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ABSTRACT
We describe a parallelizable block-cipher mode of operation
that simultaneously provides privacy and authenticity. OCB
encrypts-and-authenticates a nonempty string M ∈ {0, 1}∗
using 	|M |/n� + 2 block-cipher invocations, where n is the
block length of the underlying block cipher. Additional over-
head is small. OCB refines a scheme, IAPM, suggested
by Charanjit Jutla. Desirable properties of OCB include:
the ability to encrypt a bit string of arbitrary length into
a ciphertext of minimal length; cheap offset calculations;
cheap key setup; a single underlying cryptographic key; no
extended-precision addition; a nearly optimal number of
block-cipher calls; and no requirement for a random IV.
We prove OCB secure, quantifying the adversary’s ability
to violate the mode’s privacy or authenticity in terms of the
quality of its block cipher as a pseudorandom permutation
(PRP) or as a strong PRP, respectively.
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1. INTRODUCTION
Background. An authenticated-encryption scheme is a
shared-key encryption scheme whose goal is to provide both
privacy and authenticity. The encryption algorithm takes
a key, a plaintext, and a nonce (often called an IV), and it
returns a ciphertext. The decryption algorithm takes a key,
a ciphertext, and a nonce, and it returns either a plaintext
or a special symbol, Invalid. In addition to the customary
privacy goal, an authenticated-encryption scheme aims for
authenticity: if an adversary should try to create some new
ciphertext, the decryption algorithm will almost certainly
regard it as Invalid.
An authenticated-encryption scheme can be constructed

by appropriately combining an encryption scheme and a
message authentication code (MAC), an approach used per-
vasively in practice and in standards. (Analyses of these
methods are provided in [7, 24].) But an extremely attrac-
tive goal is an authenticated-encryption scheme having com-
putational cost significantly lower than the cost to encrypt
plus the cost to MAC. The classical approach for trying to
do this is to encrypt-with-redundancy, where one appends a
noncryptographic checksum to the message before encrypt-
ing it, typically with CBC mode. Many such schemes have
been broken. Recently, however, Charanjit Jutla has pro-
posed two authenticated-encryption schemes supported by
a claim of provable security [21]. Virgil Gligor and Pompiliu
Donescu have described a different authenticated-encryption
scheme [15]. We continue in this line of work.

OCB mode. This paper describes a new mode of opera-
tion, OCB, which refines one of Jutla’s schemes, IAPM [21].
OCB (which stands for “offset codebook”) retains the prin-
cipal characteristics of IAPM: it is fully parallelizable and
adds minor overhead compared to conventional, privacy-
only modes. But OCB combines the following features:

Arbitrary-length messages + minimal-length ciphertexts:
Any string M ∈ {0, 1}∗ can be encrypted; in particular,
|M | need not be a multiple of the block length n. What
is more, the resulting ciphertexts are as short as possible;



plaintexts are not padded to a multiple of n bits.

Nearly optimal number of block-cipher calls: OCB uses
	|M |/n�+ 2 block-cipher invocations (excluding a block-
cipher call assumed to be made during key setup). (It
is possible to make do with 	|M |/n� + 1 calls, but such
alternatives seem to be more complex or require a ran-
dom IV.) Keeping low the number of block-cipher calls is
especially important when messages are short.

Minimal requirements on nonces: Like other encryption
modes, OCB requires a nonce. The entity that encrypts
chooses a new nonce for every message with the only re-
striction that no nonce is used twice. Schemes that re-
quire non-repeating nonces are less likely to be misused,
and often more efficient, than those requiring random IVs.

Efficient offset calculations: As with [15, 21], we require
a sequence of offsets. We generate these in a particularly
cheap way, each offset requiring just a few machine cycles.
We avoid the use of extended-precision addition, which
would introduce endian dependency and might make the
scheme less attractive for dedicated hardware.

Single underlying key : The key used for OCB is a sin-
gle block-cipher key, and all block-cipher invocations are
keyed by this one key, saving space and key-setup time.

Achieving the properties above has required putting together
a variety of “tricks” that work together in just the right way.
Many earlier versions of the algorithm were rejected by the
authors because attacks were found or a proof could not be
pushed through. We have found schemes of this sort to be
amazingly “fragile”—tweak them a little and they break.
We have concluded that, if the goals above are ever to be
sought, they must be carefully addressed from the start.

Performance. On a Pentium III processor, experiments
by Lipmaa [25] show that OCB is about 6.5% slower than the
privacy-only mode CBC. The cost of OCB is about 54% of
the cost of CBC encryption combined with the CBC MAC.
These figures assume a block cipher of AES128 [34].
In settings where there is adequate opportunity for par-

allelism, OCB will be faster than CBC. Parallelizability is
important for obtaining the highest speeds from special-
purpose hardware, and it may become useful on commodity
processors. For special-purpose hardware, one may want to
encrypt-and-authenticate at speeds near 10 Gbits/second—
an impossible task, with today’s technology, for modes like
CBC encryption and the CBC MAC. (One could always cre-
ate a mode that interleaves message blocks fed into separate
CBC encryption or CBC MAC calculations, but that would
be a new mode, and one with many drawbacks.) For com-
modity processors, there is an architectural trend towards
highly pipelined machines with multiple instruction pipes
and lots of registers. Optimally exploiting such features ne-
cessitates algorithms with plenty to do in parallel.

Security properties. We prove OCB secure, in the sense
of reduction-based cryptography. Specifically, we prove in-
distinguishability under chosen-plaintext attack [3, 16] and
authenticity of ciphertexts [7, 8, 22]. As shown in [7, 22],
this combination implies indistinguishability under chosen-
ciphertext attack (CCA) which, in turn, is equivalent to
non-malleability [10] under CCA [4, 23]. (Non-malleability
refers to an adversary’s inability to modify a ciphertext in a
way that makes related the two underlying plaintexts.) Our
proof of privacy assumes that the underlying block cipher is

good in the sense of a pseudorandom permutation (PRP) [6,
26], while our proof of authenticity assumes that the block
cipher is a strong PRP [26]. Our results are quantitative;
the security analysis is in the concrete-security paradigm.
We emphasize that OCB has stronger security properties

than standard modes. In particular, non-malleability and
indistinguishability under CCA are not achieved by CBC,
or by any other standard mode, but these properties are
achieved by OCB. We believe that the lack of strong secu-
rity properties has been a problem for the standard modes
of operation, because many users of encryption implicitly
assume these properties when designing their protocols. For
example, it is common to see protocols which use symmet-
ric encryption in order to “bind together” the parts of a
plaintext, or which encrypt related messages as a way to
do a “handshake.” Standard modes do not support such
practices. This fact has sometimes led practitioners to in-
correctly apply the standard modes, or to invent or select
wrong ways to encrypt with authenticity (a well-known ex-
ample is the use of PCBC mode [27] in Kerberos v.4 [29]).
We believe that a mode like OCB is less likely to be misused
because the usual abuses of privacy-only encryption become
correct cryptographic techniques.
By way of comparison, a chosen-ciphertext attack by Ble-

ichenbacher on the public-key encryption scheme of RSA
PKCS #1, v.1, motivated the company that controls this
de facto standard to promptly upgrade its scheme [9, 28].
In contrast, people seem to accept as a matter of course sym-
metric encryption schemes which are not even non-malleable.
There would seem to be no technical reason to account for
this difference in expectations.

The future. We believe that most of the time privacy is
desired, authenticity is too. As a consequence, fast authen-
ticated encryption may quickly catch on. OCB has already
appeared in one draft standard—the wireless LAN standard
IEEE 802.11—and it is also under consideration by NIST.

2. PRELIMINARIES
Notation. If a and b are integers, a ≤ b, then [a..b] is the
set {a, a + 1, . . . , b}. If i ≥ 1 is an integer then ntz(i) is
the number of trailing 0-bits in the binary representation of
i (equivalently, ntz(i) is the largest integer z such that 2z

divides i). So, for example, ntz(7) = 0 and ntz(8) = 3.
A string is a finite sequence of symbols, each symbol being

0 or 1. The string of length 0 is called the empty string
and is denoted ε. Let {0, 1}∗ denote the set of all strings.
If A,B ∈ {0, 1}∗ then AB, or A ‖ B, is their concatenation.
If A ∈ {0, 1}∗ and A �= ε then firstbit(A) is the first bit of A
and lastbit(A) is the last bit of A. Let i, n be nonnegative
integers. Then 0i and 1i denote the strings of i 0’s and
1’s, respectively. Let {0, 1}n denote the set of all strings
of length n. If A ∈ {0, 1}∗ then |A| denotes the length
of A, in bits, while ‖A‖n = max{1, 	|A|/n�} denotes the
length of A in n-bit blocks, where the empty string counts
as one block. For A ∈ {0, 1}∗ and |A| ≤ n, zpadn(A) is the

string A 0n−|A|. With n understood we will write A 0∗ for
zpadn(A). If A ∈ {0, 1}∗ and τ ∈ [0..|A|] then A [first τ bits]
and A[last τ bits] denote the first τ bits of A and the last τ
bits of A, respectively. Both of these values are the empty
string if τ = 0. If A,B ∈ {0, 1}∗ then A⊕B is the bitwise xor
of A [first � bits] and B [first � bits], where � = min{|A|, |B|}
(where ε⊕A = A⊕ε = ε). So, for example, 1001⊕11 = 01. If



A = an−1 · · · a1a0 ∈ {0, 1}n then str2num(A) is the number∑n−1
i=0 2iai. If a ∈ [0..2n − 1] then num2strn(a) is the n-

bit string A such that str2num(A) = a. Let lenn(A) =
num2strn(|A|). We omit the subscript when n is understood.
If A = an−1an−2 · · · a1a0 ∈ {0, 1}n then A<<1 is the n-bit

string an−2an−3 · · · a1a00 which is a left shift of A by one bit
(the first bit of A disappearing and a zero coming into the
last bit), while A>>1 is the n-bit string 0an−1an−2 . . . a2a1

which is a right shift of A by one bit (the last bit disappear-
ing and a zero coming into the first bit).
In pseudocode we write “PartitionM intoM [1] · · ·M [m]”

as shorthand for “Let m = ‖M‖n and let M [1], . . . ,M [m]
be strings such that M [1] · · ·M [m] = M and |M [i]| = n for
1 ≤ i < m.” We write “Partition C into C[1] · · ·C[m] T”
as shorthand for “if |C| < τ then return Invalid. Other-
wise, let C = C [first |C| − τ bits], let T = C[last τ bits],
let m = ‖C‖n, and let C[1], . . . , C[m] be strings such that
C[1] · · ·C[m] = C and |C[i]| = n for 1 ≤ i < m. Recall that
‖M‖n = max{1, 	|M |/n�}, so the empty string partitions
into m = 1 block, that one block being the empty string.

The field with 2n
points. Let GF(2n) denote the field

with 2n points. We interchangeably think of a point a in
GF(2n) in any of the following ways: (1) as an abstract point
in a field; (2) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}n; (3) as
a formal polynomial a(x) = an−1x

n−1 + · · ·+ a1x+ a0 with
binary coefficients; (4) as an integer between 0 and 2n − 1,
where the string a ∈ {0, 1}n corresponds to the number
str2num(a). For example, one can regard the string a =
0125101 as a 128-bit string, as the number 5, as the polyno-
mial x2 + 1, or as an abstract point in GF(2128).
To add two points in GF(2n), take their bitwise xor. We

denote this operation by a ⊕ b. To multiply two points in
the field, first fix an irreducible polynomial pn(x) having
binary coefficients and degree n: say the lexicographically
first polynomial among the irreducible degree n polynomials
having a minimum number of nonzero coefficients. For n =
128, the indicated polynomial is p128(x) = x128+x7+x2+x+
1. To multiply a, b ∈ GF(2n), which we denote a · b, regard
a and b as polynomials a(x) = an−1x

n−1+ · · ·+a1x+a0 and
b(x) = bn−1x

n−1 + · · · + b1x + b0, form their product c(x)
over GF(2), and take the remainder one gets when dividing
c(x) by pn(x).
It is computationally simple to multiply a ∈ {0, 1}n by x.

We illustrate the method for n = 128, in which case multi-
plying a = an−1 · · · a1a0 by x yields an−1x

n + an−2x
n−1 +

a1x
2 + a0x. Thus, if the first bit of a is 0, then a · x = a<<1.

If the first bit of a is 1 then we must add x128 to a<<1.
Since p128(x) = x128 + x7 + x2 + x + 1 = 0 we know that
x128 = x7 + x2 + x + 1, so adding x128 means to xor by
012010000111. In summary, when n = 128,

a · x =

{
a<<1 if firstbit(a) = 0
(a<<1)⊕ 012010000111 if firstbit(a) = 1

It is similarly easy to divide a ∈ {0, 1}128 by x (i.e., to
multiply a by the multiplicative inverse of x). If the last bit
of a is 0, then a ·x−1 is a>>1. If the last bit of a is 1 then we
must add (xor) to a>>1 the value x−1. Since x128 = x7+x2+
x+ 1 we have that x−1 = x127 + x6 + x+ 1 = 101201000011.
In summary, when n = 128,

a · x−1 =

{
a>>1 if lastbit(a) = 0
(a>>1)⊕ 101201000011 if lastbit(a) = 1

If L ∈ {0, 1}n and i ≥ −1, we write L(i) as shorthand for
L · xi. Using the equations just given, we have an easy way
to compute from L the values L(−1), L(0), L(1), . . ., L(µ),
where µ is small number.

Gray codes. For � ≥ 1, a Gray code is an ordering
γ� = (γ�

0 γ�
1 . . . γ�

2�−1) of {0, 1}� such that successive
points differ (in the Hamming sense) by just one bit. For
n a fixed number, OCB makes use of the “canonical” Gray
code γ = γn constructed by γ1 = (0 1) and, for � > 0,
γ�+1 = (0γ�

0 0γ�
1 · · · 0γ�

2�−2 0γ�
2�−1 1γ�

2�−1 1γ�
2�−2 · · · 1γ�

1

1γ�
0). It is easy to see that γ is a Gray code. What is more,

for 1 ≤ i ≤ 2n − 1, γi = γi−1 ⊕ (0n−11<<ntz(i)). This makes
it easy to compute successive points.
We emphasize the following characteristics of the Gray-

code values γ1, γ2, . . . , γ2n−1: that they are distinct and dif-
ferent from 0; that γ1 = 1; and that γi < 2i.
Let L ∈ {0, 1}n and consider the problem of successively

forming the strings γ1 ·L, γ2 ·L, γ3 ·L, . . ., γm ·L. Of course
γ1 · L = 1 · L = L. Now, for i ≥ 2, assume one has already
produced γi−1 · L. Since γi = γi−1 ⊕ (0n−11<<ntz(i)) we
know that γi · L = (γi−1 ⊕ (0n−11<<ntz(i))) · L = (γi−1 ·
L)⊕ (0n−11<<ntz(i)) · L = (γi−1 · L)⊕ (L · xntz(i)) = (γi−1 ·
L) ⊕ L(ntz(i)). That is, the ith word in the sequence γ1 ·
L, γ2 · L, γ3 · L, . . . is obtained by xoring the previous word
with L(ntz(i)). Had the sequence we were considering been
γ1 ·L⊕R, γ2 ·L⊕R, γ3 ·L⊕R, . . ., the ith word would be
formed in the same way for i ≥ 2, but the first word in the
sequence would have been L⊕R instead of L.

3. THE SCHEME
Parameters. To use OCB one must specify a block cipher
and a tag length. The block cipher is a function E : K ×
{0, 1}n → {0, 1}n, for some number n, where each E(K, ·) =
EK(·) is a permutation on {0, 1}n. Here K is the set of
possible keys and n is the block length. Both are arbitrary,
though we insist that n ≥ 64, and we discourage n < 128.
The tag length is an integer τ ∈ [0..n]. By trivial means,
the adversary will be able to forge a valid ciphertext with
probability 2−τ . The popular block cipher to use with OCB
is likely to be AES [34]. As for the tag length, a suggested
default of τ = 64 is reasonable. Tags of 32 bits are standard
in retail banking. Tags of 96 bits are used in IPSec.
We let OCB-E denote the OCB mode of operation us-

ing block cipher E and an unspecified tag length. We let
OCB[E, τ ] denote the OCB mode of operation using block
cipher E and tag length τ .

Nonces. Encryption under OCB mode requires an n-bit
nonce, N . The nonce would typically be a counter (main-
tained by the sender) or a random value (selected by the
sender). Security is maintained even if the adversary can
control the nonce, subject to the constraint that no nonce
may be repeated within the current session (that is, during
the period of use of the current encryption key). The nonce
need not be random, unpredictable, or secret.
The nonce N is needed both to encrypt and to decrypt.

Typically it would be communicated, in the clear, along with
the ciphertext. However, it is out-of-scope how the nonce is
communicated to the party who will decrypt. In particular,
we do not regard the nonce as part of the ciphertext.

Definition of the mode. See Figure 1 for an illustration
of OCB, and see Figure 2 for the definition. The latter fig-
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Figure 1: Illustration of OCB encryption. The message is M = M [1]M [2] · · ·M [m− 1]M [m] and the nonce is N .
The resulting ciphertext is C = C[1]C[2]C[3] · · ·C[m−1]C[m] T . The Checksum is M [1]⊕· · ·⊕M [m−1]⊕C[m] 0∗⊕Y [m].
Define L = EK(0n), Z[1] = L⊕R, and, for i ≥ 2, Z[i] = Z[i− 1]⊕ L(ntz(i)).

Algorithm OCB.EncK (N,M)

Partition M into M [1] · · ·M [m]
L ← EK(0n)
R ← EK(N ⊕ L)
for i ← 1 to m do Z[i] = γi · L⊕R
for i ← 1 to m− 1 do C[i] ← EK(M [i]⊕ Z[i]) ⊕ Z[i]
X[m] ← len(M [m])⊕ L · x−1 ⊕ Z[m]
Y [m] ← EK(X[m])
C[m] ← Y [m]⊕M [m]
C ← C[1] · · ·C[m]
Checksum ← M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]
T ← EK(Checksum⊕ Z[m]) [first τ bits]
return C ← C ‖ T

Algorithm OCB.DecK (N,C)

Partition C into C[1] · · ·C[m] T
L ← EK(0n)
R ← EK(N ⊕ L)
for i ← 1 to m do Z[i] = γi · L⊕R
for i ← 1 to m− 1 do M [i] ← E−1

K (C[i]⊕ Z[i]) ⊕ Z[i]
X[m] ← len(C[m])⊕ L · x−1 ⊕ Z[m]
Y [m] ← EK(X[m])
M [m] ← Y [m]⊕ C[m]
M ← M [1] · · ·M [m]
Checksum ← M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]
T ′ ← EK(Checksum⊕ Z[m]) [first τ bits]
if T = T ′ then return M

else return Invalid

Figure 2: Definition of OCB. Encryption and de-
cryption are specified, while key generation chooses
a random element from the key space K of the block
cipher.

ure defines OCB encryption and decryption, while the key
space K is the key space for the underlying block cipher E.

An equivalent description. The following description
may clarify what a typical implementation might do.

Key generation: Choose a random key K
R← K for the

block cipher. The key K is provided to both the entity that
encrypts and the entity that decrypts.
Key setup: For the party that encrypts, do any key setup

associated to block-cipher enciphering. For the party that
decrypts, do any key setup associated to block-cipher enci-
phering and deciphering. Let L ← EK(0n). Let m bound
the maximum number of n-bit blocks that any message which
will be encrypted or decrypted may have. Let µ ← 	log2 m�.
Let L(0) ← L and, for i ∈ [1..µ], compute L(i) ← L(i−1) ·x
using a shift and a conditional xor, as described in Section 2.
Compute L(−1) ← L · x−1 using a shift and a conditional
xor, as described in Section 2. Save the values L(−1), L(0),
L(1), . . ., L(µ) in a table.
Encryption: To encrypt plaintext M ∈ {0, 1}∗ using key

K and nonce N ∈ {0, 1}n, obtaining a ciphertext C, do the
following. Let m ← 	|M |/n�. If m = 0 then let m ← 1. Let
M [1], . . . ,M [m] be strings such that M [1] · · ·M [m] = M
and |M [i]| = n for i ∈ [1..m − 1]. Let Offset ← EK(N ⊕
L). Let Checksum ← 0n. For i ← 1 to m − 1, do the
following: let Checksum ← Checksum ⊕M [i]; let Offset ←
Offset⊕L(ntz(i)); let C[i] ← EK(M [i]⊕Offset)⊕Offset. Let
Offset ← Offset⊕L(ntz(m)). Let Y [m] ← EK(len(M [m])⊕
L(−1) ⊕ Offset). Let C[m] ← M [m] xored with the first
|M [m]| bits of Y [m]. Let Checksum ← Checksum⊕ Y [m]⊕
C[m] 0∗. Let T be the first τ bits of EK(Checksum⊕Offset).
The ciphertext is C = C[1] · · ·C[m − 1]C[m] T . It must be
communicated along with the nonce N .
Decryption: To decrypt ciphertext C ∈ {0, 1}∗ using key

K and nonce N ∈ {0, 1}n, obtaining a plaintextM ∈ {0, 1}∗
or an indication Invalid, do the following. If |C| < τ then re-
turn Invalid (the ciphertext has been rejected). Otherwise
let C be the first |C|−τ bits of C and let T be the remaining
τ bits. Let m ← 	|C|/n�. If m = 0 then let m = 1. Let



C[1], . . . , C[m] be strings such that C[1] · · ·C[m] = C and
|C[i]| = n for i ∈ [1..m− 1]. Let Offset ← EK(N ⊕ L). Let
Checksum ← 0n. For i ← 1 to m − 1, do the following: let
Offset ← Offset⊕L(ntz(i)); let M [i] ← E−1

K (C[i]⊕Offset)⊕
Offset; let Checksum ← Checksum ⊕ M [i]. Let Offset ←
Offset ⊕ L(ntz(m)). Let Y [m] ← EK(len(C[m]) ⊕ L(−1) ⊕
Offset). LetM [m] ← C[m] xored with the first |C[m]| bits of
Y [m]. Let Checksum ← Checksum⊕Y [m]⊕C[m] 0∗. Let T ′

be the first τ bits of EK(Checksum⊕Offset). If T �= T ′ then
return Invalid (the ciphertext has been rejected). Other-
wise, the plaintext is M = M [1] · · ·M [m− 1]M [m].

4. DISCUSSION
OCB has been designed to have a variety of desirable prop-

erties. Some of these have been discussed in the Introduc-
tion. We extend that discussion here.

Arbitrary-length messages and no ciphertext ex-

pansion. One of the key characteristics of OCB is that any
string M ∈ {0, 1}∗ can be encrypted, and doing this yields
a ciphertext C of length |M |+ τ . That is, the length of the
“ciphertext core”—the portion C = C[1] · · ·C[m] of the ci-
phertext that excludes the tag—is the same as the length of
the message M . This is better, by up to n bits, than what
one gets with conventional padding.

Single block-cipher key. OCB makes use of just one
block-cipher key, K. While L = EK(0n) functions rather
like a key and would normally be computed at key-setup
time, and while standard key-separation techniques can al-
ways be used to obtain many keys from one, the point is
that, in OCB, all block-cipher invocations use the one keyK.
Thus only one block-cipher key needs to be setup, saving on
storage space and key-setup time.

Weak nonce requirements. We believe that modes of
operation that require a random IV are often misused. As
an example, consider CBC mode, where C[i] = EK(M [i] ⊕
C[i − 1]) and C[0] = IV. Many standards and many books
(e.g., Schneier, Applied Cryptography, 2nd edition, p. 194])
suggest that the IV may be a fixed value, a counter, a time-
stamp, or the last block of ciphertext from the previous mes-
sage. But if it is any of these things one certainly will not
achieve any of the standard definitions of security [3, 16].
It is sometimes suggested that a mode which needs a ran-

dom IV is preferable to one that needs a nonce: it is said
that state is needed for a nonce, but not for making random
bits. We find this argument wrong. First, a random value of
sufficent length can always be used as a nonce, but a nonce
can not be used as a random value. Second, the manner
in which systems provide “random” IVs is invariably state-
ful anyway: unpredictable bits are too expensive to harvest
for each IV, so one does this rarely, using state to generate
pseudorandom bits from unpredictable bits harvested be-
fore. Third, the way to generate pseudorandom bits needs
to use cryptography, so the prevalence of non-cryptographic
pseudorandom number generators routinely results in im-
plementation errors. Next, nonce-based schemes facillitate
replay-detection with constant space and no added cryptog-
raphy. Finally, nonces can be communicated using fewer
bits, without additional cryptography.

On-line. OCB encryption and decryption are “on line” in
the sense that one does not need to know the length of the
message in advance of encrypting or decrypting it. Instead,

messages can be processed as one goes along, using con-
stant memory, continuing until there is an indication that
the message is over.

Endian neutrality. In contrast to a scheme based on
mod-p arithmetic (for p a prime just less than 2n) or mod-
2n arithmetic, there is almost no endian-favoritism implicit
in the definition of OCB. (The exception is that, because
of our use of standard mathematical conventions, the left
shift used for forming L(i+1) from L(i) is more convenient
under a big-endian convention, as is the right shift used for
forming L(−1) = L · x−1 from L.)

Optional pre-processing. Implementations can choose
how many L(i) values to precompute. As only one block-
cipher call is needed to compuet these values from K, plus
some shifts and conditional xors, it is feasible to do no pre-
processing: OCB-AES is appropriate even when each session
is a single, short message.

Provable security. Provable security has become a pop-
ular goal for practical protocols. This is because it provides
the best way to gain assurance that a cryptographic scheme
does what it is should. For a scheme which enjoys prov-
able security one does not need to consider attacks on the
scheme, since successful ones imply successful attacks on
some simpler object.
When we say that “OCB is provably secure” we are as-

serting the existence of two theorems. One says that if an
adversary A could do a good job at forging ciphertexts with
OCB[E, τ ] (the adversary does this much more than a 2−τ

fraction of the time) then there would be an adversary B
that does a good job at distinguishing (EK(·), E−1

K (·)), for
a random key K, from (π(·), π−1(·)), for a random permu-
tation π ∈ Perm(n). The other theorem says that if an ad-
versary A could do a good job at distinguishing OCB[E, τ ]-
encrypted messages from random strings, then there would
be an adversary B that does a good job at distinguishing
EK(·), for a random key K, from π(·), for a random per-
mutation π ∈ Perm(n). Theorems of this sort are called
reductions. In cryptography, provable security means giving
reductions (along with the associated definitions).
Provable security begins with Goldwasser and Micali [16],

though the style of provable security which we use here—
where the primitive is a block cipher, the scheme is a usage
mode, and the analysis is concrete (no asymptotics)—is the
approach of Bellare and Rogaway [3, 5, 6].
It is not enough to know that there is a provable-security

result; one should also understand the definitions and the
bounds. We have already sketched the definitions. When
we speak of the bounds we are addressing “how effective is
the adversary B in terms of the efficacy of adversary A”
(where A and B are as above). For OCB, the bounds can
be roughly summarized as follows. An adversary can al-
ways forge with probability 1/2τ . Beyond this, the maximal
added advantage is at most σ2/2n, where σ is the total num-
ber of blocks the adversary sees. The privacy bound likewise
degrades as σ2/2n. The conclusion is that one is safe using
OCB as long as the underlying block cipher is secure and σ
is small compared to 2n/2. This is the same security degra-
dation one observes for CBC encryption and in the bound
for the CBC MAC [3, 6].

Comparison with Jutla’s bound. More precisely, but
still ignoring lower-order terms, our privacy and authentic-



ity bounds are 1.5σ2/2n, while Jutla’s authenticity bound
is insignificantly worse at 2σ2/2n and his privacy bound,
rescaled to [0, 1], looks insignificantly worse at 3σ2/2n [20].
Magnifying the latter difference is that the privacy re-
sults assume different defintions. Jutla adopts the find-
then-guess definition of privacy [3, 16], while we use an
indistinguishability-from-random-bits definition. The for-
mer captures an adversary’s inability to distinguish cipher-
texts for a pair adversarilly-selected, equal-length plain-
texts. The latter captures an adversary’s inability to dis-
tinguish a ciphertext from a random string of the same
length. Indistinguishability-from-random-bits implies find-
then-guess security, and by a tight reduction, but find-
then-guess secure does not imply indistinguishability-from-
random-bits. Still, Jutla’s scheme probably satisfies the
stronger definition.

Simplicity. Simplicity has been a central design goal. Some
of OCB’s characteristics that contribute to simplicity are:

Short and full final-message-blocks are handled without
making a special case: the treatment of all messages is
uniform, regardless of their length.

Only the simplest form of padding is used: append a min-
imal number of 0-bits to make a string whose length is a
multiple of n. This method is computationally fastest and
helps avoid a proliferation of cases in the analysis.

Only one algebraic structure is used throughout the algo-
rithm: the finite field GF(2n).

In forming the sequence of offsets, Gray-code coefficients
are taken monotonically, starting at 1 and stopping at m.
One never goes back to some earlier offset, uses a peculiar
starting point, or forms more offsets than there are blocks.

Not fixing how the nonce is communicated. We do not
specify how the nonce is chosen or communicated. Formally,
it is not part of the ciphertext (though the receiving party
needs it to decrypt). In many contexts, there is already a
natural value to use as a nonce (e.g., a sequence number
already present in a protocol flow, or implicit because the
parties are communicating over a reliable channel). Even
when a protocol is designed from scratch, the number of
bits needed to communicate the nonce will vary.

Not fixing the tag length. The number of bits necessary
for the tag vary according to the application. In a context
where the adversary obtains something quite valuable from
a successful forgery, one may wish to choose a tag length
of 80 bits or more. In contexts such as authenticating a
video stream, where an adversary would have to forge many
frames to have a major impact on the image, an 8-bit tag
may be appropriate.

Forming R using a block-cipher call. During our work
we discovered that there are methods for authenticated-
encryption which encrypt M using 	|M |/n�+1 block-cipher
calls, as opposed to our 	|M |/n� + 2 calls. Shai Halevi
has also made this finding [17]. However, the methods we
know to shave off a block-cipher call either require an un-
predictable IV instead of a nonce, or they add conceptual
and computational complexity to compute the initial off-
set R by non-cryptographic means (e.g., using a finite-field
multiplication of the nonce and a key variant).

Avoiding mod-2n
addition. Our earlier designs included

a scheme based on modular 2n addition (“addition” for the

remainder of this paragraph). Basing an authenticated-
encryption scheme on addition is an interesting idea due to
Gligor and Donescu [15]. Compared to our GF(2n)-based
approach (“xor” for the remainder of this paragraph), an
addition-based scheme is quicker to understand a specifica-
tion for, and may be easier to implement. But the use of
addition (where n ≥ 128) has several disadvantages:

The bit-asymmetry of the addition operator implies that
the resulting scheme will have a bias towards big-endian
architectures or little-endian architectures; there will be
no way to achieve an endian-neutral scheme. The AES
algorithm was constructed to be endian-neutral and we
wanted OCB-AES to inherit this attribute.

Addition is unpleasant for implementations using high-
level languages, where one normally has no access to the
add-with-carry instruction the machine may have.

Addition needs more chip area than xor.

Addition is not parallelizable. As a consequence, dedi-
cated hardware will perform this operation more slowly
than xor, and, correspondingly, modern processors can
xor two n-bit quantities faster than they can add them.

The concrete security bound appears to be worse with
addition than xor (though still not bad). The degrada-
tion would seem to be Θ(lg m̄), where m̄ is the maximal
message length.

We eventually came to feel that even the simplicity benefit
of addition was not quite real: these schemes seem harder
to understand, to prove correct, and to implement well.

Lazy mod-p addition. Let p be the largest prime less
than 2n. An earlier design [31] allowed one to produce off-
set Z[i] from Z[i − 1] by “lazy mod-p addition”: add L to
Z[i − 1], mod 2n, and then add δ = 2n − p whenever the
first addition generates a carry. Now X[m] would be defined

by len(M [m]) ⊕ Z[m], say, where Z[m] is the bitwise com-
plement of Z[m]. It appears that, unlike a mod-2n scheme,
xors can still be used to combine offsets with message blocks
and enciphered message blocks. This might make lazy mod-
p approach more attractive than a mod-2n approach. But in
order to propagate a single scheme, avoid endian favoritism,
and avoid complicating an already complex proof, we chose
not to propagate lazy mod-p-addition.

Definition of the Checksum. An initially odd-looking
aspect of OCB’s definition is the definition of Checksum =
M [1] ⊕ · · ·M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]. In Jutla’s scheme,
where one assumes that all messages are a positive multi-
ple of the block length, the checksum is the simpler-looking
M [1] ⊕ · · ·M [m − 1] ⊕M [m]. We comment that these two
definitions are identical in the case that |M [m]| = n. What
is more, the definition Checksum = M [1] ⊕ · · ·M [m − 1] ⊕
M [m] 0∗ turns out to be the wrong way to generalize the
Checksum to allow for short-final-block messages; in partic-
ular, the scheme using that checksum is easily attacked.

Avoiding pretag collisions. Many of our earlier schemes,
including [31], allowed the adversary to force a “pretag col-
lision.” Recall that we compute the tag T by computing
a “pretag” X[m + 1] = Checksum ⊕ SomeOffset, forming a
value Y [m + 1] = EK(X[m + 1]), and then forming T by
doing further processing to Y [m + 1]. For a scheme of this
form, we say that an adversary can force a pretag collision
if there is an N, M̄ that can be encrypted, getting C̄ T̄ , and
then a forgery attempt N, C T can be made such that, in it,



the pretag X[m+ 1] will coincide with a value X[i] or X̄[i]
at which the block cipher E was already evaluated.
We designed OCB so that an adversary can not force pre-

tag collisions. The presence of pretag collisions substan-
tially complicates proofs, since one can not follow a line of
argument that shows that tags are unpredictable because
each pretag-value is almost certainly new. For schemes like
IAPM, where pretag collisions can be forced, this intuition
is simply wrong. Beyond this, in the presence of pretag
collisions one must modify Y [m + 1] by an amount ∆ that
depends on at least the key and nonce. Say that the mod-
ification is by xor, and one wants to be able to pull off an
arbitrary bit as a 1-bit authentication tag. Then every bit
of ∆ will have to be adversarially unpredictable. This is un-
fortunate, as many natural ways to make ∆ fail to have this
property. Suppose, for example, the first couple bits of L
are forced to zero, as suggested by [31], and ∆ = L · (m+1).
Then, for smallm, the first bit of ∆ will be zero. This can be
exploited to give an attack on the xor-based scheme of [31]
when τ = 1. Similarly, for i a power of two, ∆ = iL mod 2n

ends in a 0-bit, so had [31] taken the tag to be the last τ bits
instead of the first τ bits, one would again have an attack
on 1-bit tags. A scheme would be arcane, at best, if certain
bits of the full tag are usable and other bits are not.

Block-cipher circuit-depth. One further efficiency mea-
sure is the circuit depth of an encryption scheme as mea-
sured in terms of block-cipher gates. For OCB encryption,
this number is three: a call to form R; calls to form the
ciphertext core; and a call to compute the tag. Block-
cipher circuit-depth serves as a lower bound for latency in an
agressively parallel environment. Reducing the block-cipher
circuit-depth to one or two is possible, but the benefit does
not seem worth the associated drawbacks.

5. THEOREMS

5.1 Security Definitions
We begin with the requisite definitions. These are not

completely standard because OCB uses a nonce, and we
wish to give the adversary every possible advantage (more
than is available in real life) by allowing her to choose this
nonce (though we forbid the adversary from choosing the
same nonce twice).

Syntax. We extend the syntax of an encryption scheme as
given in [3]. A (nonce-using, symmetric) encryption scheme
is a triple Π = (K, E ,D) and an associated number n (the
nonce length). Here K is a finite set and E and D are de-
terministic algorithms. Encryption algorithm E takes K ∈
K, N ∈ {0, 1}n, and M ∈ {0, 1}∗, and returns a string
C ← EK(N,M). Decryption algorithm D takes K ∈ K,
N ∈ {0, 1}n, and C ∈ {0, 1}∗, and returns DK(N,M), which
is either a string M ∈ {0, 1}∗ or the distinguished symbol
Invalid. If C ← EK(N,M) then DK(N,C) = M .

Privacy. We give a particularly strong definition of pri-
vacy, one asserting indistinguishability from random strings.
This notion is easily seen to imply more standard defini-
tions [3], and by tight reductions. Consider an adversary A
who has one of two types of oracles: a “real” encryption or-
acle or a “fake” encryption oracle. A real encryption oracle,
EK(·, ·), takes as input N,M and returns C ← EK(N,M).
Assume that |C| = �(|M |) depends only on |M |. A fake en-

cryption oracle, $(·, ·), takes as input N,M and returns a

random string C
R← {0, 1}�(|M|). Given adversary A and

encryption scheme Π = (K, E ,D), define Advpriv
Π (A) =

Pr[K
R← K : AEK(·,·) = 1]− Pr[K

R← K : A$(·,·) = 1].
An adversary A is nonce-respecting if it never repeats a

nonce: if A asks its oracle a query (N,M) it will never
subsequently ask its oracle a query (N,M ′), regardless of
its coins (if any) and regardless of oracle responses. All
adversaries are assumed to be nonce-respecting.

Authenticity. We extend the notion of integrity of cipher-
texts of [7, 8, 22]. Fix an encryption scheme Π = (K, E ,D)
and run an adversary A with an oracle EK(·, ·) for some
key K. Adversary A forges (in this run) if A is nonce-
respecting, A outputs (N,C) where DK(N,C) �= Invalid,
and A made no earlier query (N,M) which resulted in a re-

sponse C. Let Advauth
Π (A) = Pr[K

R← K : AEK(·,·) forges ].
We stress that the nonce used in the forgery attempt may
coincide with a nonce used in one of the adversary’s queries.

Block ciphers and PRFs. A function family from n-bits
to n-bits is a map E : K×{0, 1}n → {0, 1}n where K is a fi-
nite set of strings. It is a block cipher if each EK(·) = E(K, ·)
is a permutation. Let Rand(n) denote the set of all functions
from {0, 1}n to {0, 1}n and let Perm(n) denote the set of all
permutations from {0, 1}n to {0, 1}n. These sets can be re-
garded as function families by imagining that each member
is specified by a string. For π ∈ Perm(n), let π−1(Y ) be

the unique string X such that π(X) = Y . Let Advprf
E (A) =

Pr[AEK(·)=1]− Pr[Aρ(·)=1], Advprp
E (A) = Pr[AEK(·)=1]−

Pr[Aπ(·) = 1], and Advsprp
E (A) = Pr[AEK(·),E−1

K
(·) = 1]−

Pr[Aπ(·),π−1(·) = 1], where the probability is over K
R← K,

ρ
R← Rand(n), and π

R← Perm(n).

5.2 Theorem Statements
We give information-theoretic bounds on the authenticity

and the privacy of OCB. Proofs are in the full paper [33].

Theorem 1. Fix OCB parameters n and τ . Let A be
an adversary that asks q queries and then makes its forgery
attempt. Suppose the q queries have aggregate length of σ
blocks, and the adversary’s forgery attempt has at most c
blocks. Let σ̄ = σ + 2q + 5c+ 11. Then

Advauth
OCB[Perm(n),τ ] (A) ≤ 1.5 σ̄2

2n
+

1

2τ

The aggregate length of queries M1, . . . ,Mq means the
number σ =

∑q
r=1 ‖Mr‖n.

It is standard to pass to a complexity-theoretic analog of
Theorem 1, but in doing this one will need access to an E−1

oracle in order to verify a forgery attempt, which translates
into needing the strong PRP assumption. One gets the fol-
lowing. Fix OCB parameters n and τ , and a block cipher
E : K × {0, 1}n → {0, 1}n. Let A be an adversary that
asks q queries and then makes its forgery attempt. Suppose
the q queries have aggregate length of σ blocks, and the
adversary’s forgery attempt has at most c blocks. Let σ̄ =
σ+2q+5c+11. Let δ = Advauth

OCB[E,τ ] (A)−1.5 σ̄2/2n−1/2τ .
Then there is an adversary B for attacking block cipher E
that achieves advantage Advsprp

E (B) ≥ δ. Adversary B asks
at most q′ = σ+2q+ c+3 oracle queries and has a running
time which is equal to A’s running time plus the time to
compute E or E−1 at q′ points plus additional time which



is αnσ̄, where the constant α depends only on details of the
model of computation.
The privacy of OCB is given by the following result.

Theorem 2. Fix OCB parameters n and τ . Let A be an
adversary that asks q queries, these having aggregate length
of σ blocks. Let σ̄ = σ + 2q + 3. Then

Advpriv
OCB[Perm(n),τ ] (A) ≤ 1.5 σ̄2

2n

It is standard to pass to a complexity-theoretic analog of
Theorem 2. One gets the following. Fix OCB parameters
n and τ , and a block cipher E : K × {0, 1}n → {0, 1}n.
Let A be an adversary that asks q queries, these having
aggregate length of σ blocks. Let σ̄ = σ + 2q + 3. Let
δ = Advauth

OCB[E,τ ] (A) − 1.5 σ̄2/2n. Then there is an adver-
sary B for attacking block cipher E that achieves advantage
Advprp

E (B) ≥ δ. Adversary B asks at most q′ = σ + 2q + 1
oracle queries and has a running time which is equal to A’s
running time plus the time to compute E at q′ points plus
additional time which is αnσ̄, where the constant α depends
only on details of the model of computation.

5.3 Proofs
To prove Theorem 1 (Theorem 2 is comparatively easy)

we give a structure lemma that relates the authenticity of
OCB to three functions: the M-collision probability, the
MM-collision probability, and the CM-collision probability.
Very informally, these measure the probability of trouble
when the adversary asks a single query, some pair of queries,
and when adversary tries to forge some ciphertext following
a single earlier query. Due to space limitations, all of these
definitions, lemmas and proofs are removed from this pro-
ceedings paper. They can be found in the full paper [33].

6. PERFORMANCE
Abstract accounting. OCB uses 	|M |/n� + 2 block-
cipher calls to encrypt a nonempty message M . (The empty
string takes three block-cipher calls.) We compare this with
CBC encryption and CBC encryption plus a CBC MAC:

“Basic” CBC encryption, where one assumes a random
IV and a message which is a multiple of the block length,
uses two fewer block-cipher calls—a total of |M |/n.
A more fair comparison sets IV = EK(N) for CBC en-
cryption (so both schemes use a not-necessarily-random
nonce), and uses obligatory 10∗ padding (so both schemes
can handle arbitrary strings). This would bring the total
for CBC to 	(|M |+1)/n�+1 block-cipher calls, coinciding
with OCB in the case that |M | is a multiple of the block
length, and using one fewer block-cipher call otherwise.

If one combines the basic CBC encryption with a MAC,
say MACing the ciphertext, then the CBC-encryption
will use a number of block-cipher calls as just discussed,
while the CBC MAC will use between 	|M |/n� + 1 and
	(|M |+1)/n�+3 block-cipher calls, depending on padding
conventions and the optional processing done to the final
block in order to ensure security across messages of vary-
ing lengths. So the total will be as few as 2	|M |/n� + 1
or as many as 2	(|M |+1)/n�+4 block-cipher calls. Thus
OCB saves between 	|M |/n� − 1 and 	|M |/n�+ 3 block-
cipher calls compared to separate CBC encryption and
CBC MAC computation

Algorithm 64 B 256 B 1 KB 4 KB

OCB encrypt 24.7 18.5 16.9 16.7

ECB encrypt 15.1 15.0 14.9 14.9

CBC encrypt 15.9 15.9 15.9 15.9

CBC mac 19.2 16.3 15.5 15.3

Figure 3: Performance results from Lipmaa [25], in
cycles per byte on a Pentium III. The block cipher
is AES128. Code is written in assembly.

As with any mode, there is overhead beyond the block-
cipher calls. Per block, this overhead is about four n-bit xor
operations, plus associated logic. The work for this associ-
ated logic will vary according to whether or not one precom-
puted L(i)-values and many additional details.
Though some of the needed L(i)-values are likely to be

precomputed, computing all of them “on the fly” is not
inefficient. Starting with 0n we form successive offsets by
xoring the previous offset with L, 2 · L, L, 4 · L, L, 2 · L,
L, 8 · L, and so forth. So half the time we use L itself; a
quarter of the time we use 2 · L; one eighth of the time we
use 4 · L; and so forth. Thus the expected number of times
to multiply by x in order to compute an offset is at most∑∞

i=1 i/2
i+1 = 1. Each a · x instruction requires an n-bit

shift and a conditional 32-bit xor. Said differently, for any
m > 0, the total number of a · x operations needed to com-
pute γ1 · L, γ2 · L, . . . , γm · L is

∑m
i=1 ntz(i), which is less

than m. The above assumes that one does not retain or
precompute any L(i) value beyond L = L(0). Suppose that
one precomputes L(−1), L(0), L(1), L(2), L(3). Computing
and saving the four values beyond L = L(0) is cheaper than
computing L itself, which required an application of EK .
But now the desired multiple of L will have be available at
least 1/2+1/4+1/8+1/16 ≈ 94% of the time. When it has
not been precomputed it must be calculated, starting from
L(3), so the amortized number of multiplications by x has
been reduced to

∑∞
i=1 = i/2i+4 = 0.125.

Experimental results. In Table 3 we report, with permis-
sion, some experimental results by Helger Lipmaa [25]. On
a Pentium III, in optimized assembly, Lipmaa implemented
OCB encryption, ECB encryption, CBC encryption, and
the CBC MAC. The last three modes were implemented in
their “raw” forms, where one does no padding and assumes
that the message acted on is a positive multiple of the block
length. For CBC encryption, the IV is fixed. The underlying
block cipher is AES128.
Focusing on messages of 1 KByte, OCB incurs about

6.4% overhead compared to CBC encryption, and the al-
gorithm takes about 54% of the time of a CBC encryp-
tion + CBCMAC. Lipmaa points out that overhead is so low
that, in his experiments, an assembly AES128 with a C-code
CBC-wrapper is slightly slower than the same AES128 with
an assembly OCB-wrapper. Lipmaa’s (size-unoptimized)
code is 7.2 KBytes, which includes unrolling AES128 (2.2
KBytes) three times.
Some aspects of the experiments above are unfavorable to

OCB, making the performance estimates conservative. In
particular, the “raw” CBC MAC needs to be modified to
correctly handle length-variability, and doing so is normally
done in a way that results in additional block-cipher calls.



And when combined with CBC encryption, the CBC MAC
should be taken over the full ciphertext, including the nonce,
which would add an extra block-cipher call. Finally, an extra
block-cipher call would normally be performed by CBC to
correctly compute the IV from a nonce.
The results above are for a serial execution environment.

In settings with plenty of registers and multiple instruction
pipes, OCB, properly implemented, will be faster than CBC.
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APPENDIX

A. BRIEF HISTORY
Jutla, Gligor-Donescu, Rogaway. An April 1999 paper
by Gligor and Donescu gives an authenticated-encryption
scheme called PCBC [11]. The mode is wrong, as pointed
out by Jutla [18], but it may have contributed to the subse-
quent development of correct modes. Jutla’s paper [18] gives
the first apparently correct schemes, IACBC and IAPM.
Shortly after that paper appeared, Gligor and Donescu de-
scribed a different scheme, XCBC [12], which is similar to
IACBC. The most conspicuous difference between XCBC
and IACBC is the former’s use of mod-2n addition where
the latter uses xor or mod-p addition, for p a prime just less
than 2n.
A first call by NIST for modes of operation brought con-

tributions [13, 19] based on [12, 18], and a contribution by
Rogaway [31] that built on [18]. In [19], Jutla employs a
Gray-code ordering for combining basis offsets, a refinement
independently introduced, along with further tricks, in [31].
A second call by NIST gave rise to [14, 20, 32], which

were revisions to [13, 19, 31], respectively. In [20], Jutla
emphasized IAPM over IACBC, and he adopted lazy mod-p
addition, first described in [31]. In [14], Gligor and Donescu
describe four authenticated-encryption modes, one of which,
XECBS-XOR, is parallelizable. The modes adopt some fea-
tures introduced in [31] to deal with messages of arbitrary
length and to use a single block-cipher key. In [32], Rogaway
et al. settled on one mechanism to make offsets (three are
described in [31]) and made further refinements to [31].
Briefly comparing OCB and IAPM, the latter uses two

separate keys and is defined only for messages which are
a multiple of the block length. Once a padding regime is
included, say obligatory 10∗ padding, ciphertexts will be
longer than OCB’s by 1 to n bits. IAPM supports offset-
production using either lazy mod-p addition or an xor-based
scheme. The latter is not competitive with OCB in terms
of key-setup costs.
The initial version of Jutla’s work [18] claimed a proof,

and included ideas towards one. A subsequent writeup by
Halevi [17] was more rigorous.

Patents. The history above ignores associated patent ap-
plications. Jutla/IBM, Gligor/VDG, and Rogaway have all
indicated that there were such filings. All parties have pro-
vided statements to NIST promising reasonable and nondis-
criminatory licensing.

Definitions. Though the authenticated-encryption goal is
folklore, provable-security treatments of it are recent. The
first definition for authenticated encryption is due to Bellare
and Rogaway [8] and, independently, Katz and Yung [22].
Bellare and Namprempre were the first to seriously inves-
tigate the properties of authenticated-encryption and the
generic-composition paradigm [7].


