow a known

format. It only assumes the records within a document follow some regular format.

(2) Schema Miner: We propose a new type of approximate schema called majority
schema that describes only prevalent structures in a collection of XML documents.
The Schema Miner infers a majority schema from the documents, which is small in

size and can abstract the heterogeneity among the documents.

(3) Document Transformer: It automatically integrates XML documents based on a
majority schema discovered. It adapts techniques from schema integration approaches
on relational data to XML data. It addresses the unique challenge of preserving
semantics of the documents in the integration process since a majority schema does

not cover all structures in the documents.

Vi
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Chapter 1

Introduction

In Section 1.1, we first motivate the problem we aim to address in this dissertation
- integrating a heterogeneous collection of topic specific HTML documents into an
XML repository conforming to a global schema. In Section 1.2, we give an overview
of Quixote [CGS01], an automated document integration and schema mining tool we
propose to solve this problem. We discuss related work in Section 1.3. In Section 1.4,
we highlight our major contributions. Finally, the organization of the dissertation

and notations are described in Section 1.5 and Section 1.6.
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1.1 Motivation

The vision of the Semantic Web is that it will be the medium for the exchange, shar-
ing, and retrieval of information in a meaningful and effective way [BLFD99, ABS99].
An important data exchange standard to realize this vision is the eXtensible Markup
Language XML [W3C98b]. It provides means to enrich semistructured documents by
more structural and semantic information. A number of formalisms have been pro-
posed to describe structures of XML documents ([LC00, W3C00d, W3C99a, W3CO00f,
W3C00g, BMR99, FSSW]), and several sophisticated approaches to processing XML
data have been developed, in particular XML query languages and query process-
ing techniques, e.g., [BC00, W3C00e, CRF00, DFF*98, AQM+97, JR98, W3C00b,
BMR99, FSSW].

Problem dimension: However, before the vision of the Semantic Web can be re-
alized, we have to deal with large volumes of legacy data marked up in HTML.
Transforming the whole Web into a collection of structured XML documents is very
difficult. Thus, we focus our attention on large collections of topic specific HTML
documents which are documents pertaining to a specific topic, authored by differ-
ent people from diverse data sources. Examples include course offerings and seminar
schedules from universities, descriptions of movies and movie show times, company fi-
nancial information, flight itinerary from individual airlines, or résumés from personal

homepages or Web sites like monster . com.
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Limitations of existing techmniques: Figure 1.1 shows some example résumés
HTML documents. Let us take a look at the actual HTML source codes of these
résumés documents (Figure 1.2). Existing technology provides limited support in

locating information from these documents which is buried in the HTML text:

1. State-of-the-art information retrieval techniques rely on keyword-based search
engines which do not support structured queries on these documents. For ex-
ample, one may ask "show me all résumés of people with Java programming
skills”. Keyword-based search engines may return résumeés of people from Java,
Indonesia. The issue here is that the semantics of the information content of
HTML documents is unknown to the applications since HTML is a markup

language for visual rendering purpose only, not for describing information.

2. Heterogeneity among query results may not be desirable from a user’s point
of view. For example, although there may be more than one commonly ac-
cepted résumé document style, an employer may prefer a uniform integrated
view on the documents that can abstract out their commonality. Existing
schema mining approaches do not address this problem well. They either infer
exact schemas which are too large in size, or approximate schemas which may

be too general.

3. From the point of view of an administrator, it is desirable to have an integrated
repository of the heterogeneously structured résumés in order to facilitate data

management. Such an integrated repository would also facilitate querying and
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displaying information about candidates. Existing technology does not support

an automated integration of heterogeneous topic specific documents.

Andrew Y Srinivasan Chakravarthi
201, Pearl Streer #3,
Cambridge, MA 02139 USA.
] Ph: 617 353 5885 (w)
Objective ] Ph:617 864 9611 (h)

Email: stin@bu.edy

To obtan my Ph.D. teach undergraduate introductory astrenomy and
research extragalactic ebjects.

Edeocation

Education ] o Aug '95- Prasent
] PhD student, Boston University, Menufacturing

September 1997 to The University of Minnesota. Twin Cities Campus - EﬂgmeerglF?Aszwtment
Present - Minneapolis, MN i Rurremh Adv- 39_ Prof. & unh

2nd Year PhD. student in Astrophysics ] esearch Adviser : Prof. Scott Dunhem
September 1992 10 Boston University, College of Arts ond Sciences - o Aug ‘9I-May ‘95
May 1996 -Boston, MA ] Bachelor of Technology nt Metallurgical Engineering,

BA. in Astronomy and Physics h from Instityte Of Technology, Banaras Hindu Unnversity,

Ainor in Archaeological Studies and : India
Mathematics ;]
Distinction in Astronomy

Cum Laude Honors :
| Work Experience
Computer Experience 1 TCAD Engineer
E Moy ‘97 - Aug '97
t Tntel Carnaration Hillsharo OR.

Figure 1.1: Resume HTML documents
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<html>

<hesd>

<title>Andrew Young's Curriculum Vitse</title>
<body bgcolor="thhil?">

</head>

<body>

<center>

<hl><a href="mailts:eyoung@uss-enterprise.bu.edu”>And:
<centerc>

<br>

</centec>

<hr noshade>

<h2>0bjective</h2>

<TABLE CELLPADDING=5>

<TR>

<TD VALIGN=TOP>

To obtain my Ph.D. tesch undergrsduate introductory e:
</TD> </TR> </TABLE>

<hz>

<h2>Bducation</h2>

<TABLE CELLPADDING=S5>

<TR>

<TD VALIGN=TOP>

September 1597 to Present

</TD>

<TD VALIGN=TOP>

</ed>

<TD VALIGN=TOP>

<a href="http://wwws.umn.edu/tc™>The University of Min:
2nd Year Ph.D. student in Astrophysica<Br>
</TD> </TR>

<TR>

<TD VALIGN-TOP>

Septemher 1992 to May 1996

</TD>

MO DAY SAEZMAD

<html>

<head>

<title> Resume Of Srini Chakravarthi </title>

<META

name="description” content="Resume Of Srini Chakravar
Student st Boston Univecrsity waorking on Modeling Of T
piffusion. >

</head>

<BODY
BGCOLOR="SrtPPre”
TEXT="$100000"
VLINK="%100000 ">

<body>

<hl><centecr><strong> Srinivesan Chakravacthi </centec
<p>

<center> 201, Pearl 3treet X3,

<dt> Cembridge, MA 02139 USA.

<dv>Ph: 617 353 S885 (w)

<dt> Ph : 617 864 9611 (h)

<dt> Zmail: <a href ="mailtosscini@bu.edu™ scini@bu.
<p>

<hrc>

<h3> Educstionr </h3>

<dd><ul>

<li><i> Aug '95 - Present </i>

<dt>Ph.D student, Boston University, Manufacturing En
<de>Current GPA - 3.9
<dt>Research Adviser :
<p>

<1i> <i> Aug *9L - May °95 </i>

<d¢t>Bachelor of Technology in Metallurgical Enginesaci
Institute Of Technolcgy, Banaras Hindu University, In
</ul>

e

Prof. Scott Dunham

Figure 1.2: Source HTML code for resume documents

To recap, what we would like to have is an integrated repository of XML documents

in which semantic information is encoded conforming to a global schema as shown

below:

<RESUME>

<0BJECTIVE val="Andrew Young # Objective # To obtain my Ph.D.
teach undergraduate introductory astronomy and

research extragalactic objects."/>

<EDUCATION val="Education">

<ORGANIZATION val="The University of Minnesota #

Twin Cities Campus - Minneapolis MN">

<DATE val="September 1997 to Present">

<DEGREE val="2nd Year Ph.D. student in Astrophysics"/>

</DATE>
</0RGANIZATION>
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</EDUCATION>

<EXPERIENCE val="Reearch Experience"> ... </EXPERIENCE>
<EXPERIENCE val="Work Experience"> ... </EXPERIENCE>
<EXPERIENCE val="Laboratory Experience"> ... </EXPERIENCE>
<SKILLS val="Computer Experience"> ... </SKILLS>

<AWARDS val="Awards"> ... </AWARDS>

<ACTIVITIES val="Memberships"> ... </ACTIVITIES>

<ACHIEVEMENTS val="Publications/Presentations">...</ACHIEVEMENTS>
</RESUME>

<RESUME>
<CONTACT val="Srinivasan Chakravarthi # 201, Pearl Street #3,
Cambridge, MA 02139 USA. Ph:617 353 5885(w)
Ph:617 864 9611(h) Email:srini@bu.edu"/>
<EDUCATION val="Education'>
<ORGANIZATION val="Boston University #
Manufacturing Engineering Department">
<DATE val="Aug ’95-Present'>
<DEGREE val="Ph.D Student #
Research Adviser: Prof. Scott Dunham"/>
<GPA val="Current GPA - 3.9"/>

</DATE>
</0ORGANIZATION>
</EDUCATION>
<EXPERIENCE val="Work Experience"> ... </EXPERIENCE>
<SKILLS val="Software Skills"> ... </SKILLS>
<FIELDS val="Relevant Courses"> ... </FIELDS>

</RESUME>
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The information is now more accessible to users and other applications. The following

are some possible applications:

e Users can issue structured queries against the integrated collection using XML

query languages.

e It gives users unfamiliar with the documents a bird’s eye view on the documents,

much like a table of content that leaves out the details.

e A user may prefer to have all documents represented in XML in the most
typical way so that a master format stylesheet can be applied to all of them for

presentation purposes.

e The global schema of the documents can be used to build index structures in

order to facilitate efficient query processing on these documents.

e The global schema can be used to optimize the storage of the XML documents.
XML structures can be stored together according to their proximity in the

schema to facilitate retrieval of information.

1.2 Overview

This dissertation aims to address the issues discussed in Section 1.1 so that infor-
mation from topic specific HTML documents is readily available to users and other

applications. We propose Quixote, an automated document integration and schema
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mining tool that transforms heterogeneous topic specific HTML documents into ho-

mogeneous XML documents conforming to a global schema.

Section 1.2.1 states the goals of Quixote. The components of Quixote and the overall
system are described in Section 1.2.2. In Section 1.2.3, we describe the environ-

ment in which Quixote operates and state the assumptions we make on topic specific

documents.

1.2.1 Goals

Quixote facilitates the information filtering process by achieving the following goals:

e Goal 1: It extracts information from HTML documents and encodes such in-
formation in XML documents. Information is encoded in XML documents in
two ways: (1) in XML tag names describing the information objects, and (2)
the tree structure of XML documents describing the logical information orga-

nization and relationships of the documents.

e Goal 2: It infers a global schema, called majority schema, from the documents
which abstracts the commonality among the documents by describing their
prevalent structures only. Such kind of schema results in a concise description

of the documents at a higher level of abstraction.
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e Goal 3: It integrates the documents based on the majority schema discovered.
Integrating these documents provides users a uniform view on the documents
and offers diverse opportunities for query optimization and for building index

structures.

The following illustrates these goals. Suppose we have two topic specific HTML

documents about résumeés:

Resume HTML Document 1
<html>
<title> Resume of John Dole </title>
<body>
<h1> Email:jdole@ucdavis.edu </h1>
<h1> Educational Background </h1>
<table>
<tr><td> 1999 </td>
<td> M.Sci.(Comp.Sci.) </td>
<td> UC Davis </td>
<td> GPA=4.0/4.0 </td>
</tr>
<tr><td> 1997 </td>
<td> B.Sci.(Comp.Sci.) </td>
<td> UC Davis </td>
<td> GPA=3.7/4.0 </td>
</tr>
</table>
</body>
</html>
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Resume HTML Document 2
<html>
<title> Resume of Mary Smith </title>
<body>
<h1> Academic Background </hi1>
Ph.D., Stanford University, 1998
</body>
</html>

Goal 1 aims to extract the information content of these two HTML documents and

to encode it in the following XML documents:

XML Document 1
<RESUME val="Resume of John Dole">
<CONTACT-INFO val="Email:jdole@Qucdavis.edu">
<EDUCATION val="Educational Background'">
<DATE val="1999">
<DEGREE val="M.Sci.(Comp.Sci.)"/>
<ORGANIZATION val="UC Davis"/>
<GPA val="4.0/4.0"/>
</DATE>
<DATE val="1997">
<DEGREE val="B.Sci.(Comp.Sci.)"/>
<ORGANIZATION val="UC Davis"/>
<GPA val="3.7/4.0"/>
</DATE>
</EDUCATION>
</RESUME>

XML Document 2
<RESUME val="Resume of Mary Smith'">
<EDUCATION val="Academic Background">
<DEGREE val="Ph.D.">
<ORGANIZATION val="Stanford University"/>
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<DATE val="1998"/>
<THESIS val="Semistructured Data"/>
</DEGREE>
</EDUCATION>
</RESUME>

Suppose we have a collection of XML documents similar to the above XML doc-
uments. Goal 2 aims to derive a majority schema from these topic specific XML

documents:

Majority Schema
<RESUME>
<EDUCATION>
<DATE>
<DEGREE>
<ORGANIZATION>
<GPA>
</DATE>
</EDUCATION>
</RESUME>

Goal 3 aims to integrate these XML documents based on this majority schema. The
integrated XML documents are given below. Information specific to an XML docu-
ment but not common among other documents is marked up in the attribute val,

e.g., (CONTACT-INFO: jdole@ucdavis.edu), (THESIS:Semistructured Data).

Integrated XML Document 1 Based on XML Document 1
<RESUME val="Resume of John Dole (CONTACT-INFO:jdole@ucdavis.edu)">
<EDUCATION val="Educational Background'>
<DATE val="1999">
<DEGREE val="M.Sci.(Comp.Sci.)"/>
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<ORGANIZATION val="UC Davis"/>
<GPA val="4.0/4.0"/>

</DATE>

<DATE val="1997">
<DEGREE val="B.Sci.(Comp.Sci.)"/>
<ORGANIZATION val="UC Davis"/>
<GPA val="3.7/4.0"/>

</DATE>

</EDUCATION>
</RESUME>

Integrated XML Document 2
<RESUME val="Resume of Mary Smith">
<EDUCATION val="Academic Background'>
<DATE val="1998"/>
<DEGREE val="Ph.D. (THESIS:Semistructured Data)">
<ORGANIZATION val="Stanford University"/>
</DATE>
</EDUCATION>
</RESUME>

1.2.2 Architecture

These goals are realized by the three components of Quixote, namely (1) the Doc-
ument Converter, (2) the Schema Miner, and (3) the Document Transformer. The
architecture of Quixote is illustrated in Figure 1.3. The user initiating the integration
process gathers a collection of topic specific HTML documents, typically by deploying
a web crawler. A topic consists of concepts describing the information pertaining to
the topic. The user specifies concept names of the topic and information on how to

associate HTML text with the concept names. The Document Converter extracts
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information from HTML documents and encodes it in XML documents in topic spe-
cific XML tags using the information on concept names and domain independent
heuristics. The Schema Miner then infers a majority schema from these XML docu-
ments which describes prevalent structures among them. The majority schema can
be represented as a DTD. Finally, the Document Transformer transforms the XML
documents to conform to the majority schema with semantics preserved in the trans-
formation process. Semantics are preserved in the sense that the textual content of
nodes are stored in some related nodes in the transformed document. The HTML
document collection is thus converted to a homogeneous repository of XML docu-
ments with a global DTD describing their structures. This repository can be used by

other applications for indexing, formatting, storage or querying.

The processes of Quixote are illustrated in Figure 1.4. Topic specific HTML doc-
uments are first gathered from the Web. The Document Converter converts these
documents into XML documents in which XML tags are chosen from concept names
about the topic. The user gives information on how to identify XML tags by key-
words or by examples. The Document Converter restructures XML documents so
that their tree structures represent their logical layout by using domain-independent
restructuring rules and concept constraints. The Schema Miner then abstracts out
commonalities among the XML documents by discovering a majority schema and
its associated DTD which describe prevalent structures among the XML documents.
Finally, the Document Transformer restructures the XML documents to conform to

the majority schema.
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HTMF <~ Crawler ?””

Concept names,
Keywords,
Copcept in_stancgs

Y VU
Data
Converter

HTML tag Concept
annotations constraints
U R - -
Schema Document
Miner Transformer
e S
- e
DTD
7 + T
XML
- >
- Quilt
4 < XML-QL
Indexer Storage LOREL

Figure 1.3: Architecture of Quixote
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T, Gather topic

specific HTML docs
BT . HTML tag
e e annotations
“Goncept names, Topic specific  Consept|
Keywords, HTML docs cgr?sr:?:iﬁts
Concept instances ) v . R
I A
~ .., Convert HTML
to XML
e A . .
N Majority schema,
e - DTD
XML - : v
.-
=T apr . o -
Discover majority Transform XML to

schema majority schema

Figure 1.4: Dataflow
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1.2.3 Environment

We make several general assumptions on the properties of topic specific documents:

1. Information Content Property: The information content of a document con-
sists of information objects described in HTML text. A concept name can be
associated with an information object describing its information content. The
textual content of an information object in an XML document is its associated
HTML text. An information object is also called a concept node in an XML
document. For example, <h1> B.Sci.(Comp.Sci.) </h1> in an HTML doc-
ument corresponds to an information object DEGREE in an XML document. The

textual content of DEGREE is B.Sci. (Comp.Sci.).

2. Concept Hierarchy Property: Information objects are organized at different lev-
els of abstractions in a tree-like structure. Higher level information objects are
described in terms of lower level ones. For example, in a résumé, an information
object on a person’s educational background is a high level information object.
It can be refined further by lower level information objects about the degrees,

dates of receiving the degrees and institutions granting the degrees.

3. Homonym Property: The context of an information object is described by three
components: (1) its associated concept name, (2) its textual content which is
its associated HTML text, and (3) its relationship to the high level information

object it details information about, and its lower level information objects that
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refine it. For example, a date information object under a person’s educational
background is different from a date information object under a person’s working
experience. The former is a chronological information item about a person’s
education which may be refined by information on degrees, GPA and institutions
granting the degrees. The latter is a chronological information item about a
person’s working experience which may be refined by information on job titles,
job descriptions and organizations. In other words, there are homonyms among
the concept names. Homonyms are information objects of the same name but

with different contexts.

4. Synonym Property: Since there is a single user initiating the integration process,
we assume the concept names about the topic specified by the user do not
contain synonyms. Synonyms are information objects of different names but
with the same context. For example, phone and ph both refer to the same

information object.

5. Tokenizable Property: Separate information objects can be recognized from the
documents. Identification of information objects can be based on punctuation
delimiters, newlines characters, spacing, or more sophisticated language parsing
techniques. For example, B.Sci.(Comp.Sci.), University of California
at Davis, 1996 contain three information objects separated by the punctua-
tion 7,7, namely B.Sci.(Comp.Sci.), University of California at Davis

and 1996.
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6. Regular Intradocument Format Property: Although the formats of different doc-
uments can be different, the records within a document is highly regular - high
level information objects are described by groups of lower level information ob-
jects in the same way. Take for an example, a person may organize information
objects about her educational background chronologically, or according to the

degrees, but not a mix of both ways within a document.

1.3 Related Work

In this section, we briefly describe existing approaches related to the three problems
addressed in this dissertation, namely information extraction, schema mining and

schema integration.

1.3.1 Information Extraction

Several approaches have been developed to close the gap in translating HTML docu-
ments into XML data using wrappers . Wrappers extract records from an information

source which is typically unstructured.

First generation wrappers - MedMaker ([PGMU96]), [HGMC*97], Editor ([AM97]),
WA4F([SA99]) and YAT ([CDSS98]) - are manual wrappers that require users to specify

how to extract data from HTML documents. They provide a language to facilitate
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the specification process. The problems of manual wrappers are: (1) They assume
the data are in a known format, which is inapplicable for data gathered over several
data sources. (2) The format of the data from a given source may change over time.

Every change of format would require a new handcrafted wrapper.

Second generation wrappers are automatic wrappers that can learn the extraction
rules ([Ade98, ECJ+98, AK97, Kus00, DYKRO00]). However, they all assume that the
data sources are relatively homogeneous - all the records in an HTML document or
all HTML documents follow a particular format. Some of these wrappers ([Ade98,
ECJ+98]) require the user to specify the structures for the documents. While these
are reasonable assumptions for data from a single data source, they are unlikely to

hold for documents gathered from diverse data sources.

1.3.2 Schema Discovery

In order to process XML documents converted from HTML documents effectively, it
is essential to know the schema underlying the documents. Such a schema may not

be available or known to the user.

Several approaches to the mining of schemas have been proposed. [BDFS97, NUWC97,
WYW00, NAM98, NAM97, WL99, WL98] take a data-centric view on a collection
of HTML documents based on Object Exchange Model (OEM) [NUWCY7]. Entities

of the documents are objects and documents are linked by hyperlinks. The link-
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age structure is described by labels on edges. A collection of documents is viewed
as a web of interconnected objects modeled as edge-labeled graphs. The schemas
discovered by these approaches describe possible incoming and outgoing labels from
objects. [GGR100, PV00] take a document view on a collection of XML documents
using a data model similar to [W3C99a] which models documents as node-labeled
trees. Relationships between objects are described by sibling, ancestor and descen-
dant relationships. These approaches use DTDs to describe the content model of the

objects.

Existing approaches infer two types of schemas. [NUWC97, GGR*00, PV00] dis-
cover ezact schemas that describe all structures found in the documents and those
structures only. They are inappropriate for heterogeneous documents because exact
schemas are large in size. To alleviate this problem, [WYWO00, NAM98, WL98, WL99,
GGR*00] infer approzimate schema that describe the structures in a more general
way. In doing so, they may cover irrelevant structures not found in the documents.
In a collection of heterogeneous aocuments, this can lead to an approximate schema

that is too general to convey useful information.

1.3.3 Schema Integration

The major tasks in solving the schema integration problem are [AES98]: (1) transla-
tion of local schemas into a common data model, (2) identification of related objects

in the local schemas and classification of their relationships, (3) deriving a global
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schema from local schemas, and (4) integrating the local databases into a global

database based on the global schema.

[LNEMS89, NEMLS86, SPD92, HR90, Ber91, KDN90, GMP*92] perform schema in-
tegration at the conceptual level. They identify conflicts among the schemas and
propose methods to resolve these conflicts. [DeM89, PRSL93, Pu91, CS91, RR95,
PRSL93| integrate at the data level. They identify related objects and conflicts by

looking at the values of the objects.

Schema integration approaches can be classified based on the underlying data models.
Schema integration approaches developed for relational data ([LNEMS89, EMN84,
NEMLS6, SP94, DeM89, CS91, PRSL93]) are unsuitable for XML data because the
data model of XML is distinctly different from the entity-relationship or relational
model. Object-oriented approaches ([TS93, GMP+92, Ber91, KDN90]) integrate class
hierarchies based on their types, inheritance, methods and dynamic behavior. The
context of information content in XML documents involves the neighboring nodes in
document trees which shares some similarities with the context of classes in object-
oriented data. The insights offered by this work can be used for future research
in object-oriented data. Recent approaches on integrating XML data address the
schema integration problem in a different setting. Specifically, [MZ98] concerns the
integration of data with the same schema in different data models whereas our goal is
to integrate data with different schemas but in the same data model. [Mur97] provides
a mechanism to allow a user to specify how to integrate the documents whereas we

aim to derive how the integration can be achieved.
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A major issue with many of these approaches is that they depend heavily on user
intervention. This may be feasible if the objects of integration include several local
schemas. For topic specific documents created by different authors, each document
can be thought of as a local schema. Heavy user intervention typically is infeasible

in such scenarios.

1.4 Contributions of this Dissertation

In view of the limitations of existing approaches, we propose a coherent and integrated
approach that combines the steps (1) of converting HTML documents into XML
documents, (2) of discovering a global schema underlying these documents, and (3)
of integrating these documents to conform to a global schema. This dissertation
makes several contributions in processing and integrating legacy HTML documents

as a first step to realize the vision of the Semantic Web:

1. With respect to extracting information from HTML documents, unlike existing
manual wrappers, the document conversion process can automatically extract
data by employing rules that are insensitive to changes in the format of the data
and are applicable to diverse sources of data. The intuition is that the visual
hints and inherent tree structure of HTML documents give us strong clues on
the layout of their information content. The rules employed consider the format

clues of HTML markup tags, the tree structure of documents and the names of
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XML tags. The format clues and tree structures are independent of the topic

domain.

The Document Converter does not assume that the documents follow a known
format. It only assumes that the records within a document follow some regular
pattern. For example, a person either organizes her educational background
information items chronologically or by the organization granting the degree,
but not both. It provides a simple, extensible mechanisms to allow users to
specify partial apriori knowledge on the structures of the information content
of the topic. However, unlike other approaches (e.g., [Ade98, ECSL98]), this

knowledge is not mandatory.

2. With respect to discovering a schema for XML documents, we propose a new
type of approximate schema called majority schema that describes only preva-
lent structures found in the documents. The intuition is that there is usually a
typical way of describing the information content of topic specific documents.
Although documents may be marked up in slightly different ways, they typi-
cally follow some commonly accepted format. A majority schema is applicable
to heterogeneous documents because it is small in size and can abstract the
heterogeneity among the documents. It can be used as a basis to integrate
documents into a consistent and concise repository, which greatly facilitates

information retrieval and data management.
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3. With respect to integrating XML documents based on their global schema, we
present an approach that automates the integration process by making use of
domain knowledge on topic specific documents. Existing schema integration
approaches developed for relational and object-oriented data are not directly
applicable to XML data. The Document Transformer adapts integration tech-
niques of these approaches to XML data. It also addresses the unique challenge
of preserving semantics of the documents in the integration process since a
majority schema does not cover all structures found in the documents. The
semantics considered are the textual content of information objects and their

tree structures.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we give the back-
ground knowledge and define important concepts for subsequent chapters. In Chap-
ters 3, 4, 5, we present a detailed description and analysis of the approaches of the
main components of Quixote, namely the Document Converter, the Schema Miner
and the Document Transformer. Finally, in Chapter 6, we summarize our contribu-

tions, highlight some applications of Quixote and discuss possible extensions.

Throughout this dissertation, we use résumé documents as an example of topic specific
documents to illustrate the idea of our approach. However, the presented approach is
applicable to other topic domains satisfying the general properties stated in Section

1.2.3.
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1.6 Notations

Throughout this dissertation, we adopt the following notations:

The domain of an object 0bj is denoted by obj. The domain of integers, natural
numbers, real numbers, boolean, strings and characters are Z, Z*, R, boolean, S, ¥
respectively. A string is a concatenation of characters. Groups of characters separated

by the space character U in a string are words in the string.
We denote infinity by oo, empty by €, null (undefined) by L, and the empty set by 0.

The operator o concatenates two strings. If p is a substring of the string ¢, it is

denoted by p € q.

Let f be a polymorphic function. We use Dom; or Doms to denote the domain of f
and use Domgs to denote the image of f. Its signature is written as (Dom, |J Doms) —

Doms.

Let X be a set. We use X*, Set(X), PowerSet(X) to denote a sequence, a set and a
power set built over elements from X respectively. A sequence may also be denoted
by (z1,...,Zn). P®Q appends/adds the element/sequence/set Q to the sequence/set
P. The size (or length) of the sequence/set P is denoted by | P |. If the sequence/set

P is a subsequence/subset of another sequence/set @Q, it is denoted by P € Q.
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Background

In this chapter, we introduce the formalism used throughout the dissertation which
is a general formalism for XML documents. In Section 2.1, we describe the data
model for and operations on XML documents. In Section 2.2, we give the formalism
of Document Type Definition (DTD) and define the validity of XML documents with
respect to a DTD. In Section 2.3, we propose and define the notion of tree schema.
We discuss its relationship with DTDs, and define the notion of conformance of an

XML document with respect to a tree schema.
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2.1 XML Data Model

In Section 2.1.1, we first give the formalism of the data model for XML documents.

Functions on XML documents are described in Section 2.1.3.

2.1.1 Background

An XML document is made up of elements. One is the document element (root).
It is the document type of the XML document and serves as the entry point to the
document. An element may be associated with a set of attributes. A non-empty
element node consists of a sequence of child nodes or it can be a text element which

is simply a string (PCDATA).

Unlike relational data, there is no standard data model for XML data yet. There are
two popular data models, proposed in the Object Exchange Model OEM ([AQM™*97])
and Infoset ((W3C99a]), among others ((BMR99, FSSW, BDFS97, BDHS96]). OEM
takes a data-centric view on a collection of documents in which elements are vertices
and their relationship is described by labels on edges in an edge-labeled graph. Doc-
uments are connected by hyperlinks (references to another XML document) and they
are viewed as a web of interconnected objects. Infoset takes a document-centric view
which organizes elements of an XML document into a node-labeled tree. The docu-
ment structure is reflected in the structure of the tree, in which one can describe the

siblings, ancestors and descendants of a node. We favor Infoset because we are inter-
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ested in document structures. We use a data model similar to [FS00] as a formalism

for the Infoset data model.

In our data model, an XML document is modeled as a node-labeled tree. Elements are
vertices with element names being their labels. Attributes of elements are considered
as properties of elements. Each element has a unique identifier. Without loss of
generality, we can assume the identifier is stored in a special attribute ID. Since we
do not consider hyperlinks, referential keys (IDREFs) are ignored. The atomic values

of all attributes are of type string.

Definition 2.1 (XML Document). Given a set of element names (labels) E, a set
of attribute names A, and a set of string values S which is the type of all atomic

values. An XML document is an ordered tree with labeled nodes, denoted by (V, root,

Label, Children, Attr, AttrVal) where

e Vis a set of vertices.

e root is a distinguished vertex in V. It is also the document type of the XML

document.
e Label : V — E is a partial function that maps a vertez to its label.

e Children : V — V* is a total function that maps a vertez to its sequence of

children in the document tree. If a vertex does not have any children, it returns

0.

e Attr : V — Set(4) is a partial function that maps a vertez to its set of attributes.
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e AttrVal : V x A — S is a partial function that gives the atomic (string) value
of an attribute for a vertez. The value of v.a is denoted by Value(v.a), or v.a

if the context is clear.
O

The size of an XML document X, denoted as | X |, is | X.V |. The size of the collection

of XML documents X = {X; ...Xa}, denoted by | X |, is Zxex| X |-

The value of a node is denoted by Value(v). For an element node, it is its unique

identifier encoded in its attribute ID. For a text node, it is the string itself.

An XML document fragment is a subtree in an XML document. The subtree rooted
at the vertex v in X is denoted as T(v). It can be modeled in the same way as an

XML document.

XML tag names are in UPPER CAPITAL, text in lower capital and attributes in

italics lower capital.

We use the term ”node” and ”vertex” interchangeably. A node v of an XML document
X is denoted as v € X. Let X be a collection of XML documents. If v is found in an
XML document in this collection, we denote it as v € X. The domain of vertices is

V. The domain of XML documents is X.
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Example 2.1: XML Document

An example of XML document is given below. Its document type is RESUME which
consists of elements OBJECTIVE and EDUCATION. Element OBJECTIVE is made up of a
text node "To obtain a summer intern position". Element EDUCATION consists
of two DEGREE elements. Both DEGREE elements have attributes title and date. The
first DEGREE element is described by ORGANIZATION followed by SPECTALIZATION. The

second DEGREE element consists of ORGANIZATION, followed by GPA.

<RESUME>
<0BJECTIVE>
To obtain a summer intern position.
</0BJECTIVE>
<EDUCATION>
<DEGREE title="M.Sci.(Comp.Sci.)" date="1996">
<ORGANIZATION> U.C. Davis </ORGANIZATION>
<SPECIALIZATION> Data mining </SPECIALIZATION>
</DEGREE>
<DEGREE date="1994" title="B.Sci.(Comp.Sci.)">
<ORGANIZATION> Stanford University </ORGANIZATION>
<GPA> 3.9/4.0 </GPA>
</DEGREE>
</EDUCATION>
</RESUME>

The description for this document in the model is (V, RESUME, Label, Children,

Attr, AttrVal) where

bt V={'U]_,-.-,'U14}
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e Label is the following function:
v; — RESUME
vy — OBJECTIVE
vy — EDUCATION
v4 — DEGREE
vs — ORGANIZATION
ve — SPECIALIZATION
v7 — DEGREE
vg — ORGANIZATION

vg — GPA

e Children is the following function:
vy — (v2,v3)
vz — (v, V1)
vs — (vs, Ug)
v7 — (vs, Vo)
v2 — (v10)
vy — (vn1)
vs — (v12)
vy — (v13)
vg — (V14)

v — 1., otherwise
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e Atir is the following function:
v — {title, date}, v € v4,vr

v — 1, otherwise

o AttrVal is the following function:
vy X title — "M.Sci.(Comp.Sci.)"
vy X date — "1996"
vy X title — "B.Sci.(Comp.Sci.)"

v7 X date — "1994"

2.1.2 Specialization

Based on the Information Content Property (Section 1.2.3), the children text nodes
of an element node are its textual content. Since we are interested in the structures of
element nodes in an XML document and not in text nodes, as a technical convenience,
we assume the children text nodes of an element node in an XML document are
consolidated into an attribute named val. Therefore, throughout the dissertation, we
refer to XML documents that do not contain text nodes. All text nodes are encoded
in the attribute val of their parent element nodes. The XML document given in

Section 1 would then be represented as follows:

<RESUME>
<OBJECTIVE val="To obtain a summer intern position"/>
<EDUCATION>
<DEGREE title="M.Sci.(Comp.Sci.)" date="1996">
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<ORGANIZATION val="U.C. Davis"/>
<SPECIALIZATION val="Data mining"/>
</DEGREE>

<DEGREE date="1994" title="B.Sci.(Comp.Sci.)">
<ORGANIZATION val="Stanford University"/>
<GPA val="3.9/4.0"/>

</DEGREE>

</EDUCATION>
</RESUME>

2.1.3 Functions on XML Documents

Based on the XML data model presented in Section 2.1.1, we define additional func-
tions on XML documents. Let X be an XML document from a collection X of XML

documents:

e Function Depth : (V| JX) — Z* computes the depth of an element in X. The
depth of the root is zero. The depth of the whole tree is the maximum depth

of its vertices.

e Function Degree : (V{JX|J Set(X)) — Z computes the degree of a vertex (its
number of children vertices), the degree of an XML document (the maximum
degree of all its vertices), and the degree of a set of documents (the maximum

degree of all of its documents).

e Function IsLeaf : V — boolean returns true if an element does not have any

children, i.e. Children(v) =0, false otherwise.
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e Function Parent : V — V computes the parent of a vertex. The parent of the

root is 1.

e Function Ancestors : V. — V* computes the sequence of vertices along the

path from root to a vertex:

Ancestors(vg) := {(vo, ..., v) | vj € Children(vj_,),1 < j < k,vp = X.root}

e Function Descendants : V — Set(V) computes the set of vertices that are

reachabie from a vertex in X, i.e.,

Descendants(vo) := {v; | vy - - - vi1: (v; € Children(vj_1),1 < j <)}

In addition, we define functions that operate on an XML document tree X, similar to

the APIs in DOM [W3C00a] which is based on the Infoset data model:

e The function Create(X, e) creates a new node labeled with e.

e The function Delete(v) deletes the node v from the document tree X.

The function AppendChild(p, c) appends the node c as the last child of the node
p in the document tree X. If ¢ is in X, it is first deleted before being inserted into

X.

The function InsertFirst(p, c) inserts the node c as the first child of the node
p in the document tree X. If c is in X, it is first deleted before being inserted into

X.



CHAPTER 2. BACKGROUND 35

e The function InsertAfter(n,r) inserts the node n as a sibling immediately after
the node r in the document tree X. If n is in X, it is first deleted before being

inserted into X.

2.2 Document Type Definition (DTD)

In Section 2.2.1, we describe a standard format used for XML documents called
Document Type Definition (DTD). In Section 2.2.2, we give a formal model for a
DTD. Section 2.2.3 defines validity of an XML document with respect to a DTD.

2.2.1 Background

An XML document can have an optional Document Type Definition (DTD) which
describes admissible relationship among elements. A DTD specifies the content model
of an element - choices of its constituent elements (”|”), and the number of occurrences
of these constituent elements (whether it can occur zero times (?), exactly one time,
at least one time (+), or more than one time (*)). It can also specify the set of
attributes of an element, and whether an attribute is optional (#IMPLIED), required

(#REQUIRED) or fixed (#FIXED), and its optional default values.

An example DTD for the XML document in Section 1 is given below. It specifies that

the XML document is a RESUME document which consists of an OBJECTIVE element
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followed by an EDUCATION element. The content of OBJECTIVE is text (PCDATA).
The element EDUCATION is made up of at least one DEGREE element. There are two
choices for the structure of element DEGREE. It can consist of ORGANIZATION optionally
followed by SPECIALIZATION, or it can consist of ORGANIZATION followed by GPA. The

attributes of DEGREE are title and date, both of which are mandatory.

<!DOCTYPE RESUME (OBJECTIVE, EDUCATION)>
<!ELEMENT O0OBJECTIVE (#PCDATA) >

<!ELEMENT EDUCATION (DEGREE+) >

<!ELEMENT DEGREE (ORGANIZATION,SPECIALIZATION?) |

(ORGANIZATION,GPA)>
<!ATTLIST DEGREE
TITLE #PCDATA, #REQUIRED
DATE #PCDATA, #REQUIRED>
<!ELEMENT ORGANIZATIION (#PCDATA)>
<!ELEMENT  SPECIALIZATION (#PCDATA)>
<!ELEMENT GPA (#PCDATA)>

2.2.2 Formal Model for DTD

Here we describe a formal model for DTDs. We assume a set of language elements

— fn N N N N " NM N\n » T NN N __ N My N” non vk M N\ N /N
C_{+1a1l7(1)1*a?767—}'+771 7I )7 are

union, concatenation, Kleene closure, choice and nesting, respectively.
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Definition 2.2 (DTD). A DTD is denoted as (E, root, Type, Attr) where

e E is a set of element names.

e root is a distinguished element name, the document type.

Type : E — « is a function that gives the type of an element by a regular
eIpression o

a:=S|ele|lata|a,a|akx]|(x)
e is an element in E, S is a string.

e Attr : E — A is a function that gives the set of atiributes of an element. The

domain of attribute values is S. a

The content model of an element can be expressed as regular expressions, as illustrated

below:

DTD Content Model Regular Expression
<!ELEMENT e (el)> e = el

<!ELEMENT e (el | e2)> e = el + e2
<!ELEMENT e (el,e2)> e = el,e2
<!ELEMENT e (el?)> e = empty + el
<!ELEMENT e (el+)> e = el,el*
<!ELEMENT e (elx*)> e = elx

Let CM2RE :E x C...E x C be a function that takes a list of element names and

their content models, and expresses them as a regular expression.



CHAPTER 2. BACKGROUND 38

Example 2.2: DTD

Take the DTD given in Section 2.2.1 as an example. It is denoted as (E, root, T'ype, Attr)

where

e E = { RESUME, 0BJECTIVE, EDUCATION, DEGREE, ORGANIZATION, SPECTALIZATION,

GPA }
e Toot = RESUME

e T'ype is determined by the following mappings:
RESUME — (OBJECTIVE, EDUCATION)
EDUCATION — (DEGREE, DEGREE*)
DEGREE — (ORGANIZATION, SPECIALIZATION?) + (ORGANIZATION, GPA)
ORGANIZATION — S
SPECIALIZATION — S

GPA — S

e Attr is the following function:

DEGREE — {title, date}

2.2.3 Validity

A D'TD schema describes permissible structures of XML documents. XML documents

satisfying this condition are wvalid with respect to the DTD.
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Definition 2.3 (Validity). An XML document X is valid with respect to a DTD D

if there is a mapping pu : V— E such that:

e u(X.root) = D.root
e Children vertices of a vertez v in X satisfy the content model of u(v) in D:
Vv € V: (Children(v) = (v1,...,v,)) = pu(vy) - - - u(vn) € L(Type(p(v)))
where L(c) is the language defined by the reqular expression c.
o An attribute of a vertex v € X.V is defined in u(v):

Yv € V: (a € X.Attr(v)) = a € D.Attr(u(v)) O

2.3 Tree Schema

Our goal is to discover a majority schema for a collection of XML documents.! We
would like to have a formalism that is expressive enough to describe a majority
schema, and is in a form similar to XML documents to facilitate the transformation
process (Chapter 5). Since a majority schema describes only prevalent structures
among documents, it suffices that the formalism for a majority schema is less expres-
sive than for a DTD. In view of this, we introduce the notion of a tree schema which

is less expressive than a DTD. We use XML syntax to describe this schema.

1The definition of majority schema is given in Section 4.1.2.
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We first describe the semantics of a tree schema, followed by its formal definition.
Then we show its relationship to a DTD and define conformance of an XML document

with respect to a tree schema.

2.3.1 Description

A tree schema can be interpreted as a simplified DTD in form of a tree with certain in-
formation not modeled. (1) Ordering information between sibling vertices is ignored.
Hence, a tree schema is an unordered tree. (2) Grouping information among siblings
is not considered. For instance, the content model (el*,e2+) can be modeled in a
tree schema, but not (el, e2)*. (3) Choices are not modeled since we are interested

in discovering the most prevalent structures.

A tree schema is a labeled tree. Each vertex in a tree schema corresponds to an
element in a DTD. The content model of an element in the DTD is encoded in the
attribute content of the vertex in the tree schema. For example, in the following
fragment of a tree schema, the content model of the element el under e is ”*”, i.e.
el can occur multiple times in e. The content model of e2 under el is ”?”, i.e. it is
optional. The content model of the element e3 under e is ¢, i.e. e3 occurs exactly

once in e. Hence elements in a tree schema are decorated by their content model.
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A tree schema
<e>
<el content="*">
<e2 content="?7"/>
</el>
<e3 content=""/>
</e>

Since a schema describes permissible structures of XML documents, we first need
to define the basic units of schematic structures of an XML document. Similar to
[WL98], we view an XML document (which is an ordered tree) as a sequence of paths.
We distinguish two types of paths, namely label paths and node paths. A label path
is a sequence of labels whereas a node path is a sequence of nodes from the root of

an XML document.

An XML document conforms to a tree schema if all its label paths can be found in
the tree schema. For example, the following XML document conforms to the above

tree schema.

An XML document conforming to the above tree schema
<e>

<el>

<e2/>

</e1>

<el/>

<e3/>
</e>
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2.3.2 Formalism

A label path is a concatenation of labels.

Definition 2.4 (Label Path). p =e;0...0¢e, is a label path of length n over E iff

Vi: (e, € EAN1 < i< n). The size (or length) of p is denoted by | p |.

Its k-subpath, 0 < k < n—1, determined by the function Subpath(p, k) : E* xZ — E¥,
1S Pr =e10...0€q_k. In particular, it is a O-subpath of itself. p is called a superpath

of pk.- O

A node path in an XML document is a sequence of nodes in the docuinent.

Definition 2.5 (Node Path). p, = (v; - - -v,) 45 a node path in an XML document
X denoted as p, € X, iff (v1---vp_1) € Ancestors(v,). Hence, a node path may not

necessarily start from the root.

Its k-subpath, 0 < k < n—1, determined by the function Subpath(p, k) : Vt x Zt —
V*, is pr = (V1,...,Un—k). In particular, it is a 0-subpath of itself. p, is called a

superpath of py.

A label path of p, is Label(vy)o. ..o Label(v,), computed by the function Label Path :
V* — E*. As a shorthand, we use the same notation LabelPath(v,) to denote the
label path of the node path from the root to the vertez v,. Note that several node paths

may have the same label path. a



CHAPTER 2. BACKGROUND 43

A label path p. € E* is a label path in X, denoted by p. € X, iff there is a node
path p, € X such that LabeiPath(p,) = p.. For simplicity, given a set X of XML
documents, we also use the notation p € X to denote that a path p is found in some

document in X.

As in [WL98|, a set of paths starting with the same label can be "glued” together
into an unordered tree whereas a sequence of paths can be glued into an ordered
tree. For example, in Figure 2.1, the unordered tree is obtained from the set of label

paths shown. Let the function Paths2Tree build the unordered/ordered tree from a

set/sequence of paths.

Unordered Tree

Sequence of node paths Set of label paths

pl=<&htmi, &edu, &degl, &datel> pl=<html, Education, Degree, Date>
p2=<&html, &edu, &degl, &orgl> p2=<html, Education, Degree, Organization>
p3=<&html, &edu, &deg2, &date2> p3=<html, Education, Degree, Date>
p4=<&html, &edu, &deg2, &org2> p4=<html, Education, Degree, Organization>

Figure 2.1: Trees and node paths
An ordered tree can be built from a sequence of node paths. An unordered tree can be built

from a set of label paths. The ID of a node along a node path is shown as &obj.
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Now we can give the formalism for a tree schema.:

Definition 2.6 (Tree Schema). A tree schema is an XML document S = (V, root,

Label, Children, Attr, AttrVal) with the following properties:

e A tree schema is an unordered tree. Children : V — Set(V) is a function that

computes the set of children of a vertez.

e There are no redundant label paths in a tree schema:

Vp = (T00t7p17 - - '7pm>1q - (TOOt, qi, - - - ’qn) € S:

(p # q = Label Path(p) # LabelPath(q))

o The value of v.content gives the content model of a verter v within its parent

vertez. O

The content model of an element is stored in the element’s content attribute. Thus,

the set of attribute names is {content} C A.
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Example 2.3: Tree Schema

A tree schema for the XML document in Section 2.1.2 can be modeled as a tree

schema S with:

o V={v---v}
e Toot =RESUME

e The function Label determines the mappings:
v; — RESUME
vo — OBJECTIVE
vz — EDUCATION
vs — DEGREE
vs — ORGANIZATION
v — SPECIALIZATION

U7 — GPA

e The function Children determines the mappings:
v; — (v2,u3)
vz — (vg)
vg — (vs, Ve, U7)

v — 0, otherwise

e The function Attr determines the mappings:

Vv € V: (v — {content})
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e The function AtirVal determines the mappings:
vs X content — €
vz X content — €
vy X content — " +”
vs X content — €
ve X content — 777

u7 X content — €

2.3.3 Relationship of Tree Schema with DTD

A tree schema can be converted to a DTD. There is a subtlety in this process. Based
on the Homonyms Property (Section 1.2.3), concept nodes of the same label in the tree
schema refer to different concepts. Naming conflicts thus occur in deriving elements

for these concept nodes in the DTD.

Naming conflicts can be resolved by renaming vertices to another set of labels, if
necessary, so that no two vertices have the same label in a tree schema. We assume
that there is a renaming function that takes a concept node from the tree schema
and computes a label for its corresponding element in the DTD. If there is no naming
conflict for the concept node, its label in the DTD is unchanged. Otherwise, it is
renamed to another label. For instance, two vertices of the same label DATE may be

renamed to elements DATE1 and DATE2, respectively.
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Each concept node in the tree schema has a rename attribute which stores the (re-

named) label of the concept node. Hence,

VYu,v € V: (u # v = u.rename # v.rename)

Let E be a set of element names (labels) in a tree schema. Let E’ be the set of element
names derived from E by a renaming function that resolves naming conflicts. A tree

schema S can be converted to a DTD D by the following mapping:

e The elements in D are the renamed labels in S: D.E’ := {v.rename | v € V}

e D.root := S.root.rename

e The content models of elements in D are given by the attribute content of vertices

in S:
Type(e) = CM2RE(Rename(vy), content(vy), . .. , Rename(vy), content(vy,)),
Rename(v) = e, Children(v) = Set(vy - - -vn)

e Attributes different from content are not considered in S, i.e., D.A = (.

Not all DTDs can be converted to a tree schema because a tree schema is less expres-

sive than a DTD. Choice, grouping and order are not modeled in a tree schema.
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2.3.4 Conformance

A tree schema describes permissible label paths in XML documents. An XML docu-

ment satisfying this condition is said to conform to the tree schema.

Definition 2.7 (Conformance). Given an XML document X and a tree schema S.

A node path p, € X conforms to a node path ps € S (or conforms to S) if
Label Path(p.) = ps-

An XML document X conforms to a tree schema S if there is a conformance mapping

un: X V— S.V such that:

e u(X.root) = S.root.

e Vertices in the document can only be mapped to vertices of the same label in the

tree schema:

Vv € X.V: (Label(v) = Label(u(v))

e All child nodes of v € X.V have to be mapped to some child nodes of u = pu(v) € S
of the same label:
Yv € X.V:
(Children(v) = (vy,...,Un)A
u = p(v) A Children(u) = {u1,.-.,un}) =

(Vvi: (Ju;: (Label(u;) = Label(v;))))
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e Child nodes of v in X satisfy the content model of u(v) in S:
Yv e X.V:
(Children(v) = {v1,-..,vn)A
u = p(v) A Children(u) = {u1,...,um}A
a = CM2RE(uy,u;.content, . .. ,Um, Un.content)) =>

((v1)s- -, 16(vn)) € L) O



Chapter 3

Converting HTML Documents to
XML Form

The goal of the document conversion process is to extract semantic information from
topic specific HTML documents and to encode such information in XML documents.
This is related to the work on wrappers methods. The document conversion process
is realized by the Document Converter component of Quixote [CS99]. Semantics are
encoded in the XML documents in two ways: (1) XML tags which carry seman-
tic information of their associated text, and (2) tree structures of XML documents

matching the logical information content of the documents.

In Section 3.1, we first describe how the information content of an HTML document

is captured. In Section 3.2, we present the data extraction approach. In Section
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3.3, we give the results of an analytical and empirical study of the data extraction

approach. In Section 3.4, we describe related work on and compare them to the

Document Converter.

3.1 Document Information Content

The information content of HTML documents is described by concepts and the con-
text of the concepts, similar to an ontology ([FMHA98, GMV99]). Concepts are
names of relevant concepts specific to the topic. They reflect the meanings of infor-
mation objects (or concept nodes in a tree) that typically constitute a topic specific
document at different levels of abstraction. We may use the term concept to refer to
the name of a concept or an information object related to a concept when the context
is clear. High level concepts are described by lower level concepts in a tree-like hierar-
chy. The context of an information object is described by its textual content and its
relationship with other information objects in the document tree. For example, the
context of the information object DATE under EDUCATION in the following fragment
of a document tree includes (1) its textual content 1993, ‘2) lower level information
objects DEGREE and ORGANIZATION that further describe it, and (3) the high level
information object EDUCATION it details information about. The context of this DATE
object is different from that of the DATE object under EXPERIENCE. The former de-
scribes a chronological information object for the educational background of a person

while the latter for her working experience. The context of the first DATE object is not
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only "1993", but also lower level concepts detailing it and the higher level concept it

refines. In other words, there may be homonyms among concept names.

<EDUCATION>
<DATE val="1993">
<DEGREE val="B.Sci."/>
<0ORGANIZATION val="UCD"/>
</DATE>
</EDUCATION>
<EXPERIENCE>
<DATE val="1994">
<TITLE val="Research Assistant"/>
<0ORGANIZATION val="UCD"/>
</DATE>
</EXPERIENCE>

Although the collection of XML documents is heterogeneous in terms of how the
documents are structured, since HTML documents pertain to a particular topic, the
information content of the XML documents is quite homogeneous. We assume that
the user has some domain knowledge on the topic of the documents. This is cap-
tured in three ways: (1) concept names specific to the topic of the documents, (2)
information on how to identify concepts from text, (3) and permissible or prohibited

structures on concepts.

Concept Names: We assume the user specifies a set of concept names for the topic.
This is a reasonable assumption because, in practice, the user has some knowledge
on what the topic is about. For example, in a résumé, one would expect some educa-

tional background information about the institutions where the person received her
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degree(s). Thus, ORGANIZATION, DEGREE and EDUCATION would be concepts for the
topic. Since concept names are provided by a single user initiating the document con-
version process, we assume there are no synonyms among concept names. Concepts
provide the domain of tags to be chosen as element names in XML documents, i.e.,

they are the labels E of the XML documents to be obtained from HTML documents.

Concept Instances: The user gives information on how to identify concepts from
text by concept instances. Concept instances specify text patterns as they might
occur in the HTML documents either as keywords or as examples to a classifier
(described in Section 3.2.2). For example, concept instances for the concept DEGREE
can be B.Sci., MBA, M.Sci., Ph.D. etc. Some concept instances are often already
present in order for a topic specific crawler to gather respective documents from the
Web. In practice, identifying concept instances for concepts can be done by the user

after inspecting a few of the retrieved HTML documents.

Concept Constraints: The user may have some knowledge on how concepts are
related in the topic. This knowledge is captured by concept constraints. Concept
constraints describe permissible or prohibited structures on concepts. They are op-
tional input to the process and do not have to be complete. They can be used to
improve the accuracy of data extraction. A complete specification of all permissible
and prohibited relationships between concepts would basically resemble a schema, for
the XML documents. This would be much too restrictive for a flexible, easy to employ

framework for translating heterogeneous HTML documents into XML documents.
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Since our goal is to design a flexible framework, we assume minimal domain knowledge
on the permissible or prohibited structures of concepts. Therefore, we use a simple
mechanism of constraints to specify such domain knowledge. Concept constraints
are specified in a first order predicate logic language with predicates to constrain

permissible structures of concepts.

Definition 3.1 (Concept Constraint). Let E denote concept names, e,e;, €2 € E,
d,level € Z*. L is a set of concept constraints. A concept constraint is a predicate of

one of the following

e MazDepth(e,d) is true iff the depth of e in the document tree must not be larger

than d.

e MinDepth(e,d) is true iff the depth of e in the document tree must not be

smaller than d.

e NonAncestor Descendant(ey, ea, d) is true if e; cannot be a descendant of e, in
a document within d levels. In particular, if d = 0o, es cannot be a descendant

ofe;. Ifd =1, ey cannot be an immediate child of e;.

e NonSiblings(e;, es) is true iff e;, e2 must not be siblings in a document tree. O

In practice, the user can gain an idea of how deeply nested the documents of the
topic are by inspecting samples of the document collection or by apriori knowledge.
Setting d in NonAncestor Descendant to a value greater than the maximum depth

of the documents in effect sets it to oo.
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Concept constraints reflect the user’s perception on how the information content
should look like. They are soft constraints used to guide the Document Converter
not to restructure the document tree in a way that violates these constraints. Since
the input documents are authored by different people, there may be documents that
violate the concept constraints. Concept constraints are not used to resolve this het-
erogeneity. Violations of these constraints can serve as a feedback to the user, but
will not cause termination of the process. Instead, concept constraints are used by
the Schema Miner (Chapter 4) to infer a schema that does not violate any concept
constraints. In short, the Document Converter will not restructure a document tree in
a way that violates concept constraints. The Schema Miner infers a schema that does
not violate any concept constraints. If there are structures in the document collec-
tion that violate concept constraints, these structures will be converted to structures

satisfying concept constraints in the schema by the Document Transformer.

3.2 Approach

The data extraction problem can be divided into two subproblems: (1) identify con-
cepts from text in an HTML document, and (2) infer structures of the concepts in
the document. Typically, the meaning of an object is buried in the text in an HTML
document. The first task concerns identifying concepts from the HTML text and
their associated textual contents. This is accomplished by the processes tokenization

and concept identification (Sections 3.2.1 and 3.2.2). Although the HTML document



CHAPTER 3. CONVERTING HTML DOCUMENTS TO XML FORM 56

can be represented as a tree, information objects in the tree are not organized in a
way that reflects the logical layout of the document. This is because HTML is a
markup language for visual rendering, not for describing information content. The
goal of the second task is to restructure the objects in the document tree so that
the tree structure of the resulting XML document matches the logical layout of the
information content of the HTML document. This is accomplished by the grouping

and consolidating restructuring rules (Sections 3.2.3 and 3.2.4).

The function DocumentConversion below describes the overall process. The user
specifies the following domain knowledge: concept instances C (Section 3.2.2), concept
constraints L, punctuation delimiters punc (Section 3.2.1), group tags group (Section
3.2.3), list tags list (Section 3.2.4) for tokenization and the restructuring rules.
We assume the user uses tools like Tidy [Rag98] to translate an HTML document
into one satisfying the HTML specification which can be thought as a well-formed
XML document with tags being HTML markup tags. Without loss of generality,
as a technical convenience, each node in the HTML tree has an attribute named
val which stores the values of all its text child nodes, i.e. its textual content. The
Document Converter then executes tokenization, concept identification, grouping and
consolidating restructuring rules in sequence to convert the input HTML document
X (now as well-formed XML document) into an XML document with tag names from
concept names in C whose tree structure matches its logical information content. Each

of the processes will be described in detail in the following sections.
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Algorithm 3.1: DocumentConversion

Function DocumentConversion(X,C, L, punc, group, list) : X
begin

X = Tokenization(X, punc)

X = Conceptldentification(X, C)

X = Grouping(X, group, L)

X = Consolidating(X, list, L)

return X

end

3.2.1 Tokenization

According to the Concept Hierarchy Property (Section 1.2.3), an information object
related to a high level concept is refined by information objects related to lower level
concepts. We observe that very often information objects are separated by punctu-

7. nn

ation delimiters, e.g., semicolon ”;”, comma ”,” etc. For example, "University of
California at Davis, B.Sci.(Computer Science), June 1996, GPA 3.8/4.0"
represents an information object about the educational background in a résumé. It
is refined by lower level concepts related to the organization granting the degree, the

degree, date and GPA. Based on this observation, tokenization decomposes a text

into tokens according to the punctuation delimiters given by the user.
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The function Tokenization implements tokenization. It is recursively applied to each
node in the input tree X in a top-down fashion from the root to leaf nodes. For each
node v, it takes its textual content (value of the attribute val) c; ...c,, if val exists
at the node. The punctuation delimiters punc are used to identify tokens c;jy;...c;
in the text node. A new node with label TOKEN and attribute val = ¢ ...¢; is then

created as a child of the text node.

Algorithm 3.2: Tokenization

Function Tokenization(X, punc) : X
begin
v = X.root
(This is a tezt node, i.e. a leaf node.)
ifv.val # ¢
then
(v.val consists of n charactersc;...cp)
vwal =c¢p...c,
i=0
(For each character ¢; in v.val)
for:=1tondo
(c; is a punctuation delimiter or the last character.)
ifc; epuncvi==n
then

token =cjy1...¢



CHAPTER 3. CONVERTING HTML DOCUMENTS TO XML FORM

u = Create(X, TOKEN)
u.val = token
AppendChild(v, u)

j=i

od

else
(Recursively apply Tokenization in a top-down fashion)
for each u € Children(v) do

X = Tokenization(T(u), punc)

od
fi
return X
end

59

After tokenization, new text nodes are created for each text node and are grouped

under a node labeled with TOKEN.

3.2.2 Concept Identification

For each token obtained through tokenization, the token is checked if it can be related

to a concept. There are several tools that have been developed in the information
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retrieval arena, e.g., [SC99, FMHA98], and that are suitable for this task. In Quixote,
concepts are associated with text by concept instances. There are two forms of concept

instances: (1) as keywords, or (2) as examples to a multinomial naive Bayes classifier

[Cha00].

Concept Instances Based On Keywords

For concept instances based on keywords, the user specifies keywords that identify a
concept from a text. For example, keywords university, company, co., 1ltd. can
be used to identify the concept ORGANIZATION in a résumé. If a keyword is found in
a text, the concept associated with the keyword is identified from the text and the

text is the textual content of the concept.

Let C = {(e,k) | e € E,k € S} denote a set of concept instances. It is a set of tuples
(e, k) that associate the keywords k with the concept name e. A keyword can consist

of more than one word.

The function ConceptInstanceByKeywords takes a string text and a set of con-
cept instances C and computes the set of concepts identified from the string and its
associated textual content r. A string consists of words, which are consecutive char-
acters separated by the space character U. It scans the words w; ... w, in tezxt. If
w;U...Uw;;,_; matches the keyword k, the concept e associated with the keyword is

related to w; L. .. U w4, and all the words afterwards in ezt until another concept
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is identified. All words before the first concept are associated with it. The string r
computed is a concatenation of tuples of the form (re,rk) where re is a label and r&

its associated words in tezt.

Algorithm 3.3: ConceptInstanceByKeywords

Function ConceptInstance ByKeywords(tezt,C) : S
begin
(re is the current label and Tk is its associated text)
r=re=rk=c¢€
(text consists of words w; separated by space LI)
text =wi U... U wy,
i=1
while i <=n do
(The next p words, w; U ... Uw;p—y =k, in text match the keyword k)

if3(e,k)eC,peZr: (wiU...Uwipp_y =k)

then
ifre#e
then
r =10 (re,rk)
Tk =¢€
i

TE =€

rk=rkoUok
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i1=14+Dp
else

rk=rkolUow;

t=t+1
fi
od
ifre#e
then
r =ro (re,rk)
fi
return r
end

Concept Instances Based On Bayes Classifier

For concept instances based on a naive Bayes classifier, the user gives examples on how
to associate text with concepts. For example, the user may label the text "University
of California at Davis" as the concept ORGANIZATION, "Davis, California" as
LOCALE etc. Based on these examples, the Bayes classifier computes the statistics of
associating words in the text with concepts. Given a new text, the classifier classifies
it to the concept with the highest probability using statistics computed from the

examples.
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The concept instances C = {(e, k)} give a set of (e, k) tuples as examples for the
Bayes classifier. & is a text and e the concept it is associated with. In Bayes classifier
terminology, k is a document and e the class of the document to which it belongs. Let
{t} denote the terms in the documents, i.e. words in a string. One can compute the
number of occurrences of term ¢ in a document &, denoted by n(k,t). One can also
estimate the apriori probability of a class e by counting the number of occurrences of

e in C, denoted by Prob(e).

Based on C, one can estimate the probability of having the term ¢ in a class e at least
once with the Laplace corrected estimate by [Lap95]:

@ o 1 + Zk,(e,k)ecn(k, t)
et -—
| {t} | +Z:Zk (e.yecn(k, )

A document is modeled as a bag of words. A document is generated by choosing
terms from a set of words. In the multinomial model, the conditional probability of

generating document k from class e is:

| £ ]!

n(k,
e

Prob(k | e) = (

This is based on the assumption that terms in k£ are conditionally independent.

By Bayes rule, we have
Prob(e | k)Prob(k) := Prob(k | e)Prob(e)
Since Prob(k) is constant for e, we can compare Prob(e | k) simply by

Prob(k | e)Prob(e)
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Given a document text, one can then classify text to the class e; such that Prob(e; |

text) is maximum among all Prob(e; | text),e; € E.

"The function ConceptInstanceTrainBayes first collects statistics on Prob(e), ©,, for
all labels e in C. When a new text is given, the function ConceptInstanceByBayes
classifies it to a label e; in C with the highest posterior probability based on the
statistics collected by the function ConceptinstanceTrainBayes. In case there is
a tie, an arbitrary label is chosen by the function Pick which selects an arbitrary

element from the set.

Algorithm 3.4: ConceptInstanceTrainBayes

Procedure ConceptInstanceT rainBayes(C)
begin
for each (e,k =t;...t,) €Cdo
n(e,t;) =n(e,t;) +1,1<i<n
od
for each (e, k) € C do
Compute Prob(e)
od
for each (e,k =t;...t,) € Cdo
Compute O.4,,1 <i<n
od

end
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Algorithm 3.5: ConceptInstanceByBayes

Function Conceptlnstance ByBayes(text,C) : S
begin
for eache € C do
Compute Prob(tezt | e)
od
e; = Pick{e; € E | Prob(e; | text) > Prob(e; | tezt), e; € E}
r = (e;, text)
return r

end

Identification of Concepts

Given a function ConceptInstance that takes a string and returns a set of (concept,
text) pair where concept is a concept and text the corresponding textual content
of the concept in the string (it can be realized by ConceptInstance ByKeywords or
ConceptInstance ByBayes), the function Conceptldenti fication realizes the concept
identification process. It is recursively applied to each node in an input document
X in a top-down fashion. For each node v in X, it calls function Conceptinstance
to identify concepts of its attribute v.val (its textual content). If no concept can be
associated with v.val, v.val is propagated to the attribute val of its parent. If there

is at least one (concept,text) identified, a new node is created for each concept.
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The label of the new node is concept and the value of its attribute val is text. The
textual content of a node v is now ”consumed”, i.e. either propagated to its parent

or replaced by some concept nodes. Node v is hence deleted.

Algorithm 3.6: Conceptldentification

Function Conceptldentification(X,C) : X
begin
v = X.root
(This is a text node)
if voval # €
then
con = (cony, texty) .. . (cony,, text,) = Identi fyConcept(v.val,C)
(No concept is identified. Propagate v.val to its parent’s attribute val)
if con =€
then
Parent(v).val = Parent(v).val o v.val
else
(At least one concept is identified)
lastConcept = €
for i =1ton do
w = Create(X, con;) (create a new node for this concept)

w.val = text; (set its attribute val)

(Add the new node as nect sibling of v)
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if lastConcept = €
then
InsertAfter(w,v)
else
InsertAfter(w,lastConcept)
fi
lastConcept = w
od
Delete(v)
fi
else
(Recursively apply Conceptldent: fcation in a top-down fashion)
for each u € Children(v) do

T(u) = Conceptldentification(Tree(u), C)

od
fi
return X
end

Concepts are identified after tokenization. The rationale is that since tokenization
partially identifies objects describing a higher level object, applying concept instance
identification to tokens can improve the accuracy of identifying information that the

instances contain.
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If punctuation delimiters are not used consistently or certain punctuation delimiters
are not considered by tokenization, there may be more than one concept in a token.
This is the case when ConceptInstance By K eywords returns more than one (e, k) tu-

ple. Conceptldentification then decomposes this token into separate concept nodes.

If no concept can be associated with a token, the token is propagated to the attribute
val of its parent. The justification is that child nodes detail information of their parent
nodes. Propagating the token to its parent ensures that no textual content is lost,
and such information is kept in the proper context during the document restructuring

process.

3.2.3 Grouping Rule

After tokenization and concept identification, concepts are associated with text, and
they are arranged according to the HTML document tree. However, the tree structure
of the HTML document does not necessarily match its logical information content.
The purpose of the Grouping Rule is to restructure the document tree to reflect its

logical information content rather than its visual structure.

Certain block level HTML markup tags, called group tags, give hints to the grouping
of semantically related objects. For example, block elements (such as p or hr), list
elements (such as d1,ul), heading elements (such as hi, ... ,h6) and table elements

(such as tr,td) are often used to divide text into information objects of the same
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level of abstraction. Based on this observation, the Grouping Rule groups objects

belonging to the same level of semantic and logical abstraction as siblings.

The function Grouping realizes the Grouping Rule. It is applied to each node in the
document tree X in a top-down fashion. For each node v, we search for its first child
Ustort Whose label is one of the group tags group specified by the user. We locate its
next sibling node of the same label (or the last child of v if there isn’t any), ueng.
All sibling nodes between gyt and u.,q are grouped under a new node with the
temporary label GROUP as a child of ug.+. Groups of nodes related to the same level

of abstraction thus ”sink” in the document tree and are put into a logical nesting.

Concept constraints are taken into account so that restructuring does not violate any
known concept constraint, as implemented by the functions SinkViolateConstraint
and PushViolateConstraint. The function SinkV'iolateConstraint(L, parent, child, X)
ensures that appending child as a child of parent does not violate any concept con-
straint in L. The function PushViolateConstraint(L,node,X) ensures that replacing

the parent of node by node does not violate any concept constraint.
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Algorithm 3.7: Grouping

Function Grouping(X, group,L) : X

begin

v = X.root
(Locate the first child node of v labeled with a group tag.)
< uj...up, >= Children(X, v)
start =n
for:=1tondo

if u; € group

then
start =1

break

od
(”Sink” all siblings between. nodes of the same group tag into a subtree)
for end = start +1 to n do

(Locate the next sibling of Usiare labeled with the

same group tag or as the last child of v)

if Label(uena) = Label(ustart) V end ==n

then
g = Create(X, "GROUP")

for i = start + 1 to end do

if Label(u;) € X.EA (i == nV Label(u;) # Label(ustare) ) A
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~SinkViolateConstraint(L, Usqre, Ui, X)
then

AppendChild(g, u;)

od

AppendChild(usiart, g)

start = end

od
(Recursively apply Grouping in a top-down fashion)
for each u € Children(v) do
X = Grouping(Tree(u), group, L)
od
return X

end

Algorithm 3.8: SinkViolateConstraint

Function SinkViolateConstraint(L, parent, child,X) : boolean
begin
if <p1,pa2,...,Pk—1 >€ X A Label(p,) = a A pr_1 = parent
AN onAncestor Descendant(Label(child),a, k) € L
then

violate = true
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elsif v € Children(parent) A Label(v) = s
ANonSiblings(Label(child),s) € L
violate = true

elsif Depth(parent) + 1 > d A MazDepth(Label(chiid),d) € L
violate = true

elsif Depth(parent) + 1 < d A MinDepth(Label(child),d) € L
violate = true

else
violate = false

fi

return vzolate

end

Algorithm 3.9: PushViolateConstraint

Function PushViolateConstraint(L, node, X) : boolean
begin

gp = Parent(Parent(node))

if < node,ps, ...,pr >€ X A Label(pi) = desc

A NonAncestor Descendant(desc, Label(node), k) € L then
violate = true
elsif v € Children(gp) A Label(v) = s A NonSiblings(Label(node), s) € L
violate = true

elsif Depth(gp) + 1 > d A MazDepth(Label(child),d) € L
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violate = true

elsif Depth(gp) + 1 < d A MinDepth(Label(node),d) € L
violate = true

else
vtolate = false

fi

return violate

end

To further capture the hints given by HTML tags, a rank can be associated with each
group tag. For example, grouping right siblings of nodes marked with h1 has a higher
priority than grouping right sibling of nodes marked with p at the same level. Since
each group sinks down and the rule operates in a top-down fashion, groups related
to p nodes then will be considered at the next recursion. Function Grouping can be
refined to take this into account by searching for the group tag with the highest rank

among u; ...u, in the first for loop.

3.2.4 Consolidating Rules

The purpose of the Consolidating Rules is to replace nodes labeled with HTML tags

and nodes introduced temporarily (e.g., by the Grouping Rule) in the document tree
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by concept nodes. In doing so, it also restructures the tree so that it matches its

semantic and logical information content.

The Consolidating Rule is applied in a bottom-up fashion. Each non-concept node
is replaced by its children concept nodes. The manner it is replaced is based on four

observations.

e Rule 1: The first rule is based on the domain knowledge that if some HTML
tag exhibits a list structure (such as the list elements ul,dl or the table
element), its child nodes are likely to be information objects at the same level

of abstraction.

e Rule 2: A similar case is when sibling nodes carry the same XML element
name. This is justified by the Regular Intradocument Format Property (Sec-
tion 1.2.3) which states that within an information object, its content is de-
scribed regularly. For example, in the following tree, one can infer that there
are two groups of information objects DEGREE ,ORGANIZATION,DATE, THESIS and
DEGREE,ORGANIZATION,DATE,GPA under EDUCATION by recognizing the repeat-

ing concept nodes DEGREE.

<EDUCATION>
<DEGREE val='M.Sci."/>
<ORGANIZATION val="UCD"/>
<DATE val=%*1996"/>
<THESIS val="Semistructured Data"/>
<DEGREE val="B.Sci."/>
<ORGANIZATION val="Stanford University"/>
<DATE val="1994"/>
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<GPA val="3.9/4.0"/>
</EDUCATION>

e Rule 3: We can apply the same principle to the visual clues of HTML tags.
Sibling concept nodes can be grouped together if they are marked up in the
same way. For example, in the following tree, one can infer that there are two
groups of information objects under EDUCATION since they are both marked up

in the same way using the paragraph tag (p).

<EDUCATION>
<p>
<ADVISOR val="Dr. Dole"/>
<DEGREE val="M.Sci."/>
<ORGANIZATION val="UCD"/>
<DATE val="1996"/>
<THESIS val="Semistructured Data"/>
</p>
<p>
<DEGREE val="B.Sci."/>
<ORGANIZATION val="Stanford University"/>
<DATE val="1994"/>
<GPA val="3.9/4.0"/>
</p>
</EDUCATION>

e Rule 4: If none of the above cases applies, we can view the first object in a
group of objects as describing the concept of this group. This is analogous to
a topic sentence in which the first token describes the concept underlying the

sentence and the remaining tokens refine the concept.!

! Alternatively, an artificial node can be created as the parent of a group of concept nodes. We do

not choose this approach because this introduces many artificial nodes with no semantic information.
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These four rules are realized in the function Consolidating. The function is applied to
each node in the document tree X recursively in a bottom-up fashion. A concept node
is left as it is. A non-concept leaf node is deleted from the document tree. An internal
non-concept node is replaced by its child concept nodes by matching against the four
rules in consecutive order. According to Rule 1, if it is labeled with a list tag in 1ist,
it is replaced by all of its child nodes. According to Rule 2, sibling concept nodes
can be grouped by viewing repeating nodes of the same concept name as delimiters.
Child concept nodes of a node v are grouped together in this way with the first
concept node of each group being their representative. These groups then replace
the node v. To check if Rule 3 applies, when a concept node replaces a non-concept
node, Consolidating needs to keep track of the label of this non-concept node. We
introduce a new attribute prev for each concept node to store this information. This
information is necessary to identify groups of related sibling concept nodes that are
marked up in the same way, i.e. they replace non-concept nodes of the same label.
The mechanism to replace v by these concept nodes is the same as in Rule 2. If none
of the above rules applies, Rule 4 is used to replace v by its first concept child node.
Similar to the Grouping Rule, care is taken to ensure restructuring will not violate
any known constraints. As mentioned, since documents are authored by different
people, there may be document structures that violate concept constraints specified

by the user. These structures will be converted by the Document Transformer to

Moreover, it loses sight of the information that the first information object among the group carries

more weight compared with other information objects in the group.
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conform to a schema discovered by the Schema Miner. The schema does not violate

any concept constraints.

A pictorial explanation of the Consolidating Rule is to "push” up concept nodes to
their parents. The four rules make sure that the tree structure after consolidating

reflects the logical layout of its information content.

Algorithm 3.10: Consolidating

Function Consolidating(X, 1ist,L) : X
begin
v = X.root
(Recursively apply Consolidating in a bottom-up fashion)
for each u € Children(v) do
T(u) = Consolidating(T(u), list)
od
(Do not replace a concept node)
if Label(v) € XE
then
return X
fi
(Delete leaf non-concept nodes)
if IsLeaf(v)

then
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Delete(v)
return X
il
< uy---u, >= Children(v)
(Rule 1: v is labeled with a list tag)
if Label(v) € 1ist
then
refNode = v
for: =1 tondo
InsertAfter(u;, ref Node)
u;.prev = Label(v)
ref Node = u;
od
Delete(v)
return X
fi
(Rule 2: Children of v are grouped together by
viewing repeating concept names as delimiters)
start =1
found = false
for end = start +1 to n do
if Label(tena) = Label(usiart)

then
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found = true
for : = start + 1 to end do
if ~SinkViolateConstraint(L, u;, Ustart, X)
A(Label(u;) # Label(usar:) V it == end)
then
AppendChild(usiare, Ui)
fi
od

start = end

fi
od
if found == true
then
X = PushUpChild(v,X)
return X
fi

(Rule 8: Children of v are grouped if they are marked up in the same way)
start =1
found = false
for end = start +1 to n do
if Ueng-prev = Ustars-prev
then

found = true
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for i = start + 1 to end do
if ~SinkViolateConstraint(L, u;, Ustart, X)
A(Label(u;) # Label(ustert) V 7 == end)
then

Appe’ndChild(usmrt ) ui)

od

start = end

od
if found == true
then

PushUpChild(v, X)

return X
fi
(Rule 4: Replace v by its first concept child node that
does not violate any constraint)
found = false
fori=1tondo

if ~PushViolateConstraint(L, u;, X)
then
found = true

InsertAfter(uy,v)
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u.prev = Label(v)
break
fi
od
(Cannot locate a child node that does not violate any constraint.
Push all children up.)
if found == false
then
PushUpChild(v, X)
fi
Delete(v)
return X

end

Algorithm 3.11: PushUpChild

Function PushUpChild(v,X) : X
begin
if ~IsLeaf(v)
then
< Uy Uy >= Children(v)
refNode = v
for i =1 tomdo

InsertA fter(u;, v)
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u;.prev = Label(v)

ref Node = u;
od
Delete(v)
fi
return X
end

3.3 Evaluation

In this section, we present an empirical study and some analytical results about the

Document Converter.

3.3.1 Computational Complexity

We give an analysis of the computational complexity of the function

DocumentConversion. We assume a unit cost model of the operations on an XML
document tree. Since punc (punctuation delimiters) is bound by the total number of
characters, the set is usually small in size. We can hash the punctuation delimiters so
that checking if a character is a punctuation delimiter can be done in constant time.

Similarly, group and list (group and list tags) are bound by the total number of
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HTML tags, checking if a label of a node is a group or list tag can be done in constant
time. Let svc and pvc denote the time for each call to SinkViolateConstraint and

PushViolateConstraint, respectively.

Tokenization: Consider the function Tokenization. For each node v, it scans the
characters in v.val once. The function is recursively applied to the nodes in X in a
top-down manner. Only the tree structure of text nodes is modified by appending
new "TOKEN" nodes. But Tokenization is not recursively applied to these text nodes.
Hence, Tokenization is applied to each node once. The time complexity thus is
O(Zyex | v.val |) which is the sum of the lengths of the attributes val of all nodes in

X, i.e. the size of the text nodes in the document.

Conceptldentification: Consider the function Conceptldentification. For each v,
concepts are identified from v.val. A new node is created for each concept and is
appended as child to v. Let ci(tezt) denote the time of identifying concepts from text
(either by ConceptInstanceByKeywords or ConceptInstance ByBayes). This takes
O(ci(v.val)) time. Using a similar argument as in Tokenization,

Conceptldentification is applied to each node in X once. Hence, the time is bound

by O(Z,exci(v.val)).

Grouping: For each node v, the function Grouping scans its child nodes. Nothing
is done to a child node unless it is a right sibling node of some node labeled with &
group tag. In such a case, it is pushed down in the tree. Concept constraints are

checked for concept nodes to make sure there are no violations.
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The complication here is that the input document tree X increases in size and in
depth as new GROUP nodes are created and sibling nodes of v are pushed down the
tree. Hence, after a concept node is pushed down in the tree, it may be checked for
concept constraint violations again in the next recursion. Similarly, a non-concept

node may be matched for a group tag or pushed down the tree more than once.

Let X’ denote the resulting document tree after applying Grouping to X. The following

relationship can be observed between X and X’
(1) Deg(X’) < Deg(X)

(2) Depth(X’) < Deg(X)Depth(X)
B) [X|<2[X]

The degree of X’ cannot be greater than that of X because at each recursion, only
a subset of child nodes of v are pushed down which results in a decrease in fan-out.
When child nodes of v are pushed down the tree, the tree increases in depth by 2.
However, this can only occur when there are at least 2 matching child nodes of v
with the same group tag. At each recursion, there are at most Deg(v)/2 such pairs,
which leads to at most (Deg(v)/2)*2=Deg(v) increase in depth in X’. The size of X’
can increase by at most a factor of 2 in the case that each child node of v leads to a

creation of a new node labeled with GROUP.

Let us consider the cost of checking constraint violations. We use the following

notations:
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e [: the number of times the child nodes of the node v are pushed down two
levels (one for the GROUP node, the other for the sibling nodes) by subsequent

recursions in Grouping
e g: the number of child nodes of v which are not concept nodes
e n: the number of child nodes of v which are concept nodes

e d: the total number of child nodes of v, i.e. d=g+n

At each iteration, we push some child nodes of v down the tree only if we find at
least a pair of child nodes labeled with the same group tag. There are at most £ such
pairs. Thus, we have

I <

N Q

Constraint violations are only checked for concept nodes. No new concept nodes
are created by Grouping. At each level, at most n nodes are checked for constraint
violations. Since there are [ levels, the number of times SinkViolateConstraints is

called is bound by
in <9< 9{d—g)

-2~ 2
Consider the function f(g) = %—i). Differentiating f(g) gives us a local maxi-
mum of f(g) at go = % with f(go) = ‘g—z which is the maximum number of times

SinkViolateConstraints is called at each node v. The cost of calling

SinkViolateConstraint for the whole tree is thus bound by

Deg(x)?
8

Deg(X)*

svc| X | 3

< 2svc| X |
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A child node of v that is not a node labeled with the chosen group tag may be
matched against the group tags and pushed down in the tree. All these are unit cost
operations. Applying a similar analysis, the total cost of such operations for all these

nodes is O(Deg(X)?| X |). The total time for Grouping is thus O(svc Deg(X)?| X |).

Consolidating: For each node v, the function Consolidating only restructures
it if v is an internal non-concept node. In Rule 1, v is replaced by all its child
nodes, which takes O(Deg(v)) time. Rule 2 and 3 are similar to Grouping which
takes O(svc Deg(v)) time. In Rule 4, its child nodes are scanned and it is re-
placed by the first child node that does not violate any constraint. The time is
thus O(pvc Deg(v)). Consolidating is applied to each node in X’ once. The total
time is thus O(Maz{svec, pvc}Deg(X?)| X’ |) which in turn is bound by
O(Maz{svc, puc}Deg(X)| X |)-

Constraint Violations: Consider the function SinkViolateConstraint. This re-
quires evaluating each predicate in L. If the predicate is of type MazDepth or
MinDepth, constraints can be checked in constant time. If the predicate is of type
NonSiblings, constraints can be checked in Deg(X) time. If the predicate is of type
NonAncestor Descendant, constraints can be checked in Depth(X) time. This gives

the upper bound O(| C | (Deg(X) + Depth(X))).

Consider the function PushViolateConstraint. This is similar to
SinkViolateConstraint. The difference is in checking NonAncestor Descendant.

Now we need to check all the descendants of node within & levels where k is the max-
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imum level in NonAncestor Descendant predicates in L. This is bound by Deg(X)*.
The time complexity is bound by O(| C | (Deg(X) + Depth(X)*)).

Summing up, we have the following time complexity of the whole document conversion

process:

Theorem 3.1 (Time Complexity of Document Conversion). Given a document
tree X and a set of concept constraints L. Let k denote the mazimum level specified in
NonAncestor Descendant(a, d, k) in L. Let ci(text) denote the time it takes to call the
function ConceptInstance for concept identification. The time complezity of calling

DocumentConversion on X is bound by
O(Buerci(v.val)+ | C| (Deg(X)? + Depth(X)*)Deg(X)| X |))
If no concept constraint is specified, the time complexity is reduced to
O(Zyexci(v.val) + Deg(X)?| X |)

which is linear to the size of the document. O

3.3.2 Empirical Study

We conducted empirical experiments on the efficiency and effectiveness of the Docu-
ment Converter on résumés documents gathered using IBM’s Grand Central Station
web crawler focused on crawling for résumés ([IBM97]). This crawler was programmed

to crawl the Web looking for HTML documents that looked like résumés. We ran our
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experiments on a Pentium 266MHz processor with 196MB main memory and 512KB

cache.

We consider 24 concepts. Concept instances are based on a total of 233 keywords.
Punctuation delimiters for tokenization are “,", "“:", ";". Group tags for the
Grouping Rule are h1,h2,h3,h4,h5,h6, div,p,tr,dt,dd, 1i,title,u, strong,b,
em, i. List tags for the Consolidating Rule were body,table,dl, ul,ol, dir,menu.

No concept constraints were specified.

3.3.2.1 Efficiency

We ran the algorithm on 100 HTML documents to evaluate the average running time
on a single document. The average number of nodes of a HTML document in the
dataset is 203 of which 52 are concept nodes. The average file size is 11.7 KB. The

average running time was found to be 0.53 seconds.

3.3.2.2 Scalability

We measure the scalability of the data extraction process with respect to the sizes
of the HTML documents and the number of concept nodes. Results are shown in
Figures 3.1 and 3.2. The numbers demonstrate that the running time scales linearly

with the document sizes and the number of concept nodes.
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Let us compare it with the analytical result of the time complexity in the case that

there are no concept constraints: O(T,exci(v.val) + Deg(X)?| X|). The document

sizes give an estimate on the first component in the formula. The number of concept

nodes partially describes the second component. The result of the empirical study

demonstrates that, in practice, the number of fan-outs of the document tree is not

significant. This is because, in practice, fan-outs of documents are typically not very

large and they can be considered as a constant.
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3.3.3 Accuracy

In order to evaluate the accuracy of the Document Converter, we count the number of
incorrect parent-child and sibling relationships in the converted XML tree by manually
inspecting it against the author’s perception on how the information content of the
document should be according to its visual layout. We reorder the nodes in the tree
in order to convert it to a tree matching the semantics of the original document. In
doing so, we may move a node and its siblings together to make up for one parent-
child relationship incorrectly identified. This is counted as one logical error since it

corresponds to the same parent-child relationship.

The Document Converter takes 50 résumé documents. The XML documents com-
puted by the Document Converter are compared to the logical layout of the informa-
tion content of the résumés based on the author’s perception. The XML documents
are restructured to match their logical layout. The number of logical errors gives the

number of errors in the document conversion process.

The result is shown in Figure 3.3. The average number of errors in each HTML
document is 3.9. The average number of concept nodes in a HTML document is 53.7.
The average percentage of error nodes in a HTML document with respect to the total
number of concept nodes is 9.2%. In other words, our heuristics has an accuracy of

90.8%.
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Accuracy
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Figure 3.3: Accuracy - Percentage of Errors

3.4 Related Work

In this section, we first give an overview of related work in the area of extracting

information from documents. Then, we compare the Document Converter with these

approaches.

3.4.1 Classification

Our work is related to middleware systems which consist of heterogeneous distributed

data sources. Each data source may have its own schema in its own data model. A
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wrapper for a data source translates its data into a common data model. Interaction
with the data sources is transparent to users who only have a global view of the data
sources. A mediator takes user queries in the global view, decomposes them into
subqueries to relevant wrappers, and merges the subquery results from the wrappers
before presenting them to users. Common middleware systems include Information
Manifold [LRO96], TSIMMIS [HGMI*95], Garlic [CHS%95], Ozone [LAW99] and MIX
[PV99].

Topic specific HTML documents can be viewed as local data sources with their own
schema. Translating the HTML documents into XML documents marked up in ho-

mogeneous topic specific XML tags is the ”wrapping” phase.

There are quite a number of wrappers methods proposed in research literature that
extract data from HTML documents ([PGMU96, HGMC*97, SA99, CDSS98, Ade98,
AK97, DYKRO00, ECJ*98, Kus00]).

These wrappers can be classified according to several criteria. One dimension is
the degree of automation of wrapper generation. Manual wrappers require users
to specify how to extract data from HTML documents. Their goal is to provide a
language to facilitate the specification process. These include MedMaker [PGMU96],
[HGMC197], Editor [AM97], WA4F [SA99] and YAT [CDSS98]. Some wrappers can
be generated automatically, such as [Ade98, ECJ*98, Kus00, DYKRO00]. Users give
examples on the data extraction process or specify the structure of the data sources,

and then the system learns the extraction rules.



CHAPTER 3. CONVERTING HTML DOCUMENTS TO XML FORM 93

Manual wrappers can be compared by the expressiveness of their wrapping language.
[HGMC™*97] uses regular expressions for pattern matching to specify extraction rules.
In Editor [AM97], extraction rules are implemented as a procedural program using
operators that can match strings in the document using regular expressions. W4F
[SA99] allows path expressions in its wrapper language to facilitate navigation in
HTML trees. MedMaker proposes a declarative Datalog-like rule-based language on
OEM data [NUWC97] which can consider the tree structures of HTML documents.
Similar to MedMaker, YAT proposes a declarative rule-based language on SGML

data, with additional support for collections, order and grouping.

Automatic wrappers can be compared by the domain knowledge they consider. All
of these wrappers assume that the data sources are relatively homogeneous, i.e. all
the records in an HTML document or all HTML documents follow a particular struc-
ture. NoDoSE [Ade98| requires users to specify a schema for the records in form of
templates and to give examples on how to extract data to fill these templates. The
system can learn the extraction rules based on the examples. [AK97] uses heuris-
tics to locate records based on the format and tree structures of HTML documents.
[ECJ*98]| assumes there is an ontology for the application which gives a schema for a
database and specifies how entities in the ontology can be identified. They populate
the database according to the ontology. Heuristics (based on HTML tags, fan-out of
nodes in HTML trees, record sizes, repeating markup sequences and ontology) are
used to locate record boundaries in HTML documents. [Kus00] assumes the records

are in a form described by 6 wrapper classes. It learns how to extract records for each



CHAPTER 3. CONVERTING HTML DOCUMENTS TO XML FORM 94

type of wrapper class. From the examples given by users, [DYKRO00] learns regular

expressions that can extract data correctly from documents of similar format.

3.4.2 Comparison

The Document Converter is an automatic wrapper employing a wide spectrum of
domain-independent heuristics with an explicit, optional mechanism to capture do-

main knowledge.

The Document Converter offers several advantages over manual wrappers [ HGMC*+97,
SA99, PGMU96, CDSS98]. The problems of manual wrappers are: (1) They assume
the data are in a known format (or a couple of variants of the same format). They
are applicable for data generated by the same data source. Data gathered from the
Web, however, are too diverse to follow the same or even similar format. (2) They
cannot handle dynamics of the data. The format of the data from a given source may
change over time. Every change of format would require a new handcrafted wrapper
requiring too much human resources to generate. Unlike these manual wrappers,
the data extraction process in the Document Converter is independent of the actual
format of the data. The heuristics of visual clues used by the Document Converter
are general enough to be applicable to diverse sources of data. The samples required
to train the Bayes classifier as to how to associate text with label are domain-specific.
Such information is independent of the data sources and is relatively stable. For

instance, there are only 12 months in a year for the label DATE.
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Automatic wrappers ([Ade98, AK97, Kus00, DYKROO]) assume that records in a
document or the documents follow the same structure. NoDoSE requires users to
specify this structure as a class template. [Kus00] supplies six system-defined classes
of wrappers. The Document Converter does not assume that the records in different
documents following the same structure. It only assumes that records within a doc-
ument follow some regular pattern. This is a reasonable assumption because usually
there is only one person authoring an HTML document and the information content

is presented in a consistent way.

A design issue with automatic wrappers is the balance between being independent
of the domain and the capability to capture domain knowledge. To strike a bal-
ance between these two, the Document Converter uses the strategy of incorporating
a broad-spectrum of domain-independent heuristics, and provides an explicit mecha-
nism for users to specify domain knowledge. Domain knowledge is optional but not

required.

The Document Converter is selective in its choice of heuristics so that they are general
enough to be applicable to a wide range of applications. It considers the format of the
HTML documents, the format clues of HTML markup tags and the tree structure
of the documents. All of these are relatively domain-independent. Although the
heuristics are not new to the literature, we are not aware of any system that has

incorporated all these domain-independent features.
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Unlike [ECJ*98] which requires a known ontology of an application for the extraction
process, domain knowledge is optional but not required for the Document Converter.
It provides an explicit constraint mechanism to allow users to specify domain knowl-
edge. The constraint mechanism is simple, flexible and easily extensible. We do
not adopt an elaborate mechanism (such as ontology or natural language parser) to
specify domain knowledge because data from diverse sources are too heterogeneous
to bear complicated relationships. Even if they do, it is unlikely that users are aware

of such relationships.

The quality of the converted XML documents depends on the number of concepts
specified by the user and the examples or keywords associated with the concepts. If
the Bayes classifier is used to recognize concepts, it is important that there are enough

training data to train the Bayes classifier.

Reference Input Output Automatic? Wrapper Language/Domain Knowledge
(HGMC*97] | HTML OEM N regular expression
[AM97] HTML HTML N regular expression
[SA99] HTML Nested String List, XML N path expression
[CDsS98] HTML HTML N declarative rule-based language on SGML data
/ODMG /ODMG
PGMU96] OEM data OEM data N declarative rule-based language on OEM data
[Adess] text hierarchy of class instances Y class template definition
[AK97] HTML tree-structure spec Y lang. in reg. exp. & procedures
considers HTML tree & format
[ECJItag) text database instance Y ontology, HTML tags, fan-out of nodes, record sizes
[Kus00] HTML (label, value) pairs Y 6 wrapper classes
[DYKROO0] HTML regular expressions Y none
Quixote HTML XML Y document format, HTML tags
document tree structure, constraints

Figure 3.4: Comparison of Wrapper Methods
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Chapter 4

Schema Mining

Chapter 3 described how the Document Converter converts a collection of topic spe-
cific HTML documents into XML documents using topic specific tags. This chapter
describes how a global schema for this collection of XML documents is discovered. We
propose the notion of majority schema which describes prevalent structures among
the documents as their global schema [CS00]. Majority schemas give users unfamiliar
with the documents a bird’s eye view of the documents. They can be used to optimize
storage. Nodes in a document that are close in proximity in the majority schema are
likely to be accessed together and thus can be stored together. They can be used for
indexing. Nodes in the majority schema with the high support are most commonly

found and can be indexed for more efficient retrieval.
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In Section 4.1, we motivate the notion of majority schema. The formal definition of
a majority schema and the schema discovery problem is then given. In Section 4.2,
we describe how the Schema Miner discovers a majority schema for a collection of
topic specific XML documents. By using the simple formalism of a tree schema, an
initial majority schema is discovered efficiently. This initial majority schema is then
further refined to derive its corresponding DTD. In Section 4.3, we present analytical
and empirical results on the efficiency and feasibility of the Schema Miner. In Section

4.4, we describe related work and compare the Schema Miner to these approaches.

4.1 Problem Formulation

In Section 4.1.1, we introduce the notion of majority schema and motivate the use
of a tree schema as its formalism. In Section 4.1.2, we give a formal definition of a

majority schema and the schema discovery problem.

4.1.1 Majority Schema

Due to the heterogeneity among a collection of XML documents, an exact schema for
the documents, i.e. a schema that describes all structures found in the documents
and these structures only, may be too big in size. One way to reduce the size is to

have an approximate schema which makes more general statements on the document
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structures, i.e. it may cover structures not found in any of the documents or make
no statement on structures of the elements if there are too many variants. This kind
of approximate schema may convey little information for a heterogeneous collection

of documents.

In view of this, we propose the notion of majority schema which describes only preva-
lent structures in the documents. Unlike an exact schema, a majority schema is small
in size. It is an approximate schema which only covers prevalent structures in the
documents. It covers the portion of the structures that are prevalent and hence

representative for the collection of documents.

Since we are interested in the structures of the documents, we take the document-
centric view on XML documents as opposed to the data-centric view (see Infoset
versus the OEM data model in Section 2.1.1). Therefore, we choose DTD as the
formalism for the majority schema. Since a majority schema describes only prevalent
structures among the documents, we can first infer an initial majority schema with
certain information deliberately ignored. Missing details are filled in later to con-
vert the majority schema to a DTD. Hence, we can use a tree schema which is less

expressive than a DTD as the formalism for the majority schema.
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4.1.2 Problem Definition

We assume a set of element names (labels) E, a set of attribute names A, and a set of

string values S which is the type of all atomic values.

The input is a collection of XML documents X = {X;,...,X,} pertaining to a specific

topic, i.e. VX;,X; € X': (Label(X;.root) = Label(X;.root)).

Similar to [WL99, WL98, NAM97|, we use the occurrences, also called support, of a
label path (Definition 2.4) among the documents to measure how prevalent it is. To
avoid bias towards large XML documents and to normalize the measure for compari-
son, we refine the definition of support by the ratio of documents containing the label

path.

Definition 4.1 (Support). Given an XML document X and a label path p. The

support of p in X is

v|v € XA Label Path(v) =
Support(p,)()::]{ | I{UIUGX}l() p}leR[O,l]

Given a collection of XML documents X and a label path p. The support of p in X

18
_|{Xx|lpexxe x}|

Support(p, X) := (X[ XE XT] € R[0, 1]

We may use the shorthand Support(p) if the collection of documents is clear from the

context. a
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The higher the support, the more common the label path is in the collection of

documents. It is used to select prevalent structures from the documents.

Since the support of a label path typically decreases with its length (i.e. if p is a
subpath of g, Support(p, X) > Support(g, X)), a more practical measure would be

the ratio of the support of the label path and its 1-subpath, called its support ratio.

Definition 4.2 (Support Ratio). Given a collection of XML documents X and a

label path p. The support ratio of p is defined as follows:

’

Support(p,X) )

Suppo‘r:‘(?:;pazt’h(p,l),x) iflp|>2

SupportRatio(p, X) := ¢ 1 iflpl=1
L otherwise

\

A label path with high enough support and support ratio is called a frequent label

path.

Definition 4.3 (Frequent Label Path, Maximal Frequent Label Path). Given
a collection of XML documents X, and parameters supT hreshold, ratioThreshold €
R0, 1]. A label path p is a frequent label path in X at [supT hreshold, ratioT hreshold)
iff the followings hold:
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e p 1s a valid label path in X, i.e. pE X
e p has high enough support:

Support(p, X) > supT hreshold

e All subpaths of p have a high enough support ratio:

Vk € Z: (¢ = Subpath(p, k) A supportRatio(q, X') > ratioT hreshold)

Let FreqLP (X, supThreshold ,ratioT hreshold) denote the set of frequent label paths
for X at supThreshold, ratioT hreshold, or FreqLP(X) when the contezt for

supT hreshold, ratioT hreshold is clear. A frequent label path p is a maximal frequent
label path in X if there are no other frequent label paths in X which are superpaths of
p. The set P of mazimal frequent label paths for X at [supT hreshold, ratioThreshold)

consists of all mazimal frequent label paths, i.e.,
P ={p| (p € FreqLP(X, supThreshold, ratioT hreshold)\

(-3¢ € X,k € Z": (p = Subpath(q,k) A q € FreqLP(X))))}

The higher the values for parameters supThreshold and ratioT hreshold, the more
selective is the criteria of determining a path being a frequent label path. Empirical
studies described in Section 4.3.2.2 show that supT hreshold > 0.6, ratioT hreshold >
0.2 are reasonable choices. The user can first take a small sample of the collection of

documents to determine suitable values for these parameters.
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Intuitively, a majority schema is a schema that represents the structures shared by
the majority of the documents which are their frequent label paths. We represent a
majority schema as a tree schema. A tree schema is an unordered tree with a one-
to-one correspondence to a set of label paths. Thus, a majority schema is the tree
schema built from the set of maximal frequent label paths of the documents. A tree

schema can easily be converted to a DTD (Section 2.3.3).

Definition 4.4 (Majority Schema). Given a collection of XML documents X and
parameters supT hreshold, ratioT hreshold. Let P denote the set of mazimal frequent
label paths of X at [supThreshold, ratioThreshold]. A majority schema S for X at

[supThreshold, ratioT hreshold] is a tree schema S built from P

S = Paths2Tree(P)

The parameters supT hreshold and ratioThreshold are used to adjust the degree of
precision of the majority schema. In particular, supT hreshold = 0 and ratioT hreshold =
0 give a majority schema that encompasses structures found in any document in X,

i.e. a schema with maximum degree of precision.

Schema Discovery Problem:

Given a collection of XML documents X and parameters supThreshold,
ratioThreshold € R[0, 1]. The schema discovery problem

SDP(X, supT hreshold, ratioThreshold] is to compute the majority schema

S of X at [supT hreshold, ratioThreshold] and its DTD representation.



CHAPTER 4. SCHEMA MINING 104

4.2 Approach

In this section, we describe the approach taken by the Schema Miner. The schema
mining process is guided by the intuition that imprecise data modeling reveals preva-
lent structures in the underlying data. We deliberately ignore certain information in
the discovery process. After we infer an initial majority schema, we fill in the missing

details to convert the majority schema to a DTD.

Section 4.2.1 describes the basic algorithm to compute an initial majority schema.
Section 4.2.2 describes how domain knowledge (Section 3.1) can be utilized to optimize
the discovery process. Since there may be a couple of typical ways of marking up the
documents, the majority schema may contain structures that are slightly different
but actually describe similar information content. Section 4.2.3 describes a method
to homogenize the majority schema, if necessary. Finally, Section 4.2.4 describes how
the content model of the elements in the DTD derived from the majority schema can

be discovered.

4.2.1 Computing Frequent Label Paths

In this section, we give the basic algorithm to compute an initial majority schema
for a collection of documents X. The set of maximal frequent label paths for the

documents can be obtained by exhaustively enumerating all label paths, as described
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by the function BasicCFP!. In BasicCF P, all label paths of increasing lengths up

to the length of the longest label path in X are enumerated. The search space thus is
P ={p|lpe X}

It considers label paths in & of increasing length by extending a label path p of length

din P to q.

Similar to the Apriori algorithm in computing frequent itemsets [AS94], a label path
cannot be a frequent label path if one of its subpath is not a frequent label path. If
the support of a label path is below supThreshold, so would be the support of any
of its superpaths. Any subpath of a frequent label path has to have a high enough
support ratio. Therefore, in the for loops in BasicCF P, a label path ¢ is added to
P only if it has high enough support. Since we only want maximal label paths, if a

label path ¢ is added to P, its subpaths cannot be maximal and are pruned from P.

Albeit the function BasicCF P is presented in a procedural language, query languages

on XML data such as [CRF00] can be used to implement the function.

Algorithm 4.12: BasicCFP

Function BasicCFP(X, supThreshold, ratioT hreshold) : X
begin

P ={X.root | X € X}

mazPathLength = Maz{|p||p € X}

Tt stands for Basic Compute Frequent Path
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for d =1 to maxPathLength do
foreachpe PA|p|=ddo
(Extend p by one label e)
extend = false
for each g =poe€ X do
(Apriori condition: Only add a frequent label path)
if Support(q, X) > supThresholdA
SupportRatio(q, X) > ratioT hreshold
then
P =PU{q¢}

extend = true

od
if extend = true
then

P =P —{p}

return Paths2Tree(P)

end
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4.2.2 Using Domain Knowledge

If users specify domain knowledge (Section 3.1) on the structures of concepts in a
topic, the schema discovery process can be improved by utilizing such information
to improve the quality of the schema discovered. To reiterate, domain knowledge
is specified in a first order predicate logic language with the following predicates to

constrain permissible structures in a tree schema:

e MazDepth(e,d) is true iff the depth of the label e cannot be larger than d.
e MinDepth(e,d) is true iff the depth of the label e cannot be smaller than d.

e NonAncestor Descendant(ey, e, level) is true if the label e; cannot be a descen-
dant of the label e; in a schema within level levels. In particular, if level = oo,
ez cannot be a descendant of e,. If level = 1, e, cannot be an immediate child

of e;.

e NonSiblings(e;, ez) is true if the labels e;, e; cannot be siblings in a tree schema.

The function BasicCF P is refined to DomKnowCF P to take into consideration the
domain knowledge L which is a set of predicates. The function DomKnowCFP is
similar to BasicCF P with additional procedures to check for violation of constraints
in L. If a label path violates some constraint, it is not added to P. In other words,
if the candidate path ¢ violates a constraint, DomKnowCFP continues the next

iteration to look for another candidate path. The order of extending a label path
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by labels is nondeterministic. Such an order has an impact on the majority schema
discovered if there is a violation of sibling constraints. If two candidate label paths

violate a sibling constraint, the first label path considered would be added to P.

Algorithm 4.13: DomKnowCFP

Function DomKnowCF P(X, supThreshold, ratioT hreshold,L) : X
begin
P = {X.root [ X € X}
mazPathLength = Maz{|p | p€X € X}
for d = 1 to mazPathLength do
foreachp=p;o...op; € P do
extend = false
(Extend p by one label €)
for each g =poe€ X do
(Check if e satisfies MaxDepth and MinDepth constraints)
if 3md € Z: (MazDepth(e,md) A d > md)
then
continue
elsif Imd € Z: (MinDepth(e,md) A d < md)
continue
i
(Check if q satisfies NonAncestorDescendant constraints)

fori=1toddo



CHAPTER 4. SCHEMA MINING 109

if Jlevel € Z: (—~NonAncestor Descendant(p;, e, level)A
d—1 < level)
then

continue

od
(Check if q satisfies NonSiblings constraints)
for eachpoe' € P do
if =NonSiblings(e', e)
then
continue
i
od
(Apriori condition: Only add a frequent label path)
if Support(q, X) > supThreshold
ASupportRatio(q, X) > ratioThreshold
then
P =PU{q¢}

extend = true

od
if extend = true

then
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P=P—{p}
fi
od
od
return Paths2Tree(P)
end

4.2.3 Unification

A majority schema may contain of similar subtree structures. This arises because
there may be a couple of typical ways to markup a document pertaining to a specific
topic. For example, the document fragments shown below describe the educational
background in similar but exactly the same way. Since we are interested in a schema
giving a concise uniform view over the documents, it is desirable to unify the het-
erogeneity. The user should investigate the majority schema to decide if unification
is necessary. The user can inspect if there are similar sibling nodes in the majority
schema starting from the root. Presence of such nodes is indicative of the need for

unification.

Resume 1
<EDUCATION val="Educational Background">
<DEGREE val="M.Sci.(Comp.Sci.)">
<DATE val="1999"/>
<ORGANIZATION val="UC Davis"/>
<THESIS val="Semistructured Data"/>
</DEGREE>
</EDUCATION>
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Resume 2
<EDUCATION val="Academic Background">
<DEGREE val="B.Sci.(Comp.Sci.)">
<ORGANIZATION val="Stanford University"/>
<GPA val="3.7/4.0"/>
<DATE val="1997"/>
</DEGREE>
</EDUCATION>

The approach to unify similar subtrees is based on the tree edit problem which has
a known solution. We first describe the tree edit problem in Section 4.2.3.1. Section
4.2.3.2 discusses how similar subtrees in a majority schema can be identified by making
use of the tree edit algorithm. Section 4.2.3.3 describes how two similar subtrees can
be merged into one. Finally, the overall unification process is presented in Section

4.2.3.4 in which similar subtrees in the majority schema are continuously merged.

4.2.3.1 Tree Edit Problem

The tree edit algorithm describes how to transform a source tree into a target tree
with minimum cost of modifications. The source tree can be transformed into the
target tree using three edit operators: (1) Insert operator: a vertex can be inserted
into the source tree, (2) Delete operator: a vertex can be deleted from the source
tree, (3) Rename operator: a vertex in the source tree can be mapped to another
vertex in the target tree. If the vertex in the source tree has a different label than the

one in the target tree, the vertex in the source tree is renamed. Each edit operator is
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associated with a cost which is described by a cost model. An edit sequence describes
the sequence of edit operations to transform the source tree into the target tree. The
cost of the transformation is the sum of the cost of the edit operators in the edit
sequence. The tree edit problem is to find the edit sequence with the minimum cost,

called the tree edit distance of the two trees.

There are several properties of an edit sequence. (1) The root of the source tree is
always mapped to the root of the target tree. (2) The mapping is one-to-one. (3)
The mapping preserves ancestor-descendant relationships, i.e. if the vertex u is an
ancestor of the vertex v in the source tree, the vertex to which » is mapped cannot be

a descendant of the vertex to which v is mapped (if there is any) in the target tree.

The tree edit problem has been well-studied in the literature [Tai79, Lu79, Zha96].
Let T1,T> be the source and target tree respectively. [Tai79] presents an algorithm

on ordered trees with time complexity
O(| Tt || T; | Depth(T1)? Depth(T»)*)
[Lu79] improves the algorithm to
O(| T || T2 | min{Depth(T1), Leaves(T,)} min{Depth(T:), Leaves(T2)})

where Leaves(T') denotes the number of leaf vertices in 7. [Zha96] considers the tree

edit problem on unordered trees. The complexity of the algorithm is

O(| T1 || T2 |(Degree(T1) + Degree(T»)) log(Degree(T}) + Degree(T3)))
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We can apply one of these algorithms to solve the tree edit problem. We view a tree
edit algorithm as a black box. The input to a tree edit algorithm are the source tree
T, the target tree T, and the cost model C of the edit operators. The algorithm
outputs the mapping of vertices in T; to those in T, (called tree edit mapping), denoted
as v : T1.V — T5.V. v(v) = u means the vertex v in the source tree 7} is mapped to
the vertex u in the target tree T5. If the label of v is different than that of u, v is
renamed to u. If w =1, it means v is deleted and hence is not mapped to any vertex

in T5. A vertex in 75 to which no vertex in 77 has been mapped is an inserted node.

The tree edit algorithm TreeEdit(T1,T3,C) transforms the source tree 77 into the
target tree 75 under the cost model C. It computes a mapping v between nodes in
T, and T5 that gives the minimum cost of transformation. Let TreeEditDist(1,Ts)
be a function computed by the algorithm that gives the total cost of transforming 7}

to Tg.

Based on the mapping computed by a tree edit algorithm, we can define a " boundary
box” of a node in the source tree (Figure 4.1). Since the root of the source tree T}
is always mapped to the root of the target tree 15, if we walk from any vertex v in
T to its root, we will find at least one vertex that is mapped to T5. Let the one with
the greatest depth be the reference ancestor of v?, denoted as Ref Ancestor(v,v) (or
simply RefAncestor(v), if the mapping is clear from the context). Consider one of

the child nodes of v. As we traverse from v along the path from this child node to

21t is the nearest ancestor of v with a vertex in the target tree that is mapped (referenced) to it

by the tree edit algorithm.
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the leaf in 7}, we may find vertices that are mapped. If there is any of such vertices,
we denote the one with the smallest depth the reference descendant of v. Since there
may be more than one path from v down to the leaves of the tree, v may have more
than one reference descendant or none at all. Let RefDescendants(v) denote the
set of reference descendants of v. Similarly, let RefSiblings(v) denote the siblings of
v that are mapped. The reference ancestor, siblings and descendants of the node v
make up the boundary box of v.
—
\“‘ j
<

(\ a

) W‘ i
_\\. .
( (&

Figure 4.1: Boundary box of a node - The boundary box of the node v consists of its

—

reference ancestor a, its reference siblings s;, s» and its reference descendants d;, dp,d3, ds.
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4.2.3.2 Identify Similar Subtrees

To identify similar subtrees in a majority schema, we use the tree edit distance to
define a quantitative measure, called tree distance measure, on the similarity between
any two subtrees. The costs of the edit operators Insert, Delete are unit costs.
Because of the Synonyms Property (Section 1.2.3), the cost of the Replace operator
is infinite so that a vertex in the source tree can only be mapped to one with the

same label in the target tree.

The tree distance measure between two trees is their tree edit distance, normalized
by the sum of the sizes of the two trees (since one tree can always be obtained from
the other by deleting all its nodes and inserting nodes of the other tree, which gives

an upper bound on their edit distance).

Definition 4.5 (Tree Distance Measure). Given two XML documents or docu-
ment fragments X1, X2 and a user-defined parameter distThreshold € R[0,1]. The

tree distance measure between Xi, X, is

TreeEditDist( X, X5)
| X1V |+ | Xo. V|

TreeDist(X,, X2) := € R[0,1]

where TreeEditDist is the tree edit distance to transform X, to X, with unit cost for

Insert and Delete operators and infinite cost for the Replace operator.

X1, X, are structurally similar at distThreshold, denoted as
Similar(X,, X,, distThreshold) if TreeDist(X;, X,) < distThreshold. O
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In computing the tree edit distance, a technical nuance is that the root of one tree is
always mapped to the root of the other. Since the roots may have different labels, it
may not be desirable to map one to the other. This can be fixed by adding artificial

roots of the same label to both trees before feeding them to a tree edit algorithm.

The tree distance measure lies within R[0,1]. The lower the tree distance measure,
the more similar the two trees. The smaller the parameter distT hreshold, the more
selective is the criteria to determine if two trees are structurally similar. In particular,
if distT hreshold = 0, two trees are only structurally similar if they are exactly the

same.

4.2.3.3 Merging Similar Subtrees

If two subtrees in a majority schema are structurally similar, they need to be merged
into one. Since we are interested in capturing one typical way of marking up the
document in the schema, it is tempting to just pick one of the subtrees and discard the
other. However, a concept may be missing from one way and is present in the other.
It is desirable that we merge these structurally similar subtrees by superimposing

them, i.e. concept nodes from both subtrees appear in the merged tree.

This is implemented by the function Superimpose(X;, X»,v). It takes two XML
fragments X;, X, and the mapping from X; to X5, denoted as v, given by the tree

edit distance algorithm. It uses X, as the template for the merged tree. A vertex
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v € X; that is not mapped to any vertex in X, (missing concept) should be added
to the merged tree. Since the parent of v may not be mapped to any vertex in X,
either, we need to locate its reference ancestor, vy, and append the whole path from

vp to v to the merged tree.

Algorithm 4.14: Superimpose

Function Superimpose(X1, Xp,v) : X
begin
(Add vertices of X; to X,)
for each v € X;.Vdo
(Check if v is mapped to any verter in X)
if p(v) =L
then
(Add vertices along the path from its reference ancestor to Xz)
vo = Ref Ancestor (v, p)
P=w® <vg,...,V >EX,vp =V
fori=1to k do
if p(v;) =L
then
u; = Create(Xs, Label(v;))
Uiy = p(vi1)
AppendChild(u;_q, u;)

p(vi) = u;
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Example 4.4: Superimpose

The following shows a majority schema. The two subtrees labeled with DEGREE are

highly similar.

<EDUCATION>
<DEGREE>
<ORGANIZATION/>
<DATE/>
<THESIS>
<ADVISOR/>
</THESIS>
</DEGREE>
<DEGREE>
<DATE/>
<ORGANIZATION/>
<GPA/>
</DEGREE>
</EDUCATION>

Take the first DEGREE subtree as the source tree and the other as the target tree.

Suppose the mapping computed by the tree edit distance algorithm on these two
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subtrees maps the nodes labeled with DEGREE, ORGANIZATION, DATE in the first DEGREE
subtree to those of the same label in the second DEGREE subtree. Then the merged

subtree is:

<EDUCATION>
<DEGREE>
<DATE/>
<ORGANIZATION/>
<GPA/>
<THESIS>
<ADVISOR/>
</THESIS>
</DEGREE>
</EDUCATION>

4.2.3.4 Unifying Subtree Structures

Based on the ideas described in the previous section, we now present the overall
unification process. We adopt a hierarchical clustering approach ([Eve73]) for the

unification process.

The process is described in the function Unify(S, distThreshold). It takes the ma-
jority schema S and the parameter distThreshold as input. The variables for the
clustering algorithm are subtrees in the majority schema. Each node u in S corre-
sponds to one subtree T(u). A distance matrix, DistMatriz(u,v), stores the distance
measure between the subtrees T(u) and T(v). At each iteration, the function picks

two subtrees, T(u) and T(v), in the majority schema that are structurally similar and
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their distance measure TreeEditDist(T(u), T(v)) being the smallest. These two sub-
trees are superimposed by the function Superimpose. The merged subtree T(v) is
kept in the schema. The other subtree T(u) is deleted from S, and the distance ma-
trix is updated. The process is repeated until there are no more structurally similar

subtrees.

Algorithm 4.15: Unify

Function Unify(S, distThreshold) : X
(Initialize distance matrix)
for each u,v € S.Vdo
DistMatriz(v,u) = DistMatriz(u,v) = TreeEditDist(T(u), T(v))

od
(Find two subtrees T(u), T(v) that are structurally most similar.)
while Ju,v € S.V:

((u #v)A

(d = DistMatriz(u,v))A

(d is the minimum distance between any pair of subtrees)

(d = Min{TreeEditDist(T(v;), T(v;)) | vi,v; € S.VAv; # vj})A

(Similar(T(u), T(v), distThreshold)))

do

(Remove T(u). Keep the superimposed subtree.)

T(v) = Superimpose(T(u), T(v))

SV=8sV—{v]veT(u)}
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(Update the tree distance of any other subtree to T(v))
for each w € S.V,w # v do

DistMatriz(w,v) = DistMatriz(v,w) = TreeDist(T(w), T(v))

od
od
return S
end

The function Unify chooses the two subtrees T(u) and T(v) that are structurally
most similar to unify in each step, but the algorithm can be customized in a number
of ways. The typical ways of marking up a document pertaining to the topic may
differ only at a certain level. For example, people may have slightly different ways
of marking up résumés within the educational background section, i.e. heterogeneity
only arises among neighboring subtrees. In that case, the choices of pairs of subtrees
to unify can be restrained to siblings instead of all vertices in the majority schema.
Since there may be homonyms in the documents (the Homonyms Property in Section
1.2.3), two vertices with the same label in the majority schema are different elements
in a DTD (Secticn 2.2). However, some of these labels may refer to the same element
because of the heterogeneity of the documents. Therefore, it may be desirable to

select a group of pairs of subtrees that are at similar depths.

As mentioned in Section 4.2.3.1, a tree edit mapping preserves ancestor-descendant

relationships. Therefore, if one can swap the parent and child vertices in the subtree
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X to transform it to the subtree X,, the mapping would suggest deleting one and
inserting another instead. A more sophisticated algorithm is needed. The problem of
merging two subtrees in the majority schema is similar to the problem of transform-
ing a subtree into another subtree (Chapter 5). Ideas similar to those presented in

Chapter 5 can be used for this purpose, but will not be explored here.

After the unification process, we derive a majority schema for the collection of XML
documents. A majority schema ignores certain information, e.g., order, multiplicity.
The next section describes how the content model of nodes in this initial majority

schema can be refined.

4.2.4 Enriching DTD Content Model

Content model information, such as order and multiplicity, is ignored in the initial
majority schema. The following sections describe how order and multiplicity infor-

mation of nodes in the initial majority schema can be determined.

4.2.4.1 Order

Given a set of label paths with the same 1-subpath in a majority schema, the last
labels of the paths are constituent elements of the second last label in the DTD
derived from the majority schema. Instead of enumerating all orders of these labels

found in the documents, we pick one sequence that is most typical. To determine
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this order, we assume there is a function that gives a partial order on elements. An
example of this function is one that computes the average positions of labels. As we
compute the initial majority schema, we record the average positions of these labels
in the documents. The labels are then sorted by their average positions in the final

majority schema.

More precisely, given a tree schema S for documents X and its set of label paths

{pog¢}, p € E*, ¢; € E. The average position of the label g; in the label path p is

Zuex,XGXALabelPath(Ancestars(v))=p°qi POS('U, X)
| {v|v € X A Label Path(Ancestors(v)) =po ¢} |

AvgPos(gi,p, X) =
where Pos(v,X) gives the position of vertex v among its siblings in the document X.

The function BasicC F' P is refined to collect additional information for g; - the count
of vertices in the documents conforming to ¢; and the sum of their positions in the
documents - which is stored as attributes of ¢;. AwgPos is the ratio of these two

numbers.

Let D be the DTD representation of S. Recall that elements in S.V may be renamed
because of the presence of homonyms. Let e; = ¢;.rename and e = p.rename € E’ be
elements of ¢; and p in D respectively. The element e in D consists of constituent ele-
ments ey, ..., e,. An initial content model of e is given by a permutation of ey, ..., e,
to e;,...,€;,:

(6,‘1, - ,e,-n)
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where

AvgPos(q;;,p, X) < AvgPos(gi;,,,p,X),1<j<n—-1

The order of the constituent elements e;; in the content model of e is sorted by their

average positions.

4.2.4.2 Multiplicity

3%

Regular expression primitives ”?” (optional), ” +” (required), ¥ * ”(repetitive) can
be used to describe the content model of an element. A majority schema describes
prevalent structures among XML documents, not all structures in the documents.
The support of nodes is used to determine which nodes are prevalent. In other words,

frequent label paths describe what the constituent nodes in a majority schema are.

The content model of an element can still be optional if its support ratio is too low.

Let p be a label path in a majority schema S. Let D be the DTD representation of S.

Let e; be the label of p; and e the label of p.

The content model of an element e, in D can be based upon the support ratio of
pn- If the support ratio is high, it occurs at least once within its parent (”+").
If it is low, it is optional (”?”). This is adjusted by the user-defined parameter

requiredT hreshold € R[0, 1].

In addition, we need to determine if the content model of e,, in e,_; is ”*”. Intuitively,

if in the document a vertex conforming to p,_; has more than a certain number of
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children vertices conforming to p,, the content model of e, in e,_; is "*”.3 Let the
function IsRepPath(p,e), p = (v1,--.,v,) € X be a boolean function that determines
if v, has more than a certain number of child nodes labeled with e. The repetitive
content model of e, along the label path p., = eg o ... 0 e, can be determined based

on the proportion of such node paths in the document collection:

RepSupportRatio(p.) :=
| {P» | v ® vn € X A IsRepPath(p,,e,) A LabelPath(p, & v,) = p.} |
| &

€ R0, 1]

If RepSupportRatio(pe, X) is greater than the user-defined parameter

repeatT hreshold, the content model of e, in e,_; is then "*”.

The following rules are then used to determine the content model of elements in the

DTD:

if RepSupportRatio(p,) > repeatT hreshold, content model of e,, in e,_; is *
else if SupportRatio(p,) > requiredT hreshold, content model of e, in e, is +

else if SupportRatio(p,) < optionalThreshold, content model of e, in e,_; is ?

In sum, we have discovered a global schema in form of a DTD that describes prevalent
structures in the collection of XML documents. Order and multiplicity information

about elements in the DTD is expressed in their content model. However, the grouping

3An empirical study shows that 3 is a good choice, which is also suggested by [GGR*00]. This
is because in practice, if a concept occurs 3 or more times under another concept, it is intuitive for

a user to model it as a repetitive element rather than repeating it 3 or more times.



CHAPTER 4. SCHEMA MINING 126

of constituent elements is not modeled. For instance, the content model (p;*,po*)

can be discovered, but not (p;, p2)*.

4.3 Evaluation

In this section, we evaluate the majority schema discovery approach with respect to
three aspects. First, we analyze its computational complexity. We then evaluate
the quality of a majority schema against the criteria of conciseness and coverage.
Finally, we give a sample DTD discovered for over 1000 résumés to demonstrate the

practicality of the whole approach for a particular setting.

4.3.1 Time Complexity

We analyze the time complexity of the functions BasicCFP and Unify with no
domain knowledge specified. The time complexity of the function DomKnowCF P
is not analyzed because its efficiency in real applications depends on the domain

knowledge specified.
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4.3.1.1 Function BasicCFP

Computing mazPathLength requires walking through all nodes in the document
collection, which takes O(| X |) time. As we walk through the nodes in the document
collection, we can also count the support of the node paths from the root to the
nodes. A hash table can be built to store the support of node paths. In the two
outer for loops, we extend label paths of increasing length. Since each path p in X
is considered at most once, the total number of label paths considered is bound by
| & |. The number of times p is extended to p o e is bound by Deg(X). Looking up

the support of a label path from the hash table takes constant time. Hence, we have

Theorem 4.1 (Time Complexity of BasicCFP). Given a collection of XML
documents X. The function BasicCF P takes time O(Deg(X)| X |)), which is linear

in the size of X. O

4.3.1.2 Function Unify

Let us first consider the function Superimpose. Initializing the root of X; takes
constant time. The outer for loop iterates over vertices in X; which is bound by
| X1 |- Locating the label path from its reference ancestor to each vertex is bound
by the depth of X;. Therefore, the function Superimpose takes O(Depth(X;)| X1 |)

time.



CHAPTER 4. SCHEMA MINING 128

Let us now consider the function Unify. Let ted(T},73) denote the time to compute
the minimum cost edit sequence to transform the source tree T} into the target tree
Ty. There are O(| X |?) choices of pairs of subtrees in X. Therefore, initialization takes

O(ted(X, X)| X |?) time.

In the while loop, choosing the pair of subtrees with the minimum tree distance
requires a scan of the distance matrix, which takes O(| X |°) time. Superimposing the
pair takes O(Depth(X)| X |) time. Updating the distance matrix takes

O(ted(X,X)| X |) time. Each iteration in total takes O(| X |* +Depth(X)| X |

+ted(X,X)| X |) € O(] X |? + ted(X,X)| X |) time.

The number of iterations of the while loop depends on the degree of heterogeneity of
the majority schema. Empirical studies show that it usually takes several iterations
because the documents are topic specific and fairly similar. Under this condition, we

have

Theorem 4.2 (Time Complexity of Unify). Given a majority schema X. The

function Unify takes time O(| X |° + ted(X, X)| X |). a

4.3.2 Quality of Majority Schema

In practice, we would like to have a schema of high quality. Similar to the criteria
proposed by [LPVV99], the schema should be exact, i.e. it describes all structures

found in the documents and those structures only. The set of documents conforming



CHAPTER 4. SCHEMA MINING 129

to an exact schema should be the collection of the documents. It should be concise,
i.e. it should succinctly describe the documents. However, a concise schema can be
too general in that it covers many cases not found in the documents (not relevant),
or it ignores cases found in the documents (low coverage). This is illustrated in

Figure 4.2.

low relevance low coverage Exact
General Case S=X

X

Approximate Majority Schema
(low relevance) (lower coverage)
XcS ScX

Figure 4.2: Schema Quality

The quality of a schema can be described by its relevance and coverage. An exact
schema describes all input documents and those documents only. An approximate
schema. of low relevance but full coverage may describe documents not found in the
input document collection. A majority schema is an approximate schema of low
coverage but full relevance. It describes only a subset of the document structures

that are representative in the input document collection.
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Note that these criteria depend on the set of documents conforming to a schema.
They are independent of the underlying formalism of the schema. The formalism
of the schema determines the mechanism to check if a document conforms to it.
For example, bisimulation can be used to check if a document conforms to a graph
schema and schema subsumption to compare two graph schemas [BDFS97]. The type
checking approach in [MSV00] can be used to check if an XML document is valid with
respect to a DTD.

In the following sections, we first formulate the criteria to evaluate the quality of a
majority schema. Then, we present empirical results on the evaluation of majority

schemas against these criteria.

4.3.2.1 Evaluation Criteria

The conciseness of a majority schema can be defined in terms of its size, i.e. its
number of vertices.* It is normalized with respect to the size of the majority schema
at supThreshold = 0 and ratioThreshold = 0, which gives an upper bound on
the sizes of majority schemas over all parameters. This majority schema is still an
approximate schema because choice (”|”) in a content model are not considered. Thus,

its size is not larger than an exact schema. Hence, the conciseness measure is biased

4 A more precise measurement may consider the number of bits to encode the majority schema,

like the minimum length description principle described in [GGR*00]
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towards the conservative which may underestimate how concise a majority schema

actually is.

Definition 4.6 (Conciseness). Given a collection of XML documents X and param-
eters supThreshold and ratioT hreshold. Let S be the majority schema for SDP[X,
supThreshold, ratioThreshold]. Let S, be the majority schema for SDP[X,0,0].
The conciseness of S is given by

| 5.7
| 5uV]

Conciseness(S) :=1 — € R[0,1]

The coverage of a schema can be defined in terms of the number of vertices in the
documents conforming to the schema. It reflects the portion of the documents that
are described by the schema. In Figure 4.2, it is JSTOIXL where S is the set of documents

conforming to S.

Definition 4.7 (Coverage). Given a collection of XML documents X and a majority
schema S. The coverage of S with respect to X is given by

| {v|veXAue SA LabelPath(u) = Label Path(v)} |

€eR[0,1
X [0,1]

Coverage(S) =

O

The relevance of a schema concerns the document structures conforming to the
schema, but not found in the input documents. In Figure 4.2, it is '%g%l where

S is the set of documents conforming to S. Since there are infinitely many documents
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that can conform to a tree schema, this cannot be directly computed, but can be an-
alyzed by schema subsumption [BDFS97]. Nevertheless, we do not need to consider
this evaluation criteria for majority schemas. A majority schema is always relevant
since there is at least one input document with a node path conforming to some node

path in the schema. We mention this criteria only for the sake of completeness.

4.3.2.2 Experiments

We conducted an empirical study to evaluate the majority schema obtained for résumé
documents. We chose, at random, three datasets of increasing sizes of 40, 80 and 120
résumes, respectively. We set supThreshold = 0. Majority schemas at different
parameters of ratioT hreshold are discovered for each dataset. The conciseness and

coverage of the schemas are shown in Figure 4.3.

Figure 4.3 shows that conciseness increases with ratioT hreshold while coverage de-
creases. This is expected since a concise schema ignores structures shared by the mi-
nority of the documents and hence has lower coverage. Conciseness increases sharply
at low ratioT hreshold at a moderate cost of losing coverage. For example, compared
to the most precise majority schemas (ratioThreshold = 0), the majority schemas at
ratioT hreshold = 0.1 boost the conciseness from 0 to 0.6-0.7 at 0.8 coverage. The
majority schemas at ratioT hreshold = 0.2 have a conciseness of 0.8-0.9 at 0.7 cov-
erage. This demonstrates the usefulness of majority schemas in describing prevalent

structures in topic specific documents without losing much coverage. Topic specific
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Conciseness v.s. Coverage

-8 Conciseness (Dataset 1) —o— Conciseness (Dataset 2)
-&— Conciseness {Dataset 3) -8 Coverage (Dataset 1)
~6—Coverage (Dataset 2) —a— Caoverage (Dataset 3]

w2/

0.7 1

NIASN
o [ v\i\\%&

/

/

TN

Conciseness, Coverage

a3

02

18}

ol

00 01 02 03 04 a5 06 07 08 03 10
Suppert Ratio Threshold

Figure 4.3: Evaluation of majority schema against conciseness and coverage

documents follow some typical logical layout. Minority patterns scatter in the search

space and can be filtered out using a low ratioT hreshold.

Figure 4.3 also shows the actual sizes of the majority schemas. At ratioThreshold =
0, the size of the schema increases with the size of the dataset. The larger the size
of the dataset, the more heterogeneous it is. A larger schema is then required to
describe them. However, the sizes of the majority schemas converge very quickly

at ratioThreshold = 0.2. This implies that the underlying schema of the input
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documents is fairly stable with respect to the heterogeneity, which further confirms

our assumption that topic specific documents follow a similar style.

4.3.2.3 Sample DTD

We conclude this section by giving the DTD representation of a majority schema
discovered for over 1000 résumés at supT hreshold = 0 and ratioT hreshold = 0.1. We
set repeatT hreshold = 3, requiredl hreshold = 0.6 and optionalT hreshold = 0.3.
The attribute val has been discarded and #PCDATA has been associated with each
element instead. The root of each document has been renamed to the topic name

resume. Manual inspection of the DTD reveals that the schema discovered indeed

agrees with common sense of how a résumé document should be structured.

<!ELEMENT resume ((#PCDATA), contact+, objective, education+,
courses, experience+, awards, achievements+,
skills, activities+, reference)>

<!ELEMENT contact (#PCDATA)>

<!ELEMENT objective (#PCDATA)>

<!ELEMENT education ((#PCDATA), (institute, date-entry))>

<!'ELEMENT institute (#PCDATA)>

<!ELEMENT date-entry ((#PCDATA), degree)>

<!ELEMENT degree (#PCDATA)>

<!ELEMENT courses ((#PCDATA), date+)>

<1ELEMENT date (#PCDATA)>

<!{ELEMENT experience ((#PCDATA), (date+, title+))>

<!ELEMENT title ((#PCDATA), institute)>

<!ELEMENT awards ((#PCDATA), date-entry3+)>

((#PCDATA),

(institute, award+))>

<!ELEMENT date-entry3
<!ELEMENT achievements
<!ELEMENT institute2

((#PCDATA) ,
((#PCDATA) ,

(date+, institute2+))>
(date, title2))>
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<!ELEMENT title2 (#PCDATA)>

<!ELEMENT skills ((#PCDATA), (skill, date))>
<!ELEMENT skill (#PCDATA)>

<!ELEMENT activities ((#PCDATA), (date+, title))>
<!ELEMENT reference ((#PCDATA), (date+, title))>

4.4 Related Work

In this section, we describe existing schema discovery approaches. We first classify
these approaches according to different dimensions. Then we describe where our
approach stands with respect to these dimensions, compare our approach to schema

discovery to existing ones, and highlight the contributions of our work.

4.4.1 Classification

There have been a number of proposals to schema discovery on semistructured data
in the literature ([BDFS97, NUWC97, GW99, WYW00, NAM98, NAM97, WL99,
WL98, GGR*00, PV00]). These approaches can be classified according to several di-
mensions: data model underlying the input data, type of schema, precision of schema,

and the type of structures considered.

[BDFS97, NUWC97, GW99, WYWO00, NAM98, NAM97, WL99, WL98]| take a data-
centric view on a document collection in a data model similar to OEM (Section 2.1.1).

The schema under the data-centric view describes incoming and outgoing labels from
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objects, either as a graph schema [BDFS97] or similar to a Dataguide [NUWC97]. A
graph schema specifies permissible structures and allows unary predicates on edges
while a Dataguide specifies required structures. Whether a database conforms to a
schema is checked by simulation [BDFS97]. Constraints on cardinality, order and
grouping of nodes are not modeled in both schema formalisms. [GGR*00, PV00]
take a document view on a document collection using a data model similar to Infoset
(Section 2.1.1). They use DTDs to describe the structures of the documents. Graph
schemas and Dataguides are not as expressive as DTDs. The content model in a DTD

can describe multiplicity, variants and grouping of elements.

The schemas discovered by these approaches differ in their degree of precision.

[NUWC97, PV00] discovers an exact schema which gives a precise description on the
input documents. [GW99, WYWO00, WL99, WL98, NAM98, NAM97, GGR*00] in-
fer schemas which are approximate or abstracted representation of the documents.
They consider different types of information. Data-centric approaches view the doc-
uments as a web of objects and hence consider cycles in the linkage structure. Most
approaches (except [NAM98, NAM97]) consider multiplicity information of labels in

the schema. [WL98] also considers wild cards in the schema.

There is a wide range of schemas inferred because different approaches have different
goals. The primary goal of [BDFS97, NUWC97, GW99, WYW00, WL99, WL98,
NAM98, NAM97] is to answer path queries on a web of hypertext documents. Hence

they focus on the possible incoming and outgoing labels of objects. [GGR*00, PV00]
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aim to describe the document structures of a collection of related XML documents.

Therefore, they use DTDs as the formalism of their schema.

4.4.2 Comparison

Our goal is to describe the structures of a collection of related documents. Due to
the heterogeneity among the documents, we prefer a schema with a balance between

precision and size of the schema.

4.4.2.1 Data Model

Since we are interested in the document structures of the XML documents, we take
a document-centric view on the collection. We thus model XML documents in a way

similar to [W3C99a, GGR*00, PV00].

We prefer a schema formalism similar to [BDFS97, NUWC97] that can be directly
compared to the documents to facilitate the document transformation process (Chap-
ter 5). However, [BDFS97, NUWC97| do not differentiate where a label path origi-
nates. This information is semantically significant in a document structure. In view
of this, we propose to use a tree schema as the formalism for the majority schema.
It has the same formalism as XML documents and considers their document tree

structures. Furthermore, a tree schema can always be converted to a DTD.
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4.4.2.2 Precision

Due to the heterogeneity of the documents, exact schemas as proposed in [NUWC97,
PV00] are inappropriate for our purpose because of their large size. Therefore, we
propose the notion of a majority schema. Users can adjust the degree of precision
of the majority schema by the parameters supT hreshold and ratioT hreshold. This

offers more flexibility for different applications.

A subtly is that the approximation of majority schemas is different than that proposed
in [GW99, WYW00, NAM98, WL98]. In these approaches, all structures found in the
documents are still permissible in the schema, i.e. there is no loss in coverage. They
are less relevant because they also allow structures not found in the documents. On
the other hand, majority schemas do not describe all structures in the documents,
i.e. they lose coverage. It nevertheless covers structures that are prevalent and hence
representative in the documents. Since they only describe structures found in the

documents, there is no loss in relevance.

The differences arise because of different design goals. The goal of [WYWO00, NAM98,
NUWC97, GW99, WL98] is to infer a schema that can be used in optimizing path
queries. Therefore, the schema should not lose coverage. But it can be less relevant,
which may result in less relevant results to queries. Our goal is to infer a schema
that abstracts the heterogeneity of topic specific documents which can be used as a
basis for integrating these documents. Therefore, losing the coverage of less prevalent

structures is desirable in presenting a more succinct view on the documents. Het-
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erogeneity among the documents may not be desirable from the point of view of end
users, which makes visual browsing to filter out information difficult. Heterogeneity
also complicates the task of managing these documents. Moreover, maintaining cov-
erage is not crucial since the structures in the documents that are not found in the

majority schema will be transformed to conform to it (Chapter 5).

An application of majority schemas is to give users unfamiliar with the documents
a bird’s eye view of the documents much like a table of content that leaves out the
details. Majority schemas can also be used to optimize storage (Chapter 6). Nodes
in a document that are close in proximity in the majority schema are likely to be
accessed together and thus can be stored together. Tools like [DFS99] can be used
to store a repository of XML documents in a relational database for efficient data
management purpose based on a majority schema. Another application of majority
schemas is indexing. Nodes in the majority schema with the high support are most
commonly found. Assuming this implies that structures in the documents conforming
to these nodes are most commonly accessed, they can be indexed for more efficient

retrieval.

4.4.2.3 Others

With respect to the type of structures considered, a tree schema is similar to tree
expressions in [WL99, WL98]. Unlike [WL99, WL98, GGR*00], we take the oppo-

site approach of ignoring certain information in the beginning. There are a number
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of technical complications in [WL99, WL98, GGR*00] because [WL99, WL98] model
the input data very precisely, and [GGR*00] takes everything into account in defining
their problem space. We ignore certain information in the discovery process and fo-
cus our attention on discovering an initial schema with no information on the content
model of the nodes. Information on the content model (order, multiplicity, grouping)
is filled in later. This greatly simplifies the discovery process because the Apriori
condition holds. This approach is justified because the input documents are too het-
erogeneous to be described precisely. Our approach uses the intuition that imprecise
data modeling reveals prevalent patterns among data, which leads to efficient data
mining processes. This is a useful guiding principle in data mining if the underlying

patterns to be discovered are simple.

Most of the approaches aforementioned do not consider domain knowledge which is
usually available for topic specific documents. [GGR*00] has some built-in heuris-
tics to reduce the search space of the schema which would be intractable otherwise.
However, they neither discuss nor justify the heuristics they choose. One of our con-
tribution is the explicit incorporation of domain knowledge in inferring a majority
schema. We provide a mechanism to allow users to explicitly specify application-
specific domain knowledge on the input documents which is easily extensible and
understandable. An empirical study demonstrates the feasibility of using simple and

general domain knowledge in deriving a majority schema for résumés.
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Reference Data Model Schema Model Schema Type Remarks
[NUWC97] *"GW9T7* OEM Dataguide exact

IGwgg] OEM Dataguide approximate (relevance) heuristics to group similar objects

[WYWwaoo0] OEM Dataguide approximate (relevance) clustering approach to group

similar objects
[WL98, WL99] OEM Dataguide approximate (reievance, consider wild cards
coverage)
[NAMS8, NAM9T] OEM Dataguide approximate (relevance) typing approach

[GGRt00] Infoset DTD approximate (relevance)
[PVoo0] Infoset DTD exact Enrich DTD by CFG, stratified DTD
Quixote Infoset DTD approximate (coverage) stratified DTD

Figure 4.4:

Comparison on Schema Discovery Approaches
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Chapter 5

Document Transformation

After running the Document Converter and the Schema Miner, the collection of topic
specific HTML documents has been converted to XML documents, and a majority
schema that describes prevalent structures among these documents has been inferred.
Since the majority schema covers prevalent structures only, some of the structures in
the documents may not conform to the majority schema. The goal of the document
transformation process, realized by the Document Transformer component of Quixote,

is to transform the documents so that they all conform to their majority schema.

In Section 5.1, we describe how a transformation should preserve the semantics of a
document and define the document transformation problem accordingly. In Section
5.2, we present the approach to the document transformation problem. In Section 5.3,
we prove the correctness of the approach and analyze its computational complexity.

Related work is compared and discussed in Section 5.4.
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5.1 Problem Formulation

The input to the Document Transformer is a set of topic specific XML documents
and a majority schema for them. The majority schema is in form of a tree schema
without repetitive label paths. The goal of the Document Transformer is to trans-
form an XML document from the collection, if necessary, so that (1) it conforms to
the majority schema, and (2) the context of concept nodes in the XML document is
stored in the transformed tree. The former concerns the issue of transforming the
heterogeneous XML documents into a homogeneous collection. The latter concerns
the issue that semantics are preserved during the transformation. Section 5.1.1 de-
scribes the issue of semantic preservation in a transformation. Section 5.1.2 formally

defines the document transformation problem.

5.1.1 Semantic Preservation

We first describe the issues involved in preserving semantics in a transformation. For

example, consider the following XML document and majority schema:

<EDUCATION>
<ORGANIZATION val="UC Davis'">
<DEGREE val="M.Sci.(Comp.Sci.)"/>
</ORGANIZATION>
<ORGANIZATION val="Stanford University">
<DEGREE val="B.Sci.(Comp.Sci.)"/>
</ORGANIZATION>
</EDUCATION>
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<EXPERIENCE>
<TITLE val="Summer Intermn'>
<ORGANIZATION val="IBM Almaden Research Center"/>
<DATE val="1994"/>
</TITLE>
</EXPERIENCE>

A majority schema
<EDUCATION>
<DEGREE>
<ORGANIZATION>
<DATE/>
</DEGREE>
</EDUCATION>
<EXPERIENCE>
<TITLE>
<ORGANIZATION/>
</TITLE>
</EXPERIENCE>

Our goal is to store the context of concept nodes in the document tree obtained by the
transformation. Hereafter, we will call this tree the transformed tree. The context of
a concept node includes: (1) its concept name, (2) its textual content (in its attribute
val), and (3) its neighborhood in the tree. Based on the context, we conclude that the
concept nodes ORGANIZATION and DEGREE under EDUCATION in the document tree are
semantically related to those of the same name in the majority schema, so are TITLE
and ORGANIZATION under EXPERIENCE. The DATE concept node under EXPERIENCE in
the document tree, however, is not semantically related to DATE under EDUCATION in

the majority schema because their neighborhoods in the trees are different.
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It is not always possible to find a semantically related node in the DTD for a node in
the document tree. These nodes represent information objects not found in the ma-
jority of the document collection. For instance, DATE in EXPERIENCE in the document
tree does not have any semantically related node in the majority schema. The textual
contents of these concept nodes can be kept in parent nodes they detail information

about.

Conversely, there may be nodes in the majority schema that are not semantically
related to any node in a given document tree. These are concepts found in the
majority of the document collection but which are missing in the document. For
example, the DATE information object under EDUCATION based on the majority schema
is missing in the document. Since the information is missing in the document, the

textual contents of such nodes are unknown in the transformed tree.

A transformation that preserves the semeantics of the document is shown below.
ORGANIZATION and DEGREE in the document are re-arranged to conform to the schema.
DATE in ORGANIZATION is deleted because there is no DATE in the majority schema.
The textual content of DATE under EXPERIENCE in the document tree is stored in the
val attribute in TITLE as (DATE:1994). Semantics are preserved in the sense that
the textual content of all nodes in the XML document are stored in some related
nodes in the transformed document. These nodes in the transformed document are
labeled with the same concept name or are in close proximity in the neighborhood of

the nodes in the XML document.
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Transformed XML Document
<EDUCATION val=*"(Date:1993)">
<DEGREE val="M.Sci.(Comp.Sci.)">
<ORGANIZATION val="UC Davis">
<DATE/>
</DEGREE>
<DEGREE val="B.Sci.(Comp.Sci.)">
<ORGANIZATION val="Stanford University">
<DATE/>
</DEGREE>
</EDUCATION>
<EXPERIENCE>
<TITLE val="Summer Intern (DATE:1994)">
<0ORGANIZATION val="IBM Almaden Research Center"/>
</TITLE>
</EXPERIENCE>

5.1.2 Problem Definition
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Based on the discussion in Section 5.1.1, we give a formal definition of the document

transformation problem.

Essential to the idea of semantic preservation is identifying semantically related nodes

in the document tree and the majority schema. We capture this aspect by a semantic

mapping, that is, a many-to-one total function that maps a node in the document

tree to a node in the majority schema to which it is semantically related. Formally,
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Definition 5.1 (Semantic Mapping). Given an XML document X and a majority

schema S. A semantic mapping v : X.V— S.V is the following total function:

(

Sroot if x = Xroot

v(z) = 4 sES iff £ and s are semantically related

L iff T is not semantically related to any node in S
\

However, semantic mappings may not be readily available to Quixote without further
input from the user. In practice, having the user manually label semantic relation-
ship between each XML document and a majority schema is infeasible due to the
heterogeneity among the documents and the number of documents. In order to build

a useful tool, we have to derive the semantic mappings automatically.

The document transformation problem is described as follows:

Document Transformation Problem:
Given a collection X of XML documents, a majority schema S for X, and
a document X € X. The Document Transformation Problem D7 P[X, S]

is divided into two tasks.
The first task is to compute a semantic mapping v : X.V — S.V.

The second task is to compute an XML document M with a mapping

0 : X.V — M.V such that 6 has the following properties:
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e Conformance Property: M conforms to S under the mapping y : M.V —

S.V.

e Content Preservation Property: Consider a node z in X. Suppose it
is semantically related to s = v(z) € S. The textual content of z,

z.val, is stored in some node m in M conforming to s:
z€XVAs=v(z) =
Im € MV: (s = u{m) A z.val € m.val)

e No Information Loss Property: Consider a node z in X. Suppose it is
not semantically related to any node in S. The textual content of z is

stored in some higher level concept node m in M it details information

about.
z € XVAv(z) =1 Aa = Ref Ancestor(z,v) =

dm € M.V: (m = p(a) A z.val € a.val)

a is the referencing ancestor of z by v whereas m is the node in M

corresponding to a. The textual content of z is stored in m.

M is the document transformed from X so that M conforms to the majority schema S.

Let us make a remark on the functions v, u and 6. v is the semantic mapping from
X to S. u is the conformance mapping from M to S. 6 is the transformation mapping

from X to M. Therefore, we have 8 = v - u~1.
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5.2 Approach

In this section, we present our solution to the document transformation problem.
Section 5.2.1 describes how a semantic mapping from an XML document to a majority
schema is derived. Section 5.2.2 describes how the semantic mapping is used to

transform the document to conform to the majority schema with semantics preserved.

5.2.1 Derivation of Semantic Mapping

As mentioned in Section 5.1.2, a semantic mapping between a document tree and
the majority schema may not be readily available in practice. Therefore, we present
an algorithm to derive such semantic mapping automatically based on the domain
knowledge we have on topic specific documents and their majority schema. Section
4.2.3.1 described how deriving a semantic mapping can be related to the tree edit
problem. Section 5.2.1.2 describes how domain knowledge can be used to customize
the cost model of the tree edit problem to derive a semantic mapping. This semantic

mapping is further refined in Section 5.2.1.3.

An overview on how to derive a semantic mapping is outlined in the function
DeriveSemanticMapping. The majority schema S does not contain repetitive label

paths. We thus first convert the document X to X’ in a ”bisimulated” form comparable
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to S by the function Bisimulate.! Based on a customized cost model CostModel, the
tree edit distance algorithm T'ree Edit computes the mapping v between the document
X’ and the majority schema S. The semantic mapping computed is further refined by

RefineSemanticMapping.

Algorithm 5.16: DeriveSemanticMapping

Function DeriveSemanticMapping(X,S) : V—V
begin
> = Bisimulate(X)
v =TreeEdit(X’, S, CostModel)
v = RefineSemanticMapping(X’,S,v)
return v

end

5.2.1.1 Tree Edit Problem

Although we cannot assume that the user manually inspects each XML document,
we make the following observations on an XML document and the majority schema

for a collection of documents:

1Let o be the mapping from X to X’. Taking this technical detail into account, the relation-
ship between the functions v, y and 8 is § = o - v - u~!. Hence, a semantic mapping gives us a

transformation from X’ to S.
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1. A concept node in the document tree and its semantically related node in the
majority schema are labeled with the same concept name. If concepts are identi-
fied from the HTML text in the Document Converter based on a Bayes classifier,
we have statistical information on the relative probability of associating other
concept names with a concept node. This gives us information of how to asso-
ciate concept nodes in the document tree and the majority schema labeled with

different concept names.

2. The majority schema is derived from the input collection of topic specific doc-
uments. Since the input documents are topic specific, they share some simi-
larities. The majority schema describes the most prevalent structures among
these documents. Hence, one can expect that an arbitrary document from the
input collection shares some similarity in structures with the majority schema.
Hence, the neighborhood of the nodes can be used to guide the identification of

semantically related nodes.

Therefore, semantically related nodes in the document tree and the majority schema
can be identified based on their concept names and their relationship to other nodes in
the tree. This is an instance of a tree edit distance problem. Since the majority schema
does not contain repetitive label paths, the document tree is first converted to another
tree with all repetitive label paths removed and nodes sharing the same ancestor label
path merged, similar to the concept of bisimulation presented in [BDFS97]. Let us
call this tree the ”bisimulated” tree of X. We may refer to the bisimulated tree as the

document tree in this section.
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The bisimulated tree of X is then compared against the majority schema. Taking
the bisimulated tree as the source tree and the majority schema as the target tree,
a tree edit distance algorithm computes a mapping from the XML document to the

majority schema which is the semantic mapping we seek to obtain.

It should be noted that information is not lost in the bisimulated tree by merg-
ing nodes with the same ancestor label path. Based on the Regular Intradocument
Format Property (Section 1.2.3), nodes with the same ancestor path have the same
context. They all correspond to one concept node in the majority schema and hence
their structures are described by the same element in the DTD representation of the
majority schema. The following gives an example of an XML document and its bisim-
ulated tree. The two DEGREE nodes in the XML document share the same ancestor

label path and hence are merged into one DEGREE node in the bisimulated tree.

<EDUCATION val="Academic Background">
<DEGREE val="M.Sci. (Comp. Sci.)">
<DATE val="1999"/>
<ORGANIZATION val="Stanford University"/>
<GPA val="4.0/4.0"/>
</DEGREE>
<DEGREE val="B.Sci. (Comp. Sci.)">
<DATE val="1998"/>
<ORGANIZATION val="UC Davis'/>
<GPA val="3.7/4.0%/>
</DEGREE>
</EDUCATION>

Its bisimulated document
<EDUCATION>
<DEGREE>
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<DATE/>
<ORGANIZATION/>
<GPA/>
</DEGREE>
</EDUCATION>

The tree edit distance algorithm computes a minimum cost sequence of edit operators
(Insert, Delete, Rename) on the document tree to transform it to match the majority
schema. A node in the document tree for which the algorithm cannot find a close
match in the majority schema may be marked "deleted”. These nodes are called
deleted nodes. Similarly, the algorithm may ”insert” a node into the document tree
to make it look like the majority schema. This is a node that is found in the majority
schema with no similar node in the document. Such nodes are called inserted nodes.
Deleted and inserted nodes are not really deleted from or inserted into the document
tree. Rather, it means that the algorithm cannot find a node in the majority schema
or the document tree that is similar to the node. The algorithm may also rename a
node in the document tree so that it matches the majority schema. A node in the
document tree that is not deleted or inserted is mapped to some node in the majority
schema. This mapping gives us the semantic mapping from the document tree to the

majority schema.
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5.2.1.2 Cost Model

A tree edit distance algorithm computes a mapping so that the sequence of edit
operations in transforming the document tree is of minimum cost. The cost of the
edit operators - Insert, Delete and Rename - is specified by a cost model. A simple
cost model is to assign unit cost to each edit operator. Such a cost model is not
likely to compute a good semantic mapping. In this section, we describe how domain
knowledge can be used to customize the cost model so that we can derive a better

semantic mapping. This is based on the following observations:

e Observation 1: Since semantically related information objects are associated
with the same concept name and there are no synonyms among the concept
names, we can assume two concept nodes in the document tree and the majority
schema can only be semantically related if they share the same label. In this
simple cost model, the cost of the Insert and Delete operators can be unit cost.
The cost of the Rename operator on a node can be infinity. If two nodes share

the same label, there is no cost of renaming, i.e. the cost of Rename is zero.

e Observation 2: The cost model can be defined not only on concept names but
also extended to concept nodes. The support ratio of a concept node in its
tree gives a measure of the importance of that node. The tree edit distance
algorithm may delete a concept node from the document tree that is not found
in the majority schema. The cost of deleting a concept node with higher support

ratio should be higher than that of one with lower support ratio. Similarly, the
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tree edit distance algorithm may insert a node to the document tree because that
node is found in the majority schema, but not in the document tree. Inserting
a node with higher support ratio in the majority schema should have a lower

cost than one with smaller support ratio.

e Observation 3: If concepts are identified based on Bayes classifier by the Doc-
ument Converter, we have statistical information on associating other concept
names with a concept node. The Document Converter chooses the concept
name e with the highest relative probability as the label of the HTML text
involved. A concept name e’ with a slightly lower relative probability can as
well be associated with the HTML text. The cost of renaming the label of the
concept node in the document tree from e to €’ in the majority schema then
can be defined based on the relative probability of associating the HTML text

with e and €'.

e Observation 4: The context of a concept node is not only its textual content,
but also its relationships with other concept nodes in the document tree. The
cost of the Rename operator depends not only on the concept names of nodes
but also on comparing the neighborhood of nodes in the document and in the

majority schema.

Based on the above observations, we refine the cost model for the tree edit problem to
compute the semantic mapping from the document tree to the majority schema. Let

Cost(insert, p, v), Cost(delete, v) and Cost(rename, v, e) denote the cost of inserting
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the node v as a child of node p, deleting the node v, and renaming the node v to label

e respectively. Let X be an XML document and S a majority schema.

Insert Operator: Consider the Insert operator. A node z can be inserted into
the document tree because there is a node s of the same label path in the majority
schema. Based on Observation 2, the cost of inserting = should be lower if the support
of s is high in the majority schema. Given node paths p, = (zo,...,Zn) € X, and

Ps = (So,---,5n) €S where p; ® s € S, we have

Cost(Insert,z,,z) := 1 — SupportRatio(s, S) € R[0, 1]

Delete Operator: Similarly, the cost of deleting a node z from the document tree

X is high if the ndoe’s support is high in the tree. That is,

Cost(Delete, z) := SupportRatio(z,X) € R[0, 1]

Rename Operator: By Observation 3, the cost for renaming a node z in X to another
label e can be based on the relative probability of classifying z.val to e instead of

Label(z). A formulation of the cost for renaming z to e can be

Prob(Label(z) | z.val
BayesRename(z, e) = P(rob(e l(:c).zlal) : =1

BayesRename(z,e) is greater than 1 if e # Label(z). Otherwise, it is 1.

Now consider Observation 4. A node z € X is renamed to e so that the resulting

label path would conform to the majority schema S. Let p, = (zg,...,z) € X, and
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Ds = (So,...,5) € S with Label(s) = e be node paths in X and S respectively. By
Observation 4, the cost of renaming z to e can be based on the similarity of the
context of z and s in the trees. Intuitively, if the neighborhood of z in X and that
of s in S is similar, it is more likely that z and s are semantically related and hence
the lower the cost of renaming should be. The neighborhood of a node consists of its

siblings, its descendants and its ancestors.

The sibling neighborhood of =z and s is compared by the degree of overlap of the
concept names of their siblings. Let z,,...,z,, and si,...,5, be the siblings of =
and s respectively. Among them, we have Label(z; ) = Label(s;.), 1 < k < m,
m < Min{p,q}. A simple formulation for the difference of the sibling neighborhood

of z,s can be:

ASiblingNeighbor(z, s) == (2 2m p—m 2 _qm) € R0, 1]

4 _Min{p,q}+ P

m is the number of sibling nodes in common between z and s. The component 1 — %
(1- %) then measures the similarity in sibling neighborhood based on z (s). The
component "—‘pﬂ (9—;—”‘-) measures the difference in sibling neighborhood based on z
(s). Since each of the 4 components ranges from R[0,1], we divide the sum of these

components by 4.

The more similar the sibling neighborhood of z and s is, the smaller is

ASiblingNetghbor(z, s). The cost of renaming z to Label(s) should be smaller.

The descendant neighborhood of z and s is compared by the degree of overlap of
the concept names of their descendants. Let z;,...,z, be the child nodes of z and

S1,---, 8¢ those of s. z; and s;, share the same label, 1 < k& < m. A simple formula-
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tion for the difference between the descendant neighborhood of z and s, denoted by
ADescendantNeighbor(z, s) can be

0 if IsLeaf(z) A IsLeaf(s) A (Label(z) = Label(s))

ADescendantNeighbor(z, s) := 4 1 if IsLeaf(z) A IsLeaf(s) A (Label(z) # Label(s))

1 22,.DescendantNeighbor(z.-k
a( Min{p.q}

i) p;m + q-qm) otherwise

ADescendantNeighbor measures the overlap of the concept names of the children
of z and s. If two leaf nodes share the same label, their ADescendantNeighbor
is 1. Otherwise, it is zero. ADescendantNeighbor for internal nodes are defined
recursively on ADescendantNeighbor of their descendants, in a way similar to

ASiblingNeighbor.

The ancestor neighborhood of a node is based on the path from the root of the
tree to the node. Based on the Concept Hierarchy Property (Section 1.2.3), higher
level concept nodes are refined by lower concept nodes. A higher level concept node is
typically more important in describing document structures than a lower level concept
node. Thus, the order of the nodes along the path is relevant and a higher weight
is assigned to a higher level concept node. Let (vy,...,v,) be a node path in a tree.

The weight of a node v;,0 <1 < n then is
PathWeight(v;) := Depth(v;)™"

Let p; = (%o,...,z) € X and p; = (So,--.,S) € S be node paths from the root to z

and s in X and S respectively. Let the longest common subsequence of Label Path(p.)
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and LabelPath(ps) be lcs; = =z ...z;, in X and lcs; = s, ...s;, in S where

Label Path(lcs,) = Label Path(lcs,).

A formulation for the difference of the ancestor neighborhood of z and s can be:

Tietcs, PathWeight(zr)  Tietcs, PathWeight(sk)

Pkep, PathWeight(zi) Ekep, PathWeight(si)

Ykgics. PathWeight(zr) = Zigics, PathWeight(sg) ) € R[0, 1]
Tiep. PathWeight(zx) Skep, PathWeight(s) ’

AAncestor Neighbor(z, s) :=£(2 -

+

The formulation of AAncestor Neighbor(z, s) is similar to ASiblingNeighbor.
Ykeics, PathWeight(zy) and Egeics, PathWeight(sg) play the role of m in
ASiblingNeighbor while ke, PathWeight(zy) and Xiep, PathWeight(sg) play the

roles of p and g in ASiblingNeighbor respectively.

Taking both Observation 3 and 4 into account, let us consider a node z in X and
the cost of renaming z to e so that it conforms to (root, ..., s) in S. The cost of the

Rename operator can be defined as:
1
Cost(Rename, z, e) :=BayesRename(z,e)(1 + -§(AS iblingNeighbor(z, s)+
ADescendantNeighbor(z, s)+

AAncestor Neighbor(z, s))) > 1

The neighborhood factor ranges from 0 to 1. Since a concept node in X is more
likely to be semantically related to a node with the same concept name in S, the
Rename operator can be assigned a higher cost than that of the Imsert and the
Delete operators, which do not change the label of the node. Therefore, we add some

base cost to the neighborhood factor, e.g., a base cost of 1.
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We define the cost of the Rename operator as a linear formulation because of its

simplicity. Other non-linear formulations can also be explored.

The following example illustrates this idea. Consider the LOCALE node z in the XML

document and the ORGANIZATION node s in the majority schema.

An XML document A majority schema
<RESUME> <RESUME>
<EDUCATION> <EDUCATION>
<LOCALE> <ORGANIZATION>
<DATE/> <DATE/>
<DEGREE/> <DEGREE/>
</LOCALE> <GPA/>
<COURSES/> </ORGANIZATION>
</EDUCATION> </EDUCATION>
</RESUME> </RESUME>

Let us consider the Rename operator. Suppose the textual content of z can be
associated with the concept name LOCALE with a relative probability 0.2 which is the
highest among all concept names. The concept name with the next highest probability
is ORGANIZATION with a relative probability 0.22. Then, we have

BayesRename(z, ORGANIZATION) = 422 =1.1

Now consider the neighborhood of = and s. The sibling of = is the COURSES node. s

does not have any sibling. Thus,

ASiblingNeighbor(z,s) = 2(2 —2x % + % + %) = é
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The descendants DATE and DEGREE of s share the same label with those of z, but not

the descendant GPA. Hence,

1 1
ADescendantNeighbor(z,s) = %(2 x g + g + 5) = —

The ancestor label paths of z and s are (RESUME EDUCATION LOCALE) and (RESUME
EDUCATION ORGANIZATION) respectively. Their longest common subsequence is (RESUME

EDUCATION). Then, we have

. 1 9 2 2 2
AAncestor Neighbor(z,s) = Z(Q —-2x 1 + 11 + —1—1) =1
The cost of renaming z to s is given by
1.1 1 2
=1. S(E+—=+—)) =124
Rename(z,s) =1.1x (1 + 3(8 + 5 + 11))

Let us consider the Insert and Delete operators. Suppose the support ratio of z and
s are 0.4 and 0.7 respectively. The cost of deleting z is thus 0.4. The cost of inserting

a node labeled with ORGANIZATION conforming to s is 1-0.7=0.3.

To transform the XML document to the majority schema, we either (1) delete z and
insert s, or (2) rename z to s. The total cost of the former is 0.4+0.3=0.7 while the

cost of the latter is 1.24.

5.2.1.3 Refining Semantic Mapping

In the previous section, we described how to use knowledge on the documents and

the majority schema to customize the cost model of the tree edit distance algorithm
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to derive a semantic mapping. However, the semantic mapping computed requires
further refinement. This is because the tree edit distance algorithm aims to minimize
the cost of the edit sequence rather than to maximize the semantic mapping between

nodes in the document tree and the majority schema. Consider the following trees:

Example 5.5:
A tree edit distance algorithm optimizes the cost of transformation, not the number

of semantically related nodes identified.

Document tree Tree schema
<A> <A>
<B/> <B/>
<C/> <D/>
</A> </A>

The tree edit distance algorithm may suggest mapping A and B in the document tree
to those in the majority schema, deleting C in the document tree and inserting D
into the majority schema. The edit sequence may be of the minimum cost among all
others. The edit sequence of renaming C to D may be of higher cost. However, if the
cost is not significantly higher, we prefer to rename C to D so that all nodes in the
document tree have semantically related nodes in the majority schema. In this way,
we maximize the number of nodes in the document tree with semantically related

nodes in the majority schema given by the semantic mapping.
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The function v then is:

v(A) =A
v(B) =B
v(C) =D

Moreover, the tree edit distance algorithm only considers mappings that preserve
ancestor-descendant relationship. Suppose a concept node A is an ancestor of another
node B in the document tree and A’ and B’ are the nodes in the majority schema
that they are mapped to. Then, A’ cannot be a descendant of B’. For example, in
the following fragment, the tree edit distance would suggest deleting B from A in the
document tree and inserting another node of label B as the parent of A, instead of

mapping A and B in the document tree to those in the majority schema directly.

Example 5.6:

The ancestor-descendant relationship is always preserved in a tree edit distance map-

ping.
Document tree Tree schema
<A> <B>

<B/> <A/>
</A> </B>

Therefore, we further refine the semantic mapping computed by the tree edit distance
algorithm to maximize the semantic mapping. On one hand, we would like to refine
the semantic mapping of a deleted node z in the document tree to some node with

the same label in the majority schema. On the other hand, it is not desirable to map
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T to a node s that is not similar in terms of the neighborhood. In the example in
Section 5.1.1, DATE under EXPERIENCE in the document tree should not be mapped

to DATE under EDUCATION in the majority schema.

The idea is to use a boundary boz (Section 4.2.3.1) to define the extent to which we
consider refining the semantic mapping. To recap, the reference ancestors, reference
descendants and the reference siblings of a node in a document tree or majority
schema define the boundary box of the node. We consider the boundary box of a
deleted node in the document tree. By the definition of boundary box, the nodes in
the boundary box are semantically related to some nodes in the majority schema. The
neighborhood of those nodes in the majority schema gives us the domain to match
an inserted node of the same concept name as the deleted node. If a match is found,
the deleted node in the document tree is then semantically related to this inserted

node in the majority schema.

The function RefineSemanticMapping realizes this idea and is illustrated by Figure
5.1. It takes a document tree X, a majority schema S, and a semantic mapping from
X to S that is to be refined. It searches each deleted node z € X to locate an inserted
node s € S that is semantically related to s. The boundary box of each reference
sibling of z is searched for a possible match of an inserted node in S with the same
label. The process is repeated for the reference descendants and the reference ancestor
of z. The first match s is the semantically related node for z. The semantic mapping

of z is updated to v(z) = s.
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Figure 5.1: Refine semantic mapping

The boundary box of z is used to search for nodes in S that can be semantically related to
z. This figure shows that the search is based on its reference sibling s;;. The semantically
related node of s;; in S is s. The neighborhood of s - all nodes up to its reference ancestor
as, its siblings s;;, 542, all nodes along the paths to its reference descendants dgi,dso - are
searched for an inserted node labeled with Label(z). If a match is located, the semantic

mapping is refined to map z to this node.
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Algorithm 5.17: RefineSemanticMapping

Function RefineSemanticMapping(X,S,v) : V>V
begin
for each z € X s.t. v(z) =L do
(Search based on the reference siblings of = )
for each s, € RefSiblings(z,v) do
s = MatchLabel(v(s;), Label(z), S, v)
ifs#L
then
v(z) =s
(try nezt s;)

continue

od
(Search based on the descendants of = )
for each d, € Descendants{z) in a breadth first search manner do
s = MatchLabel(v(d.), Label(z),S,v)
ifs#L
then
v(z) =s

continue

166
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(Search based on the reference ancestor of = )
a; = Ref Ancestor(z, v)

s = MatchLabel(v(a.), Label(x),S, v)

if s #L
then
v(z) =s
continue
od
return v
end

Searching for a match of an inserted node of the same label is implemented by the
function MatchLabel. It searches the neighborhood of s in S for an inserted node
with label e. It searches its siblings, its descendants (in a breadth first manner), and

its ancestors up to its reference ancestor. The first match m is returned.

Algorithm 5.18: MatchLabel

Function MatchLabel(s,e,S,v):V
begin

m =1

(Search based on the siblings of s)

for each s; € Siblings(s) do
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if Label(s;) = e Av~i(s) =L
then
m=s;
return
fi
od

(Search based on the reference descendants of s)

for each s, € RefDescendants(s,v),s = sp, < Sq, S1,--.,5z >€ S do

for : =0 to n do
if Label(s;) =eAv™i(s) =L
then
m=s;

return

(Search based on the reference ancestor of s)
so = Ref Ancestor(s,v), < Sg,S1,---,8n,8 >€ S
for i =1tondo
if Label(s;) =eAv~l(s) =L
then
m=s;

return

168
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fi
od
return m

end

5.2.2 Transformation

In this section, we describe how the Document Transformer transforms a document
tree to conform to the majority schema based on the semantic mapping derived in

Section 5.2.1. An example of such semantic mapping is given in Section 5.2.1.3.

The idea is to construct a new document tree M (transformed tree) for the input
document X using the majority schema as a template.2 This is realized by the function

Transform.

We use the notation z,s and m to denote a node in X, S and M respectively. The
ancestor of a node n is denoted by a,. For example, a, is an ancestor of z and a,
is an ancestor of s. The parent of a node n is denoted by p,, its sibling by s,. We

loosely use the notation {n} to denote a set of nodes and n a node in this set.

2X is not the bisimulated tree in Sections 5.2.1, but the XML document itself. The bisimulated
tree is compared against the majority schema to compute the semantic mapping. The document

tree is used for the transformation process based on the semantic mapping computed.
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In the function T'ransform, nodes in the majority schema S are considered in a top-
down manner. Suppose sibling nodes in the majority schema are sorted according
to their relative position in the associated DTD (Section 4.2.4). Nodes in S are
considered according to this order. After initializing the transformed document M,
the function T'ransform calls the function Construct which creates nodes for M using
S as a template. After Construct terminates, the textual content of a node z in X
without any semantically related node in S is preserved by propagating z.val to its
ancestor node it details information about. This is described in the last for loop. Its
reference ancestor a, is located. a,, is the node in M which conforms to as. a,, keeps

the textual content of z (Figure 5.2).

M . X

Figure 5.2: Textual content of "deleted” nodes is kept in its reference ancestor in the

transformed document.
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Algorithm 5.19: Transform

Function Transform(v,X,S) : X
begin
(Construct the transformed tree M)
M = new XML document
M.root = Create(Label(S.root))
Construct(v, X, S, M.root)
(Teztual content of nodes in X without semantically
related nodes is propagated to their parents)
for each z € X,v(z) =L do
az = Ref Ancestor(z,v)
am = 6(az)
am.val = an.val o x.val
od
return M

end

In the function Construct, a node s in the tree schema has a set of nodes {z} in
the document tree X to which these nodes are semantically related. We would like to
create a new node m in M for z. In doing so, we need to locate the node in M which
should be the parent of m. This is achieved by locating the reference ancestor, a;,
of s. There are nodes in {a;} that are semantically related to as. Since Transform

is applied in a top-down manner, new nodes are already created for {a;} in M. We
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pick the node in {a,} that the node z details information about (as implemented by
the function PickNearestAncestor). The node in M for a, is a,,- Since there may
be nodes in S with no semantically related nodes in X (inserted nodes), a; may not
be a parent of s. (as,as,, - - -,0s,,s) is the node path from as to s with a,, being the
inserted nodes in S. Since M has to conform to S, we have to append m to a,, according
to the node path (a,,,...,as,). New nodes (an,,---,am,) are created for this node
path in M. Care is taken to ensure a,,, is not created twice. If there are inserted nodes
from a, to s, m is appended as a child of a,,,, otherwise, as a child to a,,. Let p,
be the parent of m in M, p, the node in S to which p,, conforms. m is inserted into M
based on the content model of p;. If the content model of p; is not repetitive (”*”)
and pp, already has a child with the same label as m, called s,,, the textual content
of m is kept in s, by appending m.val to s,,.val. Otherwise, m is appended as a
new child of p,,. We maintain a mapping 8 : X.Vv — M.V to record which node in M is

created for each node in X.

Algorithm 5.20: Construct

Function Construct(v,X,S,u) : X
begin
for each s € Children(u) in order do
{z} =v7(s)
a; = Ref Ancestor(s,v), < as,as,,-..,as,,8 >€ S
{az} = Ref Ancestor(as, v)

for each z do
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Figure 5.3: Construct - This figure illustrates how to construct a node m in the trans-
formed document M for the node z in X. To do so, we need to locate the parent of m in
M. The semantically related node for z in S is s. The reference ancestor of s is a;. The
set of nodes that are semantically related to a; are {ar}, one of which is picked whose
corresponding node a,, in M is the new ancestor (parent) of m. The path (as,...,as,) in
S are nodes without semantically related nodes in X. The same path is inserted into M as m

is appended as a child of a,,.
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(Pick one among {a.} that is nearest to z)
a, = PickNearestAncestor(z, {a:},X)

am = 0(az), Cme = am

(Append path p,, =< Gmy,-- -5 Am, > t0 any

in M according to < as,,...,as, >,

if pm does not erists)
for : to n do
if ~Ja,, € Children: (am,_,) A Label(a,,) = Label(as,)
then

am; = Create(Label(as,))
AppendChild(am,_, , m,)

od

(Create a new node m for z.

Add m to M according to the content model of ps.)

(Check if there are nodes between a,, and m that are inserted nodes.

If so, the last node along this path a,, is the parent of m.)

ifa,, #L
then
Pm = Gm,
Ps = s,
else
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Ps = as
fi
if p;.content # 7 *” A s, € Children(pm) N (Label(s,) = Label(m))
then
(There is a node s, with label Label(x) and the
content model of p; does not allow more than one
concept node labeled with Label(x).
Do not create new node m for .
Store the teztual content of  in sm.)
Sm.val = s, val o z.val
0(x) = s,
else
(Create a new node m for x in M.)
m = Create(Label(s))
m.val = z.val
AppendChild(p,,, m)
8(zx) =m

od
od
(Recursively constider each child node of u in a breadth first search manner
according to the order among siblings)

for each s € Children(u) in order do
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M = Construct(v, X, S, s)
od
return M

end

The function PickNearestAncestor implements the function to choose the node in
{ai,...,a,} that a node z is likely to detail information about. This is based on the
Concept Hierarchy Property in Section 1.2.3. Therefore, PickNearestAncestor picks
the node from {a,...,a,} that is closest to z, i.e. their least common ancestor has

the largest depth.

Algorithm 5.21: PickNearestAncestor

Function PickNearestAncestor(z,{ai,...,a,},X): V
begin
a=a
md =20
fori=1tondo
lcs = LeastCommonAncestor(z, a;)
if Depth(lcs) > md
then
a=a;

md = Depth(lcs)

=5
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od
return a

end

Note that there may be trailing label paths in S without any semantically related
node paths in X, e.g., (P1,---,Pm,q1,---,qn) € S, v(s;) =L. The empty node path
(q1,---,qn) is not appended to M since there is no textual content along the path.

These nodes are ignored.

5.3 Evaluation

In Section 5.3.1, we prove the correctness of the transformation process. In Section
5.3.2, we analyze the time complexity of the transformation process, and consider

some practical situations.

5.3.1 Correctness

We prove that the algorithm T'rans form correctly computes 8 forD7 P[X, S| (Section
5.1.2).
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Let us use the following notations:

D= (r00t,...,Qm,Am,,-- -, Am,,m): path from the root to m
g=(root,...,S8m,8s,,---,0s,,5): path from the root to s

ip = (@my; - - - , Gm,, M): path from the root to m excluding the root
19 = (Smy, - - -, Qs,, S): path from the root to s excluding the root
ap = (root, . .., an): path from the root to m excluding m

aq = (root,...,as): path from the root to s excluding s

Lemma 5.1 (Conformance Property). Given an XML document X, a majority
schema S, and a semantic mapping v from X to S. The mapping 6 computed by

Transform(X, S,v) satisfies the Conformance Property.

Proof: We need to show that the transformed tree M conforms to S under the mapping
p that is constructively defined. There are only two occasions where a new node is
inserted into M in Construct. The first is at appending a,; as a child to an,,_,. Define

t as p(am;) = Sm,. The second place is at appending m as a child to p,. Define

p(m) = ps.

We prove by induction based on the recursion level of Construct on S. Initialization
in Transform sets p(M.root) = S.root. Suppose M conforms to S up to some recursion

of Construct.
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Consider the next recursion. We need to show that M still conforms to S after ap-
pending ip to a,,. a,, is appended to M in some previous recursion. By induction

hypothesis, the node path ap conforms to some node path aq in S.

Consider a new node path p in M. We have to show that p conforms to some node
path in S. Consider q. By the definition of x, LabelPath(p) = LabelPath(q). Care
is taken not to create a node along (g, - - ., @m,) again if a node of the same label
has been created in some previous recursion. Hence, there is no sibling node of an,
with the same label. Since the content model of any node in the associated DTD of
a majority schema is either ”*” or ”?” or ¢, an, satisfies the content model of sy, .

Therefore, p conforms to ¢ in S. a

Lemma 5.2 (Content Preservation Property). Given an XML document X, a
majority schema S, and a semantic mapping v from X to S. The mapping 6 computed

by Transform(X, S,v) satisfies the Content Preservation Property in DT PIX, §].

Proof: We show that the textual content of a node z in X that is semantically related

to some node s in S is stored in some node m in M conforming to s.

First, we show that all the variable nodes in Construct actually exist. Suppose z is
semantically related to s. Consider the recursion of Construct on s. Let us follow
the program line by line. Since the root of a document tree is always mapped to the
root of the majority schema, a, and {a,} exist. Since PickNearestAncestor always

returns one element from {a.}, a, exists. Construct is applied to S in a top-down
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manner, so at least one node is created for a; in M in some previous recursion. Hence

a,, exists.

Next, we show that the textual content z.val of the node z is stored in some node
m in M conforming to s. The textual content of z is either appended to ap & s,, or
ap®m. By Lemma 5.1, ap® m conforms to S. Since Label(s,,) = Label(m), ap ® s,

also conforms to S. In both cases, both node paths conform to S. O

Lemma 5.3 (No Information Loss Property). Given an XML document X, a
majority schema S, and a semantic mapping v from X to S. The mapping  computed

by Trans form(X, S,v) satisfies the No Information Loss Property in DTP[X, S].

Proof: We need to show that the textual contents of deleted nodes in X are stored
in higher level information objects they detail information about. After Construct
terminates, the textual content of a node z in X without semantically related node in
S is propagated to a,, where a, = RefAncestor(z) A a,, = 6(a;). We show a,, and
dz exist. Since the root of the document tree is always semantically related to that
of the majority schema, a. exists. Let a; be v(a;). Since as; has some semantically
related nodes in X, at least one node is created accordingly in M by Construct on a,.

Therefore, a,, exists. a
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By Lemma 5.1, 5.2 and 5.3, we have

Theorem 5.1 (Correctness). Given an XML document X, a majority schema S,
and a semantic mapping v from X to S. Transform(X,S,v) correctly computes a
transformation mapping 6 to DT P[X, S|. |
Let us comment on the relationship of the transformed document to the DTD derived
from the majority schema (Section 4.2.4). The difference between a majority schema
and its DTD lies in that the latter encodes content model of an element. Order and
multiplicity are considered whereas choice and grouping are not modeled in the DTD.
Since nodes are created in the transformed tree according to the relative order of the
corresponding nodes in the majority schema, the order content model of the DTD
is observed in the transformed document. The multiplicity information is considered
in conformance, hence the multiplicity content model in the DTD is also observed.

Therefore, the transformed tree is valid with respect to the DTD.

5.3.2 Computational Complexity

In this section, we give an analytical study on the computational complexity of the
document transformation process. Section 5.3.2.1 analyzes the time complexity of
deriving a semantic mapping (computing the tree edit distance, customizing the cost
model and refining the semantic mapping) while Section 5.3.2.2 analyzes the time

complexity of the transformation process.
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5.3.2.1 Deriving Semantic Mapping

Computing the Tree Edit Distance: As discussed in Chapter 4, the time com-
plexity of the tree edit distance algorithm presented in [Zha96] for transforming X to
Sis

O(| X || 8 [(Degree(X) + Degree(S)) log(Degree(X) + Degree(S)))

Customizing Cost Model: The cost model for the tree edit distance algorithm
proposed in Section 5.2.1.2 is not on concept names, but on concept nodes. We can
first compute the costs of the edit operators on the concept nodes and store the
costs in a hash table. Running the tree edit distance algorithm would then still take

constant lookup time of the cost of the operations.

Building such a hash table, however, can be costly. Computing the cost of Insert
and Delete requires looking up the support of each node. Suppose such informa-
tion is stored with each node (e.g., storing the support of a node in an attribute),
then computing the costs takes constant time. This amounts to O(|X| + |S}|)
time in total. Computing BayesRename for all nodes takes O(| E || X |) time. The
most costly expense is computing ASiblingNeighbor, ADescendantNeighbor and
AAncestor Neighbor. Computing ASiblingNeighbor takes

O((Deg(X)+ Deg(s))| S || X |) time for all pair of subtrees in X and S while
AAncestor Neighbor takes O((Depth(X) + Depth(S))| S || X |) time. Computing
ADescendantNeighbor is most expensive. A naive implementation takes time expo-

nential to the depth of X and S. However, we notice that A DescendantNeighbor(z, s)
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depends on ADescendantNeighbor(d,,ds) where d, and d; are some descendant
nodes of z and s. We can therefore speed up the computation by using dynamic
programming. The idea is to store the cost of ADescendantNeighbor(z,s) in a
two-dimensional matrix and to compute A DescendantNeighbor from nodes bottom-
up. In computing ADescendantNeighbor(z,s), we can then lookup the cost of
ADescendantNeighbor(d;, ds) from the matrix. Computing the overlap of their child
nodes takes O(Deg(X) + Deg(S)) time. There are | X || S [ entries in the matrix. In
total, it takes O((Deg(X) + Deg(S))| X || S |) time. Summing up, the time it takes to

compute the customized cost model is

O(|s|+|E|| X |+ (Deg(X) + Deg(S) + Depth(X) + Depth(S))| S || X |)

Refining Semantic Mapping: Let us consider the time complexity of the function
RefineSemanticMapping. Let ml be the time it takes for each call to the func-
tion MatchLabel. For each node z, RefineSemanticM apping searches its siblings,
descendants and ancestors. This is bound by Deg(X), Depth(X) and Deg(X)*= respec-
tively where k. is the number of levels of the descendants of = searched which is bound

by Depth(X). The total time then is O(mi(Deg(X) + Depth(X) + Deg(X)*=)| X |).

Consider the function MatchLabel. Similarly, it searches the siblings, descendants
and ancestors of s. The time for each call is again O(Deg(S) + Depth(S) + Deg(S)*)

where k; the number of levels of the descendants of s searched.
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The time complexity of RefineSemanticMapping is thus:

O((Deg(S) + Depth(S) + Deg(S)**)(Deg(X) + Depth(X) + Deg(X)*=)| X |)

This is exponential to the depth of the document tree and the majority schema (due
to searching the descendants of z and s), which is not desirable in practice. We
can cut off the search of descendants up to certain constant level or even limit the
search to the immediate children of z and s in practice. The justification is that
nodes that are several levels away are probably not semantically related. Under this

simplification, RefineSemanticMapping takes time:

O((Deg(s) + Depth(s))(Deg(X) + Depth(X))| X |)

Theorem 5.2 (Time Complexity of Deriving Semantic Mapping). Given an
XML document X and a majority schema S. The time complezity to derive a semantic

mapping from X to S is:
O(| S| + (| E| + (Deg(S) + Depth(S))(Deg(X) + Depth(X)))| X |+
((Deg(X) + Deg(8))log((Deg(X) + Deg(S))) + Deg(X) + Deg(S) + Depth(X) + Depth(S))| S|| X D

which is proportional to | S || X|. m]

5.3.2.2 Transformation

Consider the complexity of the function Transform. As in Chapter 3, we assume a
unit cost model for operations on an XML document. The mappings v, 1 and 8 can

be hashed so that lookups take constant time.
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Consider the function Construct. It is applied to each node s in S once. Let us
consider the cost over all the recursions. While the number of elements in {z} differs at
each recursion, over all the recursions, we have the total number of z being bound by
| X | since v is a function (z can be mapped to at most one node s). Therefore, looking
up {z} costs at most | X |. Locating the reference ancestor of s takes O(Depth(S))
time which amounts to O(Depth(S)| S |) time over all recursions. Similarly, looking

up {a.} costs at most | X | over all recursions.

Now consider the inner loop on z. Let pna be the time it takes for each call of
PickNearestAncestor. Appending {(a,, - - ., am, ) takes nDeg(X) time which is bound
by Depth(S)Deg(X). Appending m to p,, takes time O(Deg(X)). Since there are at
most | X | such z, we have the total time of the inner loop being bound by O(| X [(pna+
Depth(S)Deg(X))). In sum, Construct takes a total of O(Depth(S)S + | X [(pna +
Depth(S)Deg(X))) time.

Next, consider the time for preserving the textual content of nodes in X with no
semantically related node in S. For each such node z, we locate its reference ancestor
which takes O(Depth(X)) time. Appending z.val accordingly takes constant time.

Since there are at most | X | such nodes, the total time is O(Depth(X)| X |).

Consider the function PickNearestAncestor. Locating the least common ancestor of
z and a; takes O(Depth(X)) time, which amounts to O(nDepth(X)) time in total. A
pessimistic estimate of the upper bound of n is | X |. This is the case when all nodes

in X are semantically related to one node in S.
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Summing up, we have

Theorem 5.3 (Time Complexity of Transform). Given an XML document X, a
majority schema S and a semantic mapping v. Let pna be the timme complezity of the

function PickNearestAncestor. The time complezity of Transform(v, M, S) is
O(Depth(S)| S | + (pna + Deg(X) Depth(S) + Depth(X))| X|)
Taking the upper bound of the time complexity of pna, this becomnes:
O(Depth(S)| S | + (Deg(X) Depth(S) + Depth(X))| X | + Depth(X)| X [

which is proportional to | X |°. a

5.3.2.3 Practical Situations

We consider the time complexity of the document transformation process under some

practical scenarios.

In practice, we make the following simplifications:

1. Since the majority schema S describes an XML document X, we can expect the
depth of X to be fairly similar to that of S, i.e. we approximate Depth(X) by
Depth(S).

2. Since there are no repetitive label paths in S, we assume Deg(S) to be a constant.
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3. Since a majority schema describes the prevalent structures found among topic
specific documents, we assume it is smaller in size than the documents them-

selves, i.e. [S|<|X|.

4. The set of concept names for the topic is fairly constant. Hence, we assume | E |

to be a constant.

Corollary 5.1 (Time Complexity Under Practical Situation). Under simpli-
fications made for practical situations, the time complezity of deriving a semantic

mapping from X to S is reduced to:
O(| 8| + Depth(S)?| X | + (Deg(X)logDeg(X) + Depth(S) + Deg(X))| S|| X |)
The time complezity of the transformation process is:

O(Depth(S)| S| + Deg(X) Depth(S)| X | + Depth(X)| X |?)

Now, let us consider two extreme scenarios of the properties on X. At one extreme, X
is very deep in its tree structure. We can assume its fan-out to be relatively small,
i.e. Deg(X) is a constant. In this case, the time it takes to derive a semantic mapping
is:

O(Depth(S)?| X | + Depth(S)[ S || X |)

The time to transform X is:

O(Depth(S)| X |?)
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At the other extreme, X is very flat in its tree structure. We can assume its depth to
be fairly small, i.e. Depth(X) is a constant. In this case, the time it takes to derive a

semantic mapping is:
O((1 + logDeg(X)) Deg(X)| 8 || X |)

The time to transform X is:

O(Deg(X)| X [*)

5.4 Related Work

The Document Transformer is related to the research area of schema integration. In
this section, we first describe the schema integration problem and give a taxonomy of
existing schema integration approaches. Then we describe where our approach stands

with respect to these dimensions, and compare our approach with existing ones.

5.4.1 Existing Approaches

The schema integration problem is to integrate local schemas, possibly in different
data models, into an integrated schema. There are four major tasks: (1) Schema
translation: local schemas are translated into a common data model. (2) Interschema
relationship generation: related objects of the local schemas are identified and their

relationship classified. (3) Integrated schema generation: an integrated schema is
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generated based on the relationship between related objects. (4) Schema mapping

generation: objects in the local schemas are mapped to the integrated schema.

There are two major abstraction levels of existing schema integration approaches. The
majority of these approaches ([LNEM89, NEML&6, SPD92, HR90, Ber91, KDN90,
GMP*92)]) integrate at the conceptual level, i.e. they consider the schemas of local
databases. They identify conflicts of the schemas and propose methods to resolve
these conflicts. Another class of approaches ([DeM89, PRSL93, Pu91, CS91, RR95,
PRSLI3]) integrate at the data level. They identify related objects and conflicts by
looking at the values of the objects. [DeM89, PRSL93, Pu91, CS91] use a proba-
bilistic model to infer tuples that refer to the same real-word object by looking at
their attribute values. [PRSL93] identify equivalent tuples by instance-level func-
tional dependencies. [RR95] infer integrity constraints in the integrated schema by
investigating if the constraints that hold on a local schema also hold in another local

schema.

These approaches differ in the type of heterogeneity and the semantics of the schema
they consider. Some approaches deal with name conflicts while some assume there are
no synonyms. Most approaches deal with structural conflicts. They identify related
objects using different semantic information. For example, the domain and cardi-
nality of attributes and integrity constraints for identifying related entities, names of
participating entities for relationships, methods and typing of classes for class objects,

keys, attributes and functional dependencies for tuples.
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Schema integration approaches can also be classified according to the underlying
common data model of the schemas. The most popular data model is the entity-
relationship model ([LNEM89, EMN84, NEML86, SP94]). The relational model
([DeM89, CS91, PRSL93]) and object-oriented models ([TS93, GMP*92], [Ber91,
KDN90]) have been also considered. More recently, approaches for XML data are
proposed ([MZ98, Mur97])

In entity-relationship based approaches ([LNEM89, EMN84, NEMLS86, SP94]), re-
lated attributes are identified based on their domain, their cardinality, their names,
uniqueness property, and allowable operations on them. Entities are compared based
on their names, similarity of their attributes, and integrity constraints on them. In
turn, relationships are compared on their names, their cardinality and the similarity
of their participating entities. Based on the comparison, the semantic relationship
between objects is classified. For example, [LNEM89] classifies the equivalence be-
tween attributes into EQUAL, CONTAINS, CONTAINED-IN and OVERLAP. Re-
lationships between entities are classified based on the equivalence of their attributes
accordingly. Relationships are categorized according to the similarities of their par-
ticipating entities. Rules are used to integrate the entities and relationships based on

class of their relationship, typically by generalization/specialization operations.

Object-oriented approaches integrate class hierarchies. Classes are compared by their
types and their methods. To integrate methods of classes, mechanisms are proposed
to resolve their heterogeneity (names, parameters). New methods may be defined for

the integrated schema.
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Ozone [LAW99] is a mediator system for XML data. It does not derive an automatic
mapping to integrate XML data. [MZ98| considers data with very similar schema
being represented in different data models, e.g., as XML DTD or an object-oriented
schema. Using knowledge on the data types in different data models, rules are pro-
posed to identify related objects in the two databases and to integrate them. [Mur97]
proposes a language to allow users to specify how one DTD can be transformed into
another. The system then automatically transforms the XML data into the new DTD

based on the specification.

5.4.2 Comparison

The Document Transformer integrates a collection of XML documents according to
their majority schema. Since a majority schema is in the form of an XML docu-
ment, translating them into the same data model is not necessary. The derivation
of the semantic mapping is the task of interschema relationship generation whereas
the transformation process is the schema mapping generation task in the schema

integration problem.

The Document Transformer integrates primarily at the conceptual level in the sense
that related nodes in the XML trees are identified based on their names and their
neighborhood in the trees. The textual content of the nodes is not considered in
the integration (except in customizing the cost of the Rename operator in deriving

a semantic mapping). The semantics considered are the concept names and the
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neighborhood of the nodes in the document tree and the majority schema. There
are no synonyms among the concept names, but homonyms are considered. Only the

textual content of the documents is relevant. Other attributes of nodes are ignored.

Deriving the semantic mapping is in spirit similar to the interschema relationship
generation task in entity-relationship approaches. Related objects are identified in
the entity-relationship model based on attributes, entities and relationships. The
Document Transformer also identifies related concept nodes based on their similarities

in terms of their names and their neighboring concept nodes.

Identifying related classes in object-oriented based approaches is reminiscent to de-
riving the semantic mapping. However, the context of classes in an OODB is different
from the context of nodes in XML documents. Classes are compared based on their
inheritance, their methods, and their types. Nodes in XML documents are compared

based on their names and their neighborhood, e.g., siblings, ancestors and descen-

dants.

Although [MZ98, Mur97] both consider XML data, the problem tackled by the Doc-
ument Transformer is different from theirs. [MZ98] considers the integration of data
under a schema in different data models. The Document Transformer considers the
integration of data having different schemas but are formulated in the same data,
model. [Mur97] provides a mechanism to allow the user to specify how to integrate
the documents whereas the Document Transformer aims to derive automatically how

integration can be achieved. Viewing each XML document having its own DTD,
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the Document Transformer may use [Mur97] to transform an XML document to the

majority schema based on the semantic mapping computed.

There are two major contributions by the Document Transformer. While many of the
existing approaches ([DeS86, SLCN88, HR90, SM92, RR95, LNEMS89]) are manual
or semi-automatic, the Document Transformer automates the process of integrating
topic specific XML documents. This is possible because relatively few semantics are
considered in the integration process and we have knowledge on the topic specific
documents, whereas existing approaches deal with many different types of structural

conflicts on data with no known characteristics.

Second, existing schema integration approaches developed for relational are not di-
rectly applicable to XML data. The data model of XML is distinctly different from
the data model of the entity-relationship or relational model. Although the hierar-
chical structures of classes in object-oriented data shares some similarities with the
tree structures of XML documents, existing integration approaches on object-oriented
data focus on types, inheritance, methods and dynamic behavior of classes, not on
ancestor-descendant relationship. We proposed novel integration techniques that are
reminiscent to those in the relational and object-oriented data to XML data. The

insights offered by this work can be used for future research in object-oriented data.
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Chapter 6

Conclusion

In this dissertation, we have presented a system called Quixote [CGSO01] to solve
the problem of integrating topic specific HTML documents into a repository of ho-
mogeneous XML documents. The three components of Quixote to realize this goal,
the Document Converter, the Schema Miner and the Document Transformer, were
described in detail in Chapter 3, 4 and 5 respectively. Detailed analytical studies
and empirical results were presented, and comparisons with existing approaches were
discussed. In this chapter, we summarize and scope future work. In Section 6.1, we
summarize our contributions. In Section 6.2, we discuss some of the applications of
the integrated XML repository. Finally, we highlight possible extensions to various

components of Quixote in Section 6.3.
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6.1 Contributions

Existing state-of-the-art information retrieval techniques cannot locate information
in topic specific HTML documents effectively because (1) the information is buried
in the HTML text, (2) no semantics are associated with the textual information since
HTML is for visual rendering purpose, not for describing the information content of
the documents, and (3) the HTML documents are heterogeneous in structure, which

makes it difficult to automate the process of locating relevant information.

We have presented a flexible system, Quixote, that addresses these problems. Quixote
extracts semantic information from topic specific HTML documents, encodes the
information content of the HTML documents in XML documents, and integrates
these XML documents based on a majority schema inferred. To achieve these goals,
Quixote utilizes several novel techniques. The major contributions of each component

are described below.

Document Converter: (1) It is automatic demanding minimal intervention from
a user. (2) The Document Converter realizes several restructuring rules that convert
the HTML documents to XML documents to match the logical information content
of the HTML documents. The restructuring rules are based on the format clues
of HTML markup tags and the semantics of XML tags, and are therefore domain-
independent and are insensitive to changes in the formats of the data sources. (3)

We assume minimal domain knowledge from the user. No schema on the documents
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is assumed. But we provide a simple and extensible constraint mechanism to allow
a user to specify knowledge about the structures of concepts pertaining to the topic.

Such knowledge can improve the accuracy of data extraction and is optional.

Schema Miner: (1) A classification of the quality of a schema based on relevance
and coverage is presented. (2) We introduce the notion of majority schema, an ap-
proximate schema that is always relevant and describes only the prevalent structures
among the documents. Existing schema proposals - exact schema or approximate
schema of low relevance - are inappropriate for HTML documents gathered from the
Web which are heterogeneous in terms of structure. (3) The schema mining process
is guided by the intuition that imprecise data modeling helps to reveal prevalent pat-
terns. Unlike existing approaches, this principle maps the schema mining problem
to a data mining problem with well known efficient mining algorithms. This reduces
the complexity of the problem and leads to an efficient computation of a majority

schema.

Document Transformer: (1) It automates the process of integrating XML doc-
uments with different structures. This problem is not addressed by existing liter-
ature. (2) The Document Transformer uses novel techniques for the identification
of interschema relationship. Existing integration approaches on relational data and

object-oriented data are not directly applicable to XML documents.



CHAPTER 6. CONCLUSION 197

6.2 Applications

Information buried in the HTML text that is not readily accessible to users and
applications is now made available to them by Quixote. Quixote transforms a hetero-
geneous collection of topic specific HTML documents into a homogeneous collection
of XML documents conforming to a global schema. This integrated XML repository
enables many applications. In this section, we highlight some of these applications

with respect to information retrieval and data management.

6.2.1 Structured Queries

State-of-the-art information retrieval technology relies on keyword-based search en-
gines which do not support structured queries on HTML documents. For example,
in résumé HTML documents, one may ask ”show me all résumés of people with Java
programming skills”. Keyword-based search engines may return résumés of people
from Java, Indonesia. Encoding the information in the HTML documents in XML
documents allows one to issue structured queries. Various query languages on XML
data ([CRF00, DFF*98, AQM*97, JR98, W3C00b]) can be used to process such

queries.
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6.2.2 Summarization

A user unfamiliar with the information content of topic specific documents can gain
a bird’s eye view on the structures of the documents from the majority schema.
A majority schema abstracts the heterogeneity among the documents and presents
only prevalent structures to the user. In the résumé documents, there may be many
different ways of describing a person’s educational background. Some people may
describe their marital status on their résumés while the majority of the people do not.
Presenting all these structures to the user obscures the understanding of the major
information content of the topic. On the other hand, a majority schema summarizes

the information content and presents a succinct view to the user.

6.2.3 Data Presentation

From the point of view of an administrator, it is often useful to present HTML
documents to the users under a uniform view and format. There is no tool that can
automate this process on heterogeneous HTML documents. Automating this process
on the integrated XML repository is possible by tools like XSL and XSLT [W3C00b,
W3C99b], CSS [W3C96, W3C98a] and Strudel [FFK+97]. For example, a career
site may want to present the educational background information on résumés from
people’s personal homepages to employers. The following shows an XSL stylesheet

that locates relevant data from the XML documents (CONTACT-INFO, DEGREE, DATE,
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ORGANIZATION) and presents them to the user in a tabular form. As illustrated,

writing such stylesheet is simple and can easily be modified for different purposes.

<?XML version=’1.0’ encoding=’Utf-8’7>
<xsl:stylesheet version="1.0"
XMLns :xsl="http://wwuw.w3.0rg/1999/xs1l/transform"
XMLns :date="http://www. jclark.com/xt/java/java.util.date">
<xsl:output Method="html"/>
<xsl:template match="/html">
<title> Educational Background Of Candidates </title>
<body><h2> Educational Background Of Candidates </h2>
<table border="1">
<tr> <td colspan="2"> <b> Contact Information </b> </td></tr>
<tr> <td> <b> Degree </b> </td>
<td> <b> Organization </b> </td></tr>
<xsl:apply-templates select="html"/>
</table>
</body>
</xsl:template>
<xsl:template match="html">
<tr><td colspan="2">
<b> <xsl:apply-templates select="CONTACT-INFO"/> </b></td></tr>
<xsl:apply-templates select="EDUCATION"/>
</xsl:template>
<xsl:template match='"CONTACT-INFO">
<xsl:value-of select="@Qval"/>
</xsl:template>
<xsl:template match="EDUCATION">
<xsl:apply-templates select="DATE"/>
</xsl:template>
<xsl:template match="DATE">
<tr><td><xsl:apply-templates select="DEGREE"/></td>
<td><xsl:apply-templates select="ORGANIZATION"/></td></tr>
</xsl:template>
<xsl:template match="DEGREE">
<xsl:value-of select="@Qval"/>
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</xsl:template>

<xsl:template match="ORGANIZATION">
<xsl:value-of select="Q@val"/>

</xsl:template>

</xsl:stylesheet>

6.2.4 Indexing

A majority schema for XML documents can be used to build index structures on
them to facilitate processing path queries. [FS98| proposes “state extents” as an
index structure which stores the object identifiers of database objects in a graph
schema. [MS99] proposes an index structure to answer path queries involving regular
pattern matching. A similar technique can be used to build an index structure on

the integrated XML documents based on a majority schema.

A majority schema is like a Dataguide for XML documents ([NUWC97]). Unlike an
exact Dataguide, a majority schema is more concise. This results in an index requiring
less space. An approximate Dataguide is smaller than the exact Dataguide from
which it is derived. Unlike an approximate Dataguide which may contain irrelevant

structures, a majority schema is always relevant.
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6.2.5 Storage

A majority schema can be used to optimize the storage of XML documents. Assuming
nodes in an XML document that are in close proximity in the majority schema are
likely to relate to certain information content, these nodes are likely to be retrieved
together in answering a user query. A user interested in a node in the document
may also gather information about its children nodes (zoom in), sibling nodes and
parent node (zoom out). The neighborhood of a node can thus be stored together on
secondary storage devices to better facilitate information retrieval. Since the XML
documents conform to the majority schema, tools like STORED [DFS99] can be
used to store them in a relational database management system for efficient data

management.

6.3 Future Work

The approach taken by Quixote gives a basic framework in integrating heterogeneous
HTML documents. In this section, we describe some of the possible extensions to

Quixote.

At present, the HTML documents are assumed to be static. In case they are changed
constantly, it is desirable to update only the relevant portions in the corresponding
XML document and to reflect the changes in the majority schema. Currently, changes

made to an HTML document require an XML document to be derived from scratch.
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One can keep track of the correspondence between sections in the HTML and XML
document. Changes made to a section in the HTML document only require changes

to the relevant section(s) in the XML document.

Information about the output of each component in Quixote can be used to improve
other components. For example, a majority schema can be compared to an XML
document to give a hint on the accuracy in the extraction process. A node in an XML
document whose semantically related node in the majority schema has significantly
low support may indicate an unusual structure in the document or it may indicate
that a concept name is incorrectly identified or placed at the wrong place. Those
nodes can be highlighted and presented to the user for inspection. Similarly, if the
semantic mapping between the document and the majority schema identifies too few
semantically related nodes in the document and the majority schema, it drops hints
on possible errors in the document conversion phase. If the documents are gathered
from the Web by keyword-based search engines, the keywords to the search engines
can be refined by inspecting the textual content of high level concept nodes in the
XML documents because high level concepts are more important in a topic than low

level concepts.

It would be useful if Quixote has an interactive graphical user interface. Such inter-
face can facilitate the user in labeling HTML text with concept names that are used
by the Bayes classifier in concept identification in the document conversion process.
By presenting an HTML document and its converted XML document side by side,

the user can give feedback to the system on the accuracy of identifying concept names



CHAPTER 6. CONCLUSION 203

from HTML text. This information, in turn, can be used to build up a repository
of examples to the Bayes classifier as the system evolves. The tool can be used to
visualize the relative importance of nodes in the documents based on their support
in the majority schema (e.g., by intensity of the colors of the nodes), and in corre-
lating structures in the documents with those in the majority schema (e.g. by colors
of the nodes). Semantic integration is not a trivial task. Although the Document
Transformer is automated, some user interaction is needed to ensure the transforma-
tion is performed correctly. The graphical user interface can be used to visualize the
semantic mapping proposed to the user, so that she can correct a document before

transformation is performed.

We now describe extensions specific to the components of Quixote. With respect
to the Document Converter, the current implementation of the Document Converter
encodes restructuring rules in the algorithms to realize the various steps in the data
extraction process. A rule-based language would give a more flexible system for
the user to modify rules which are currently hard coded in the process. One can
investigate the formalism of the rule-based language and how rules can be specified

under such formalism.

The current implementation does not consider the visual clues given by HTML
markup tags like font or spacing nbsp. Elements in a table can be organized in
a row major / column major manner. One can take such order into consideration in
deriving subtree structures of elements in the table. Another extension is to view a

sequence of markup tags as a unit. Since sections are usually marked up in the same
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way, repeating sequences of markup tags can be used to detect boundaries between
records. The Document Converter recognizes tokens from sentences by punctuation.
Grammar-based parsing techniques and more sophisticated techniques based on spac-

ing can be used to tokenize the texts in the document.

Concept identification requires examples on how to associate text with keywords.
One obstacle of putting the system to use is that a large amount of data is required
to obtain high classification accuracy. This problem can be alleviated by feeding the
system with a database of known facts. For example, popular coliege guides would
have the names of universities in the states. Suppose a user is interested in giving
examples on a concept related to universities. The names of these universities can be
used as instances for this concept. Similarly, databases of the names of fortune 500
companies, common proper names, geographical locations can be used for concepts
related to companies, names and locales. The Bayes classifier can be fine-tuned in a
number of ways, such as considering only the top k words, using more sophisticated
parameter smoothing methods, or computing the discriminating power of words by
their mutual occurrences. Other machine learning techniques can also be explored to
identify concepts. A meta-classifer can be built to combine the results from various

techniques.

With respect to the Schema Miner, one can enrich the formalism for tree schemas. A
tree schema does not model choices of its constituent elements in the content model of
an element. Considering these sequences substantially increases the search space. An

extension would be to design a practical method to compute these sequences. We do
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not consider IDREFs and recursive definitions of elements. Further investigation is
needed to extend the schema discovery algorithm to take recursion into consideration.
A tree schema can also be extended to model attributes in XML documents. DTD
is the standard formalism of a schema for XML data. Nevertheless, a number of
proposals [W3C00f, W3C00g] have been submitted to W3C Consortium to provide a
richer formalism to describe XML data. For example, in [W3C00f, W3C00g], there
are data types in addition to the string primitive data type in DTDs. There is also
inheritance between complex types. Data can assume different ranges and there are
mechanisms to specify primary and foreign key constraints. Further research is needed

to extend the majority schema to consider these issues.

A majority schema can be used to build index structures to optimize path queries
and to optimize storage of the documents. Concept nodes with the high support in
a majority schema are most commonly found. Assuming this implies they are most
commonly accessed, structures in the documents conforming to these nodes can be
indexed for more efficient retrieval. Ideas similar to [NUWC97, MS99, DFS99| can

also be investigated which index objects with high support.

With respect to the Document Transformer, one can investigate a more sophisticated
cost model for the edit operators. The current cost model for the Rename operator
for deriving a semantic mapping assumes a simple formulation. Weights can be asso-
ciated with different components in the neighborhood component in the formulation.
Different non-linear formulations can also be investigated. At present, the cost of the

Insert and Delete operators range from 0 to 1 while that of the Rename operator
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ranges from 1 to infinity. One can look into assignments of different ranges for these
operators. The cost of transforming a source tree to a target is bounded by the sum
of the cost of deleting all nodes in the source tree and of inserting all nodes from the
target tree. The range of the Rename operator can be bounded by this cost. Assum-
ing a weighted sum formulation for the cost model, it would be helpful if the system
can automatically fit the best weights for the cost model. The user can give training
examples detailing the best transformation from an XML document to a majority
schema. Machine learning approaches can be used to search for the weights that best

fit the examples given by the user.

The Document Transformer heuristically searches the siblings, followed by descen-
dants and ancestors of a node. Further research is needed to investigate the effect of

different search order to locate the best match in case there are more than one.

Quixote integrates topic specific HTML documents which satisfy the properties de-
tailed in Section 1.2.3. While these properties are general assumptions on the informa-
tion content of documents, it would be interesting to relax the Regular Intradocument
Format Property. This implies that there may be choices of structures of constituent
elements in the content model of an element in a DTD. This impacts the require-
ments of the schema formalism to model the majority schema, and the derivation

and refinement of a semantic mapping in the transformation process.

At present, we consider single documents only. As HTML documents are linked to-

gether by hyperlinks in the Web, a useful extension is to consider the anchor text and
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relationships between HTML documents based on hyperlinks. For example, sections
of a person’s résumé may be linked together by hyperlinks with the anchor text of a
hyperlink describing the content of the section involved. Another example is a site
map of a Web site. HTML pages of the Web site are related to each other by hyper-
links. The information content of the linked HTML documents not only concerns the
information content of single documents, but also the relationships between HTML
documents which may not be hierarchical in nature. There are several implications.
XLink and XPointers [W3C00c] can be used to capture the hyperlinks. Since the
documents may not be linked in a hierarchy, cycles may be present which need to be
considered in the schema. Some HTML documents may relate to the same type of
information and the types may be related by generalization/specialization relation-
ship, e.g., a corporate Web site may have several pages on different products and
some products are within the category of some other products. Detecting groups of
and relationships between these HTML documents is necessary in deriving a concise

and precise schema.

Another challenging extension is to investigate topic specific documents in other for-
mats, e.g., plain text, postscript. The Document Converter exploits the format clues
of HTML documents which are readily available from the HTML markup tags and
the tree structures of the documents. However, these clues may not be present or may
not be readily available from documents in other formats. It may be worthwhile to
consider language parsing techniques in deriving the relationship between information

objects in these documents.
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Symbols

elem

Z+

boolean

1))

8 ©

S*
Set(S)

PowerSet(S)

(@)

(@]

D

domain of elem

domain of alphabets

domain of strings (concatenation of alphabets)
domain of integers

domain of real numbers

domain of natural numbers

domain of boolean

empty

null or undefined

space character

infinity

sequence built over elements from set S
set built over elements from set S
power set built over elements from set S
concatenation operator on strings
concatenation operator on label paths

concatenation operator on node paths



SYMBOLS
v domain of vertices
E, E’ domain of labels in an XML document (concept names)
A domain of attributes names
X domain of XML documents
X, X* XML document
X collection of XML documents
S tree schema or majority schema
D DTD (from a majority schema)
M XML document transformed from X
H XML document in HTML markup tags
Deg(X) degree of the XML document X

Depth(X) maximum depth of vertices in X

| X|
T(v)

number of vertices of XML document X

subtree rooted at vertex v
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language elements for the content model of an element in a DTD
language for concept constraints
concept instances, a set of (label, keyword/text) pairs

a set of maximal frequent label paths

T 9 o roqQ

conformance mapping of an XML document to tree schema

v  semantic mapping from an XML document to tree schema

)

transformation mapping to convert an XML document to another

o mapping from an XML document to one with repetitive label paths removed

punc punctuation delimiters
group HTML tags that are group tags
list HTML tags that are list tags

supThreshold threshold of support ior frequent label paths
ratioThreshold  threshold of support ratio for frequent label paths
maxPathLength maximum length of label paths considered in schema discovery

distThreshold threshold to check if two trees are structurally equivalent



