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Abstract
A (t,n)-locally random reduction maps a problem instance z into a set of problem instances
Y1,...,Yn in such a way that it is easy to construct the answer to x from the answers to
Y1y .-y Yn, and yet the distribution on ¢-element subsets of y,...,y, depends only on |z|. In

this paper we formalize such reductions and give improved methods for achieving them. Then
we give a cryptographic application, showing a new way to prove in perfect zero knowledge
that committed bits zq,..., z,, satisfy some predicate ). Unlike previous techniques for such
perfect zero-knowledge proofs, ours uses an amount of communication that is bounded by a
fixed polynomial in m, regardless of the computational complexity of Q.

1 Introduction

We develop and apply a new type of reduction, which we call a locally random reduction. We
begin with some historical motivation and context for our work. Next, we present an improved
construction of locally random reductions. Finally, we apply these reductions to zero-knowledge
proofs on committed bits.

1.1 Motivation and historical context

The notion of reducibility among computational problems has long had a pervasive influence on
the theory of computation. To analyze the average case complexity of a problem, it often suffices
to reduce an arbitrary instance of the problem to a random instance. For example, let p be a
prime and a be a generator of Z7. One can reduce the problem of computing log,  mod p, where
r € Zj, to that of computing log, y mod p, where y is distributed uniformly over Z;. Simply
choose r uniformly at random from {1,...,p — 1}, compute y = a"z mod p, and let log, z =
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(log, y) —r mod (p — 1). Thus, one can generate a “hard” instance of z by choosing z at random:
If computing log, © were easy for a randomly chosen z, then it would be easy for any value of z.

More generally, suppose one could randomly reduce computing f(z), where |z| = m, to com-
puting ¢(y), such that y is distributed according to some probability measure R,,. Then the
average-case complexity of computing ¢(y), where the average is computed with respect to R,,, is
as high as the worst-case complexity of computing f(z).

Unfortunately, this approach is limited, because of the following result. Suppose that E?P)) # H?P)),
and that f is NP-hard. Then there is no polynomial-time random reduction from f to any function
g such that the distribution on random instances y depends only on |z| (cf. [1]). This result holds for
a generalized notion of random reductions, known as single-oracle instance-hiding schemes. These
schemes have a probabilistic polynomial-time bounded player P and an unbounded player O that
always answers correctly. P wishes to compute f(z) for some function f and an input z. P is
allowed to flip coins and to interact with O for an arbitrary number of rounds but is not allowed
to reveal anything more than |z| to O. Here, “revealing only |z| to O” means that if |z;| = |z2],
then O’s views of the conversation when z = z; and when # = z9 are identically distributed. A
more precise and general formulation of this idea may be found in [1].

Rivest [17, 1] proposed the more general notion of multi-oracle instance-hiding schemes, in
which P is allowed to interact with a number of oracles Oq,...,0,. P is not allowed to reveal more
than |z| to any single oracle O;, but two or more oracles together may have enough information
to reconstruct x completely. Whereas schemes with only one oracle appear relatively weak, Beaver
and Feigenbaum proved the following theorem for multi-oracle schemes.

Theorem: [3] For any function f, there exists an (|z| 4+ 1)-oracle instance-hiding scheme that
reveals at most |z|.

Because any function f:{0,1}™ — {0, 1} can be trivially reduced to a function g : {0,1}™ ¢ —
{0,1}?", the factor of |z| + 1 may be reduced to a factor of |z| — clg|z|. In fact, we will later show
how to reduce this to |z|/clg|z|.

Lipton [15] translated the arguments of [3] into the language of multivariate polynomials and
applied them to the area of program testing. This framework is much easier to work with than the
original framework, which involved multi-party computations on shared secrets, and furthermore
allows one to prove useful program-testing results for multivariate polynomials of low degree. It
has been observed that Lipton’s program-testing reductions imply average-case complexity results,
such as the following theorem on computing permanents over finite fields.

Theorem: [15] Let F be a finite field with more than m + 1 elements. Suppose that, for some
probabilistic polynomial-time algorithm P, and for M chosen uniformly from m X m matrices,

1

Pr[P(M) = perm(M)] > 1 — 3wt 1)

Then there exists a probabilistic polynomial-time algorithm ¢ such that, for all m X m matrices
M,
Pr[Q(M) = perm(M)] > 1 -27".

Taking the contrapositive, if computing permanents over large finite fields is difficult in the worst
case, it must also be difficult for an €(1/m) fraction of the instances. Since the results of



Beaver-Feigenbaum [3] and Lipton [15] appeared, a number of researchers have used random-self-
reducibility properties of multivariate polynomials to show, among other things, that P#F C IP
(cf. [16]), IP = PSPACE (cf. [19]), and MIP = NEXPTIME (cf. [2]). A detailed overview of the
relationship of locally random reductions to other basic concepts in complexity theory can be found

in [9].

1.2 Our results

In this paper, we provide a formal definition of locally random reductions, exhibit an improved gen-
eral construction of such reductions, and apply them to zero-knowledge proof systems. Informally,
a (t,n)-locally random reduction from a function f to a function g works as follows. To compute
f(z), we use z and a string r of “random coin-flips” to generate y1, ..., y,. Here n, as well as ¢, de-
pends only on m = |z|. We recover f(z) by computing simple function of z,r, and ¢g(v1),...,9(yn)-
Moreover, for any zg and z; of the same length m, for any iy, ..., the distribution y?l . .,y?t
induced by zq is identical to the distribution yill, .. .,yilt induced by z;. We prove the following
theorem, which is stated informally here; a formal statement and proof are given in Section 3.

Theorem 1: For any function f :{0,1}"™ — {0,1} and any constant ¢ > 0, there is a function g
such that f is (¢,tm/clgm)-locally random reducible to g.

This improves on the results of [3, 15] mentioned above.

We apply locally random reductions in a novel protocol for zero-knowledge proofs on committed
bits. Zero-knowledge proof systems, as originally formulated by Goldwasser, Micali, and Rack-
off [13], are two-party protocols in which the parties have a common input z, and one party (the
prover) convinces the other (the verifier) that, say, f(z) = 1, without revealing anything about
except that f(z) = 1. We consider a related setting in which the prover publishes a commitment
to its private input z and then at some later time proves in zero-knowledge to the verifier that
f(z) = 1. Furthermore, f may be unknown at the time z is committed.

We consider how to implement such proofs in the presence of an ideal commitment scheme. Both
prover and verifier have unlimited computational power, no complexity-theoretic assumptions are
made, and an ideal bit commitment scheme is assumed as a primitive. A natural question to ask
is whether one can actually perform zero-knowledge proofs on committed bits in this setting. This
question has been answered in the affirmative by several researchers (e.g., [5, 18]); a written account
of a more recent scheme appears in [6].

It is natural to ask whether an interactive proof system is at all interesting if it requires the
verifier as well as the prover to have unlimited computational power. The answer is yes, for the
following reason: We are focusing on the communication cost of proving the value of a predicate
on a set of committed bits. It is not at all clear (and might even be counterintuitive) that an
arbitrary predicate f can be proven in a communication-efficient manner, even if both prover and
verifier have enough computational power to compute f. All previous schemes for zero-knowledge
proofs on committed bits, including those of [5, 6, 18], have bit complexity proportional to the
circuit complexity of f, where by “bit complexity” we mean the total number of bits committed to
or communicated between the two players. Thus, if f is an arbitrary predicate on m bits, a zero-
knowledge proof that f(z) = 1 will require exponential communication if one uses the protocols
of [5, 6, 18], regardless of the amount of computational power one allows the verifier. By applying



locally random reductions, we achieve a protocol whose total communication cost is polynomial,
even if the circuit complexity of f is exponential.

Theorem: Given an ideal commitment scheme, there exist protocols for committing and decom-
mitting bits and a protocol for proving arbitrary predicates on a set of committed bits. The proof
system reveals nothing about the committed bits other than what is implied by the predicate being
true. Furthermore, the bit complexity of the proof system is polynomial in the number of input
bits to the predicate — it is independent of the predicate’s computational complexity.

A formal statement and proof of this theorem appears in Section 4.

Although the fact that both prover and verifier in our protocol have unlimited computational
power does not detract from the theoretical importance of the fact that the protocol’s commu-
nication costs are polynomial, it does render the protocol impractical. With respect to practical
applicability, our protocol is not an improvement over those of [5, 6, 18].

The rest of the paper is organized as follows. In Section 2, we formally define locally random
reductions and other notions that we will use later in the paper. In Section 3, we give our improved
construction of locally random reductions. In Section 4, we give our communication-efficient pro-
tocol for zero-knowledge proofs on committed bits. Open questions are given in Section 5.

These results first appeared in our Technical Memorandum [4].

2 Preliminaries

2.1 Locally random reductions

We now formalize the intuition of Section 1.2.

Definition 1 Let f : D — {0,1}*, g : D' — {0,1}*, and t,n : N — N. We say that f is
(t,n)-locally random reducible to g in time Q(m) if there is a polynomial p(m) and a pair of
Q(m)-time computable functions (scatter, reconstruct) such that:

e [Correctness] For all m € N and z € DN {0,1}™, for at least 3/4 of all r € {0, 1}7(™),

f(z) = reconstruct(z,r,g(y1), - -, 9(Un(m)))>
where (Y1, ..., Yn(m)) = scatter(z,r).

¢ [Local randomness] For all m € N and {iy,...,%m)} C {1,...,n(m)}, if r is chosen
uniformly at random from {0, 1}("™)| then, for any z1, 22 € D N {0,1}™, the distribution on
(Yiy s - - .,yit(m)> induced by scatter(zq,r) is identical to that induced by scatter(zz,r).

More succinctly, we will write “f is (¢, n)-lrr to g.”

When we omit mention of (), it means that
Q(m) is a polynomial but that the specific polynomial involved is unimportant for the result under
discussion. In the special case in which f = ¢, we say that f is “(¢, n)-locally random self-reducible.”

Informally, if T is a subset of the target instances {y1,...,Yn(m)}, and |T| < t(m), then T leaks

no information about the original instance z, except its length m.



2.2 Function arithmetization

A powerful technique for dealing with a Boolean function f : {0,1}™ — {0,1} is to treat f as a
multivariate polynomial P over some finite field F. In this way, algebraic properties of polynomials
can be directly exploited. Such arithmetization of Boolean functions is an important insight of Ben-
Or, Goldwasser, and Wigderson [7]. The polynomial P is sometimes referred to as a “multilinear
extension of f over F” (e.g., in [2, 16, 19]).

Fix a function f:{0,1}™ — {0,1} and a finite field F. We use o} to denote the polynomial z;
and o}, to denote the polynomial 1 — z;. (The “1” is the multiplicative identity of F.) Given an
m-bit string @ = ay .. .a,,, we define the polynomial §, by

Now let the polynomial P(z) be given by

P(x)= Y f(a)da(z).

a€{0,1}™

This is the arithmetization of f over F.
Here is an example. Let f(z12223) = 21 & x2 @ z3, where & denotes exclusive-or. Then the
arithmetization of f is the polynomial

P(;Z‘l,;rg, $3) = .fl(]_ — xg)(l — $3) —|— (1 — ;rl);l‘g(]_ — $3) —|— (1 — .ﬂl)(l — $2);Z‘3 —|— T1T223.

At this point, we make two observations. First, in the definition of é,, each variable can appear
at most once in the product, and so &, is linear in each variable z;. Thus P is also linear in
each variable z; (being the sum of monomials that are linear in z;). Second, for any z € {0,1}™,
P(z) = f(z). This identity may be verified by noting that, in the sum given by the definition of
P(z), all the terms are 0 except for one that is equal to f(z).

Throughout this paper, we assume that the finite field F' has characteristic two. This allows us
to choose an element of F uniformly at random simply by flipping coins. All of our definitions and
results can be stated for F' of characteristic greater than two as well. Certain protocols that work
with probability one when F has characteristic two may fail with exponentially small probability
when F has higher characteristic, because a sequence of coin flips may fail to yield an element of
F. Otherwise, everything that we present is the same for all finite fields.

3 Improved locally random reductions

We now show how to improve the results of Beaver-Feigenbaum [3] and Lipton [15]. We first exhibit
a parameterized family of random-self-reductions for multivariate polynomials over sufficiently large
finite fields. We then give, for any constant ¢ > 0 and any m-bit function f, a (¢,t[m/clgm|)-locally
random reductions from f to some other function g.

Lemma 1 There is a polynomial )(m) having the following property. Let d and ¢ be numbers, and
let F' be a finite field of at least dt 4 2 points. Let P(zy,...,2,) be a polynomial in Flzq,...,Z:]



of total degree at most d. Then P is locally random self-reducible in time Q(m + d + ¢ + lg |F]).
Furthermore, there is a single pair of functions (scatter, reconstruct) that serves as a locally random
self-reduction for any P satisfying the above conditions.

Proof: Our proof proceeds along the lines of [3], using the polynomial framework of [15]. First,
we define scatter(X,r). Let X = (z1,...,2,) € F™, and regard r as a set of m¢ random elements
of F, denoted {¢; ;}, where 1 < i < mand 1 < j <t Let ay,..., o441 denote distinct nonzero
elements of F. Define p;(z) by

pi(2) = cig2t + -+ iz + i

Finally, define
scatter(X, {c; ;}) = Y1, ..., Yars1),
where Y3, = (pl (ak)v . e -7pm(ak))'

Before describing reconstruct, we explain our definition of scatter. Define ]5(,2) by

P(z) = P(p1(2), - .., pm(2)).

Because P is of total degree at most d, and each p;(z) is of degree ¢ in z, the curve P(z) is of degree
at most dt. By definition,

P = Play), and
P(X) = P(0) (because p;(0) = ;).
We now define reconstruct. Recall that computing P(X) is equivalent to computing P(0).

Because P is a univariate polynomial of degree at most dt, P(O) may be recovered from P(al), .
P(ode_l) by Lagrangian interpolation. More explicitly, we define scatter by

dt+1
scatter(P(Y1), ..., P(Ya41)) Z LYy
where #1,...,tq+1 € F are constants defined by
— O
tr = H 7_J -
jk kT

Thus, (scatter,reconstruct) has the correctness property required by Definition 1, and both
scatter and reconstruct can be computed in the stated polynomial number of steps. Thus it suffices
to show that, for any X1, X3 € F™ and any sequence (i1, ..., %), the distribution on (¥;,,...,Y;,) in-
duced by scatter(Xy,r) is the same as that induced by scatter (X, r), i.e., that (scatter, reconstruct)
has the local randomness property also required by Definition 1. We show this by using the fol-
lowing well known fact about polynomial interpolation: Given points (z1,y1),..., (2, y:), where
all the z;’s are distinct and nomnzero, and fixing c¢q, there is exactly one polynomial of the form
¢zt + -+ c12 + ¢ that agrees with all of these points. Thus, the fact that the c; ;s are chosen
independently and uniformly at random, combined with our definition of scatter, implies that, for
any distinct ag,,...,ar, € F — {0}, and any X,Y%,,..., Y, € F™, there is exactly one consistent



value of C. Therefore, the distribution on (Y,,...,Y%,) is uniform over (F™)*, for any value of
XeFm |

Beaver and Feigenbaum showed that for, any m-bit boolean function f, there is a function g such
that f is (1, m + 1)-locally random reducible to g. We now show how to reduce the total number
of queries from m + 1 to [m/clgm]|, for any constant ¢ > 0.

Theorem 1 Fix a constant ¢ > 0 and a function ¢ : N — N. Then there is a polynomial @Q(m)
having the following property: For any function f :{0,1}™ — {0, 1} there is a function g such that
fis (t,t|m/clgm)|)-locally random reducible to ¢ in time Q(m).

Proof: Let F be a finite field of the form GF(2!), where [ > [mt]. We first show how to reduce
the computation of the arithmetization P(z1,...,2,,) of f over F to the computation of another
multivariate polynomial P*(y1,...,y,) over F of total degree at most |m/clgm|. We then apply
Lemma 1 to complete our proof. Partition the set {1,..., m} into disjoint subsets Sy, ..., Sg, each
of size at most clgm + 1. For any ¢ and any nonempty T' C S;, we define a new variable yr, given

by
yr = [] =:-
€T
Let I = {iy,..., it} be any subset of the indices {1,...,m} and az,, ---2;, a monomial in which
each variable appears at most once. We can transform this degree k¥ < m monomial into a monomial

of degree < d via the mapping
d

aTg, - Xy, —r a H Yyins; -
i=1

It is easy to verify that the values of the two monomials are equal, given the above change of
variables. Because the arithmetization P of f is a sum of monomials in which each variable appears
once, transforming each monomial of P as above yields a new polynomial P* of degree at most d.
Finally, one can rename the subscripts taken by our variables yr to be integers instead of sets. This
purely syntactic transformation will sometimes be made for notational reasons, allowing us to say
Y1, .-, Y, when convenient, but it is otherwise unnecessary. We can easily bound v, the number of
variables in P*, by

c+1
v < l m J ‘2clgm+1 < 2mt )
— Lelgm clgm

Here is a simple example of the change of variables, with m = 6 and d = 3. Suppose that
P(z1,...,26) = 212203242526 — T223%6 + 2012223%6.
First, let S; = {1,2}, Sy = {3,4}, and S3 = {5, 6}, yielding variables
Y{13 Y{2} Y{1,2}> Y{3}> Y{a}» Y{3,4}» Y{5}s Y{6}» Y{5,6}-
The polynomial P* is given by

P*(y{1}7 . -73/{5,6}) = Y{1,2}Y{3,4}Y{5,6} — Y{2}Y{3}Y{6} T 2y{1,2}y{3}y{6}-

~1



Note that it may be infeasible to write down P or P*, because the number of terms in one of both
may be exponential in m. However the reduction from P to P* only requires computing the new
variables {yr}, which can be done with a small number of multiplications in our field. For example,
Y(3,4) is computed by multiplying z3 and z4.

We now define our reduction (scatter, reconstruct). On input X = z1,..., &y, scatter(X, r) first
computes z1,..., %, € F, where boolean 0’s are transformed into the 0 element in F, and boolean
1’s are transformed into the 1 element in F. This trivial transformation effects the reduction from
f to P. Next, scatter computes the variables {yr}, effecting the reduction from P to P*. Note that
P*(y1,...,y) = f(z1,...,Zm), where 0 and 1 field elements are identified with 0 and 1 boolean
values. Finally, scatter performs the mapping used by the (¢, dt + 1)-locally random self-reduction
given in Lemma 1, for v-variable polynomials over F of degree d = [m/clgm]|.

We define reconstruct to be the same as in Lemma 1, except that it interprets 0 and 1 field
elements as their boolean equivalents.

By Lemma 1, our reduction (scatter, reconstruct) always give the correct answer. Furthermore,
the number of algebraic operations performed by reconstruct and scatter is bounded by some
polynomial in v and ¢. Because v is bounded by some polynomial in m (depending on c¢), and the
requisite field operations can be implemented in time polynomial in m and ¢, the total number of
bit operations performed by reconstruct and scatter is polynomial in m and t. |

4 Zero-knowledge proofs on committed bits

In this section, we formally define ideal bit commitment schemes and review the notion of zero-
knowledge proofs on committed bits. In the protocols we will describe, there is one party (the
“prover”) who commits to a set of bits and later proves assertions about these committed bits, and
there is another party (the “verifier”) who verifies the proofs on the committed bits.

Intuitively, we think of an ideal commitment scheme as having physical envelopes that the
prover can fill with information and place on the table. If the prover later opens an envelope, the
verifier knows its contents have not been changed.

We are interested in the notion of zero-knowledge proofs on committed bits. Such commitments
have also been referred to as notarized envelopes. That is, one would like to commit to a set of
bits b1, ..., b, and at some later time prove some predicate () (by,...,b,) on these bits, without
revealing the values of by, ..., b, or other information not implied by Q (b1, ..., bnm).

Ideal commitment schemes were used in the construction of zero-knowledge proofs for predicates
in NP (cf. [11]) and IP (cf. [14]). Zero-knowledge proofs on committed bits were first used in the
study of multi-party secure computation [12] and were based on complexity theoretic assumptions.
Simple schemes for basing zero-knowledge proofs on committed bits on ideal commitment schemes
were developed not long thereafter (e.g., [5, 18]) but did not appear in the literature until [6].
These schemes allowed one to prove arbitrary predicates on k committed bits using a total amount
of communication that was potentially exponential in %.

This exponential communication cost is sometimes acceptable. For example, one can transform
any NP predicate Q(by, ..., bs) into a predicate of the form

(Elyla .- '7yl)Ql(b17 .- '7bm7y17 .- -791)7

where, Q' = A; Q) and each Q! is a predicate on just three variables, then prove Q(by, ..., b;) in



zero knowledge by committing to suitable values for yq, ..., y; and proving each of the predicates
Q! in zero-knowledge. However, such a transformation cannot be applied to arbitrary predicates
and can be very unwieldy even for NP predicates. This technique also leaves open the question of
whether the communication cost of zero-knowledge proofs on committed bits depends intrinsically
on the computational complexity of the predicate to be proven. In the remainder of this section,
we answer this fundamental question in the negative.

4.1 Formal definitions
In this section we describe the model of computation for interactive proofs in the presence of an
ideal commitment scheme. We then go on to define (perfect) zero-knowledge proofs in this model.

4.1.1 Ideal commitment schemes

An ideal commitment scheme (ICS) can be thought of as a special type of channel that connects
the prover P to the verifier V. When we run the protocol specified by P and V', any string that
V' writes down for P will be delivered (unmodified) to P; but messages sent from P to V are
transmitted in the following way. Initialize S < () and then:

1. When P transmits on its channel to V a message
commit(z, t),

if there is no ordered pair (2/,t) € S, then we set S <~ S U {(z,¢)} and deliver to V' the
message t. If there is already an (2/,t) € S then the empty string is delivered to V.

2. When P transmits on its channel to V' a message
decommit (),

if there is some pair (z,t) € S then we deliver to V' the message (z,¢). If there is no such
pair (z,t) € S, then the empty string is delivered to V.

We could have provided P a “direct” channel to V', but this is trivially simulated with the channel
above.
We say that P commits to t = x1...2,, if P transmits in the course of the protocol:

commit(zy,x-bit-1),..., commit(z,,, x-bit-m), (0, length-x=m) .

We say that P reveals z if it sends the corresponding decommitments.
We will use the notation Channel?_, (z) to denote the message delivered when z is transmitted

on the P — V channel, which is currently in state S. Note that this operation has a side effect
on S.



4.2 ICS protocol execution

We model players P and V' as {0,1}*-valued functions on initial input s € {0,1}* (verifier) view
z € {0,1,#}* and coins flips r € {0,1}*°. An R(m)-round execution (P(s1),V(sz)) is defined by
the following experiment: set z «— A; set S < (; choose random strings r1,ro € {0,1}°; then:

for i < 1 to R(|z|) do
z + z # Channel?_ (P(s1,2,71))
2z # V(827 2 TZ)

We say that an execution of (P(sy),V(s2)) accepts (or simply V' accepts) if the last bit of the final
value of z is 1; else we say it rejects. The (verifier’s) view is the random variable that gives sz, r3,
and the final value of z. The communication complexity of an execution is the length of the final
value of z.

4.2.1 Zero-knowledge proofs on committed bits

A zero-knowledge proof that predicate ¢ holds on committed bits zy,...,z,, is a like a neutral
third party that does nothing but check that Q(z1,...,2,) = 1, reporting the answer back to V.
Nothing else is revealed.

As in the more customary setting of Goldwasser, Micali and Rackoff [13], we can formalize this
idea by using a simulator: We require of any (possibly cheating) verifier that there be an algorithm
that produces a distribution on (fake) views that coincides with the distribution on (real) views
received by that verifier (when interacting with the prover who has initial input z, where Q(z) = 1).
By effectively demonstrating that the verifier could have computed its view on its own (knowing
nothing but Q(z) = 1), the existence of the simulator assures us that the verifier learns no more
than it should.

Another way to model potential information leakage follows the notion of “witness indistin-
guishability” of Feige and Shamir [8]. In particular, for any equal length z and z’ that satisfy
predicate (), the views that the verifier gets in these cases should be identical. This approach
concerns itself more with hiding the input than with leaking extraneous information.

In the formalization we now give, we follow the second approach. Equivalent definitions can be
formulated using simulators.

Definition 2 An R(m)-round, e(m)-error ICS proof system for predicate ) is a pair of players
(P, V) such that:

o (Completeness) For any z such that Q(z) = 1, an R(|z|)-round execution (P(z),V(|z|))
accepts, and in it P commits to z.

e (Soundness) For any player P that commits to its initial input z, if Q(z) = 0, then the
R(|z|)-round execution (P(z),V(|z|)) accepts with probability at most €(|z|).

When R(m) is polynomial and €(m) < 1/2is constant we omit mention of these parameters. If the
communication complexity is bounded by a polynomial in m, we say that (P, V') is communication-
efficient.

10



Definition 3 An ICS proof system (P, V') for predicate @ is zero-knowledge if, for all V and all
1,22 such that [21] = 23] and Q(z1) = Q(z2) = 1, the view of (P(z1), V(|z1])) is identical to the
view of (P(z32), V(|z2])).

4.3 A communication-efficient protocol for proofs on committed bits

We now present a new protocol, based on an ICS, for performing zero-knowledge proofs on com-
mitted bits. In our protocol, a computationally unbounded prover P can prove arbitrary predicates
in zero-knowledge to a computationally unbounded verifier V. Unlike the previous protocols, our
protocol requires communication that is only polynomial in the number of committed bits, re-
gardless of the circuit complexity of the predicate being proven. Note that the verifier must be
computationally unbounded, because it must verify arbitrary predicates.

For our discussion, we will often blur the distinction between boolean values and the 0 and 1
elements of a finite field. First, we use a standard trick of representing each bit to be committed as
a random exclusive-or of two bits (equivalently, a random sum over GF(2)). The following simple
protocols are used to commit and reveal bits.

Protocol cOMMIT(zq,...,2,,) For 1 < ¢ < m, P uniformly chooses 2%, z! € {0,1}, subject to
z; = 2) @ 2z}, and commits to z¥ and z} using the ICS.

Protocol REVEAL(7) The prover reveals 2 and z! using the ICS. V computes z; = 2 ¢ 2.

It is easy to verifier that the value of a bit recovered during the REVEAL protocol must be the same
as that during the COMMIT protocol. Furthermore, as soon as P has committed to z? and z!, he
has implicitly committed to a bit z; that is guaranteed to be well defined. The issue of committed
bits” being well defined will arise later but can be safely ignored at this point.

Our protocol for performing zero-knowledge proofs on a set of committed bits is based on the
reduction given in the proof of Lemma 1, where ¢ = 1. In order to prove the boolean predicate
Q(z1,...,2m), P and V first arithmetize @), as in the proof of Theorem 1 (treating Q(X) as a
boolean function that is 1 iff Q(X) is true). For the rest of the protocol, P must show that
Q*(z1,...,2m) = 1, where Q* is a degree < m multivariate polynomial over a finite field F. F
must have at least m + 1 distinct nonzero elements, denoted a, ..., apmy1.

The zero-knowledge proof proceeds in two phases. In the commitment phase, P generates a
run of the (1, m + 1)-locally random self-reduction on Q*, “breaks” the computation into random
pieces, and commits to these pieces. In the challenge phase, V randomly chooses to see certain
pieces of the reduction and uses this glimpse to verify probabilistically that the self-reduction was
honest.

In the commitment phase, P uniformly generates {¢; € F} and then follows the reduction in
Lemma 1 to generate {y; ;}. He then computes

Yi = (s Umy)
zi = Q'(Y)),
and finally reconstructs the final answer,

m+1

w = E tjzj,
J=1
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Protocol PROVE(Z1, ..., Ty, @) [Commitment Stage]
Let F be a finite field with at least m + 2 element, and let @* be the arithme-

tization of @ over F. Let ai1,...,am41 € F be distinct and nonzero. Define
1. ostmyr € F by t; _Haj_ai.
i#]
1: For 1 < i< mand 1< j < m+41, P uniformly chooses ¢; € F, and
computes:

Yij = T+ ciay,

i = (i ¥mi)

zi = Q'(Y;), and,

m+1

w = E thj.
j=1

2: P uniformly chooses ¢?,c! € F, subject to ¢; = ¢? + ¢}, and z?,z} € F,

subject to z; = z;») + z]l P then computes:

b b b
Yi; = =z +cjaj, and,
m+1

b _ b
w = E tjz;,
j=1

where b € {0, 1}. Note that y; ; = ygj + yl{j and w = w® 4+ w'.

3: Forbe {0,1},1<i<m,and 1 < j <m+ 1, P commits to ci?,yfvj,zt»’
and w® using the ICS.

Figure 1: Commitment stage of the zero-knowledge proof system.

— O
———. After generating this run of the reduction, P breaks up each ¢;,y; ;, 2; and

where t; =
S
w into two halves whose sum (over F) is equal to the original and then commits to each half. Thus,
we have ¢; = ¢? + ¢}, w = w® + w!, etc. We give the commitment stage of the protocol in Figure 1.
In the challenge phase of the protocol, V makes one of three general requests. He can ask P to
reveal the “0 half” or the “1 half” of the self-reduction and verify a number of linear constraints. He
can ask P to reveal Y; and z; for some j (by revealing both halves of all their relevant components)
and verify that z; = Q*(Y;). Or he can ask P to reveal w (by revealing w° and w') and verify that
w = 1. We give the challenge stage of the protocol in Figure 2.

4.4 Properties of our proof system

In this section, we argue that our protocols have the properties of a zero-knowledge proof system.
We first show that our protocol is complete: If both parties behave properly, then V always accepts

12



Protocol PROVE(Z1, ..., Zm, @) [Challenge Stage]
V makes one of the following m + 4 challenges, each with equal probability:

1. [For beither 0 or 1] For 1 <i<mand 1 < j<m+1,V asks P to reveal

bbb b b s b _ b b b_ Al b
¢»Y; j» 75 and w’. V accepts iff y; ; = 27 + ¢/a; and w” = > tiz

iy j=1 ti%j-

2. [For 1<j<m+1]Forbe {0,1}and 1 <i< m, V asks P to reveal yfﬁj
and zf V then computes Yj = (y%j—l—yij cee, y?mj—i—y%w») and Z; = z?—}—z}

and accepts iff z; = Q*(Y7)

3. V asks P to reveal w° and w! and accepts iff w® + w' = 1.

Figure 2: Challenge stage of the zero-knowledge proof system.

a correct assertion. Next, we show that our protocol is weakly sound: V rejects a false assertion
with probability at least 1/poly(m). Finally, we show that our protocol is zero-knowledge: A proof
that Q(z1,...,2m) = 1 conveys no extra information about z1,..., .

Lemma 2 If Q(zy,...,2,) =1, and P and V follow PROVE(z1, ..., Zm, @), then V always accepts.

Proof: It suffices to show that V accepts for each of the 3 types of challenges he might make.
The first challenge is trivially satisfied, by the definition of 3/3]‘ and w®. To show that the second
challenge is satisfied, it suffices to show that the values for 2; and l;'] reconstructed by V are truly
equal to those given by P. By construction, z; = z? + z]l. The case for Y; follows from the identity
Yij = ygj + yl{j, which may be verified by:

ity = (a0 +fay) + (sl +clay)
= (:U? + xll) + (C? + Cll) o;
= T+ o
= yimj'
To show that the third challenge is satisfied, it suffices to show that w =1 and w = w® +w'. That
w = 1 follows from the fact that Q*(z1,...,2,) = 1 and the fact the construction of Lemma 1

always gives the correct answer. To see that w = w® 4+ w!, note that
m+1 m+1
0 1 0 1
wtw o= | >t | Dt

m+1

= Y ti(H+2)
=1
m+1

= >tz
7=1

= w. |
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Lemma 3 Suppose that Q(z1,...,2m,m) = 0. Then for any (possibly malicious) P, if V obeys the
protocol, he rejects with probability at least 1/(m + 4), regardless of P’s strategy.

Proof: Given committed values for C?,ygj,zg, and w®, define ¢; = ¥ + ¢}, Yi; = Z/ZQ,]‘ + yl{j,
z; = z? + zjl, and w = w® + w!. Suppose that, for all 7 and 7,

Yij = Ti+t oy,
*
zZ; = Q (yl,j7"'7ym,j)7 and
m+1

w = Zt]‘Z]‘.
Jj=1

Then, by the proof of Lemma 1, w = Q*(z1,...,2,,) # 1, and V rejects if he asks to see w® and
w'! (a Type 3 of challenge). If y; ; # z; + c;e; for some i, j, then for some b € {0,1} it must hold
that ygj £ 20+ c?ozj, and V rejects if he makes a Type 1 challenge, for the appropriate value of b.

Similarly, if w # Z;”:ﬁl t;z;, for some j, then for some b € {0,1}, w® # E;”:‘*il tjzg«, and V again
rejects if he makes the appropriate Type 1 challenge. Finally, if for some j, z; # Q*(y1,5,- -+, Um,j)»
then V rejects if he makes a Type 2 challenge, with that value of j. Thus, in all cases, there must
be at least one challenge that causes V' to reject, and that challenge is chosen with probability at

least 1/(m+4). |

Lemmas 2 and 3 show that the protocol is a 1-round, (1 — m}H)—error proof system. We next

show that the protocol is zero-knowledge and then discuss how to reduce the probability that a

false statement is accepted.

Lemma 4 Suppose that Q(z1, ..., zm) = Q(Z1, ..., Tm) = 1 and that, for some set T' C {1, ...,
m}, x; = z; fort € T. Let V be an arbitrary computationally unbounded party. Then the distribu-
tion on V’s view induced by running COMMIT(Z1,...,%m), PROVE(Z1,...,Zm,Q), and REVEAL(?)
for t € T is identical to that induced by running COMMIT(Z1, ..., %), PROVE(Z1,...,Tm, @), and
REVEAL(t) for t € T'.

Proof: The bulk of the proof consists of analyzing the information revealed to v during the exe-

cution of the PROVE protocol. Suppose P commits to 21, ..., Zm by committing to (2% 21), ..., (29,

2l ). We first show that, for each possible challenge V' can make, there exists b € {0,1} such that

his view can be generated from z8%,..., 2% angl in no way depends on mi_b, ..., 21=b Indeed, for

Type 1 and Type 3 queries, one can generate V'’s view without looking at (29, 21),..., (2%, 2],) at
all.

If V makes a Type 1 challenge, for either value of b, his view consists of z?, ¢?

b b )
i1 Cir Vi jr 7, and w’,

for 1 <i:<mand 1< j<m+1. The values of ci»’ and zg are uniform over F. Furthermore, ygj

and w® are functions of only 2%,...,2% ¢ ... ¢4  and 2b, .. .,zfn_H (ignoring the «a;’s, which are

publicly known). Thus, his view from a Type 1 challenge (with value b) can be generated from
only 28,... b .
If V makes a Type 2 challenge, with a given value of j, his view consists of ygj and zg,

for b € {0,1}, and 1 < 7 < m. First note that the distribution induced on (29,2]1«) depends

14



only on the distribution of Y; = (y1,5,...,Ym,;). By the properties of our locally random reduc-

tion, y1,j,...,Ym,; are independently and uniformly distributed over F', regardless of the values of
(29,21, ..., (2%,2] ). We have the identities
b b b
Y; = T, tcqaj,
Yi; = ¥;+coj, and
T, = ac? + $ll

Furthermore, the C?’s are distributed uniformly and independently, subject to ¢; = ¢? + ¢!, and
a; # 0. By a simple probability argument, the distribution on

0 1 0 1
yl,]# y17j7 ey ymﬂﬁ ymﬂ

is uniform, subject to y; ; = y%j + yij. Hence, if V makes a Type 2 challenge, his view from this
challenge does not depend on the values of 29,21, ...,29 2l .

Finally, if V makes a Type 3 challenge, then his view consists of w® and w!. We claim that w°
and w! are uniformly distributed subject to w® 4+ w! = 1, and thus V’s view does not depend on
(29,21, ..., (2%, 2L). First, note that w = 1 = w® + w'. Because w° = Ej’:ﬁl t20, 205y 2
are uniformly and independently distributed, and at least one value of {¢;} is nonzero (in fact,
every t; is nonzero), it follows that w? is uniformly distributed.

Now, recall that the COMMIT protocol reveals nothing about the values of zy,..., z,, and that
the REVEAL(t) protocol releases the values of 29 and z}. Hence, one can always generate V’s view
by looking at {(z?,z})|t € T} and zb, ..., 2L , for some value of b that depends only on the type of
Vs challenge. However, if z1,...,2,, and Z1,...,Z,, are as in the statement of the lemma, then,
for either value of b, the induced distribution on

{22 2|t e T}, 28, ... 20, and {(&0,2]))|t € T}, 20,..., 2"

3 m) m
is identical, and hence V’s view is also identical. |

We can view the above argument as an algorithm for simulating Vs view, knowing only z;
for t € T. During the proof process, the simulator simply talks to V', generating its responses

according to the algorithm given in the proof. At some point, it may need to know 28%,..., 2% for
some b € {0,1}, at which point the simulator uniformly generates 2%, ..., 2% and continues. When

it comes time to simulate the revelation of z; for t € T'| the simulator learns these values, computes
:Utl_b =z, —2bforteT (choosing 2%, ..., 2 uniformly if they have not been chosen before), and
outputs the appropriate values.

One drawback to the scheme given above is the low probability that a verifier will catch an
incorrect proof. This problem has been dealt with in previous protocols for zero-knowledge proofs
on committed bits; the ideas used there carry over to our protocol without any conceptual alteration,
and thus we simply state without proof the stronger results that we obtain using thses standard
techniques.

The basic idea is to run several independent copies of the protocols. Instead of breaking each
z; into a single pair, (29, z}), P will break each z; into a sequence of independent pairs,



Similarly, P reveals z; by revealing all [ pairs that he previously committed. When P is honest,
29[7] @ z}[j] will have the same value, z;, for all values of j. With a malicious prover P, there is no
such guarantee. In this case, we define x; to be the majority of 29[j] @ =![j], for 1 < j <I. Under
this interpretation, even a malicious prover is guaranteed to be committing to some unambiguous
value.

More precisely, recall the following standard protocol that is used in earlier work on zero-
knowledge proofs, e.g., in those of Bennett [5] and Rudich [18]. Given two pairs, (z9[5], z}[7]) and
(29[k], z}[K]), we wish to give a zero-knowledge proof that

i i
1] & 2 [j] = 27 [k] & a;[k].
This is accomplished by using protocol PROVE-EQUAL on the four committed bits.
Protocol PROVE-EQUAL(2Y, 21,29, #1) /* Prove that 2§ @ 2} = 2§ @ 2} */
1: P sends V the value of 20 & 29.
2: V uniformly chooses b € {0, 1} and sends b to P.
3: P reveals 24 and 24 to V, who accepts iff 28 @ 2} is equal to the value sent in Step 1.

The PROVE-EQUAL protocol is known to have the following properties:

Property 1: If 29 @ 2l # 29 @ zl, then V rejects with probability at least %, regardless of P’s
strategy.

Property 2: Let = € {0,1} and 29, 2}, 29, 2! be chosen uniformly subject to
x:x?@x% ::cg@x%.
Then, for any V, the induced distribution on V’s view of

PROVE-EQUAL(zY, 21, 29, 23),

followed by the revelation of 2?, z1, 29, 2, may be generated by the following algorithm.

1. Choose v € {0,1} at random and choose yy,y € {0, 1} uniformly subject to v = y; B yz.

2. Send v to V. On receipt of b from V, set 2% = y; and 24 = y,, and send 2% and 2§ to V.

3. Set 21™° =2 @ 2% and 217 = 2 @ 25, and send 29, 2}, 29 and 2z} to V.

In particular, Property 2 implies that V’s view through the PROVE-EQUAL protocol is indepen-
dent of z.

In the protocol of Figure 3, a pair (z9[5], z}[j]) is called usedif it has been chosen in some previous
iteration of the repeat loop and wuwnused if it has not. Straightforward probabilistic arguments
(which we omit) show that the protocol has the following desired properties.

Lemma 5 Suppose that Q(z1,...,2,) is false and that [ > 3k. Then, during each iteration of the
repeat loop in the PROVE-MANY protocol, V' rejects with probability at least

1_<1_m>k.
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Protocol PROVE-MANY (21, ..., Zm, @, k)
I: repeat £k times

1: V chooses j1,...,jm such that, for 1 < d < m, (2?[ja], 2}[j4]) is unused,
and b € {0, 1} uniformly.

2: If b = 1, then V and P run PROVE(Z1,...,Zm,Q), where the pair
(2907:], 2}[Ji]) is used to represent z;.

3: If b= 0, then V chooses ji, ..., j,, such that (z?[j,], z}[j4]) is unused for
1 <d < m. Then, for each d, P and V run

PROVE-EQUAL (] [ji], z;[ji], #7[jal, =i [5d]) -

IT: V rejects iff V' ever rejected during Steps 2 or 3 of the loop. P aborts the
protocol if ever asked to “reuse” a pair.

Figure 3: Protocol for decreasing the probability of error.

Lemma 6 Suppose that Q(z1,...,2m) = Q(Z1, ..., Tm) = 1, and that, for some set T C
{1,...,m}, zg =z, fort € T. Let V be an arbitrary computationally unbounded party. Then the
distribution on V’s view induced by running COMMIT(Z1, ..., %), PROVE-MANY (Z1,...,Zm, @, k),
and REVEAL(?) for t € T is identical to that induced by running comMMIT(Z4,...,Z;,), PROVE-
MANY(Z1,...,Zm,Q, k), and REVEAL(t) fort € T.

Together Lemmas 2 through 6 give the following:

Theorem 2 Every predicate Q(z1,...,%,) has a 1-round, 27™-error zero-knowledge ICS proof
system.

5 Open Questions

Open questions abound, including:

Question 1: Can Theorem 1 be improved so that fewer than ¢|m/clgm| random instances are

needed? Alternatively, can a lower bound on the required number of random instances be proven?
Currently, it is not even known whether there is a function f that is not (1,2)-locally random

reducible to any function g. Fortnow and Szegedy [10] show that there is an f that is not (1,2)-

locally random reducible to a pair of functions (g1, g2), if one insists that the functions ¢; be boolean

and that the reduction have 0 error probability.

Question 2: Is there a protocol for zero-knowledge proofs of arbitrary predicates on committed
bits that is even more communication-efficient than the one we have presented?

Question 3: Is there a fixed polynomial m® with the following property: For any polynomial-
time predicate Q(z1,...,2m), there is a zero-knowledge protocol that proves the value of @ on
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committed bits, has bit complexity m®, and has a prover and verifier that both run in polynomial
time? That is, if we restrict attention to poly-time (J’s, is there a protocol that shares with the
protocol presented in this paper the property that the (polynomial) communication complexity
does not depend on the computational complexity of () and has the additional property that the
prover and verifier are poly-time?
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