
EXECUTION MONITORING OF SECURITY-CRITICAL PROGRAMS

IN A DISTRIBUTED SYSTEM:

A SPECIFICATION-BASED APPROACH

By

Calvin Cheuk Wang Ko

B.S. (University of Hong Kong) 1990

M.S. (University of California, Davis) 1993

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Karl N. Levitt, Chair

Manfred Ruschitzka

Matthew Bishop

Committee in Charge

1996

i

Acknowledgements

I am deeply indebted to my advisors, Karl Levitt and Manfred Ruschitzka. Without

their help and guidance, I was not able to �nish this work. Special thanks to Karl for his

precious time and energy, and his patience in teaching me not only how to perform research,

but also how to write proposals, deal with sponsors, give presentations, and survive as a

researcher in the security �eld. I would like to thank Manfred for the time and e�ort he has

spent working with me and polishing the dissertation. His ideas and insightful suggestions

have greatly enriched the technical content of this work; his persistent pursuit of clarity has

greatly improved its presentation.

I would also like to thank the other member of my committee, Matt Bishop, for his

valuable comments on this dissertation. I also thank the fellow students and researchers in

the security group for their comments and feedbacks on my research. Thank Jim Hoagland,

Steven Cheung, and Raymond Yip for proof-reading drafts of this dissertation.

I would like to thank my family and friends for their support and constant encourage-

ment, especially my wife Mandy, for her patience and understanding and also for her great

assistance in proof-reading early drafts of this dissertation.

Finally, I would like to thank God (my heavenly Father, my beloved Jesus, and the

Holy Spirit) for His eternal love, encouragement and constant nourishment. His grace has

always been su�cient for me.

ii

Contents

1 Introduction 1

1.1 Computer Security : 1
1.2 Con�guration Analysis : 2

1.2.1 Evaluation of Con�guration Analysis : : : : : : : : : : : : : : : : : : 4
1.3 Anomaly Detection : 5

1.3.1 Statistical Pro�le-based Approaches : : : : : : : : : : : : : : : : : : : 5
1.3.2 Rule-based Approaches : 6
1.3.3 Evaluation of Anomaly Detection : 7

1.4 Misuse Detection : 7
1.4.1 Expert Systems : 7
1.4.2 State-Transition Analysis : 10
1.4.3 Pattern Matching : 11
1.4.4 Model-based Intrusion Detection : 11
1.4.5 Evaluation of Misuse Detection : 12

1.5 Speci�cation-based Monitoring : 12
1.5.1 Terminology : 13
1.5.2 Dissertation Outline : 14

2 Intrusion Scenarios 15
2.1 Rdist : 15
2.2 Fingerd : 20
2.3 Mail : 22
2.4 Binmail : 25
2.5 Modifying the Password File : 26

3 The Model 29

3.1 System Model : 29
3.2 Monitoring Programs : 30
3.3 The Subject of Monitoring : 32
3.4 Characteristics of a Program Execution : 32

3.4.1 The User of a Program : 32
3.5 Security-Relevant Aspects of Program Behavior : : : : : : : : : : : : : : : : 34

iii

CONTENTS iv

3.5.1 Accesses : 34
3.5.2 Sequencing : 34
3.5.3 Synchronization : 35
3.5.4 Race Conditions : 35

4 Speci�cation Language 37
4.1 Notation : 38
4.2 De�nition of Parallel Environment Grammars : : : : : : : : : : : : : : : : : 39
4.3 Properties of Parallel Environment Grammars : : : : : : : : : : : : : : : : : 44
4.4 Parallel Hyperparsers : 46

4.4.1 Hyperparsers : 48
4.4.2 Synchronization among Hyperparsers : : : : : : : : : : : : : : : : : : 49
4.4.3 Tokens : 53
4.4.4 Lexical Procedures : 54

4.5 Illustration of the Use of PE-grammars for Specifying Trace Policies : : : : : 55
4.6 Summary : 61

5 Example Trace Policies 62

5.1 Rdist : 62
5.1.1 Sequence of Operations : 66

5.2 Fingerd : 68
5.3 Race Condition: Binmail : 69
5.4 Concurrent Access to the Password File : 71
5.5 Other Policies : 74

5.5.1 Bell-LaPadula Policy : 74
5.5.2 Clark-Wilson Policy : 75

6 Design and Implementation Overview 77

6.1 Design of DPEM : 77
6.1.1 The Speci�cation Manager : 79
6.1.2 Trace Dispatchers : 81
6.1.3 Analyzers : 82

6.2 Implementation Overview: A Unix Prototype : : : : : : : : : : : : : : : : : 86
6.2.1 The Audit Record Preprocessor : 87
6.2.2 The Dispatcher : 88
6.2.3 Analyzers : 88

6.3 Experience : 88

7 Discussion and Future Work 91

7.1 Discussion : 91
7.1.1 Limitations : 91
7.1.2 Comparison to Misuse Detection : 92
7.1.3 Comparison to Type Enforcement : 93

CONTENTS v

7.1.4 Experience in Specifying Trace Policies : : : : : : : : : : : : : : : : : 94
7.2 Conclusions : 95

7.2.1 Contributions : 96
7.3 Future Work : 96

7.3.1 On the Speci�cation-based Approach : : : : : : : : : : : : : : : : : : 96
7.3.2 On the Implementation and Testing : : : : : : : : : : : : : : : : : : : 97
7.3.3 On Applications to Other Areas : 97
7.3.4 On Reasoning about the Security of the System : : : : : : : : : : : : 98

Bibliography 98

A A Brief Note on the Audit Subsystem in Solaris 104

A.1 Basics : 104
A.2 Internal Components of the Audit Subsystem : : : : : : : : : : : : : : : : : : 106

A.2.1 Static and Dynamic Con�guration : 107
A.2.2 Auditing Daemons : 107

B Audit Events Used by the Prototype 109

C Attributes of Operations 110

List of Figures

1.1 An Expert Rule of NIDES : 8

2.1 Operation Sequence of rdist : 18
2.2 Fingerd Attack : 21

3.1 The Process Hierarchy of a Sendmail Execution : : : : : : : : : : : : : : : : 31
3.2 The Monitoring Model : 33

4.1 An Example Parallel Environment Grammar : : : : : : : : : : : : : : : : : : 43
4.2 A Parallel Hyperparser : 47
4.3 Execution of Two Hyperparsers : 51
4.4 An Illustration of a PE-grammar : 57
4.5 Execution Traces of Program A and Program B. : : : : : : : : : : : : : : : : 59

5.1 A Parallel Environment Grammar for Monitoring Rdist : : : : : : : : : : : : 64
5.2 De�nitions of the Macros : 65
5.3 A Parallel Environment Grammar for Monitoring Rdistd : : : : : : : : : : : 67
5.4 A Parallel Environment Grammar for Monitoring Fingerd : : : : : : : : : : 69
5.5 A Parallel Environment Grammar for Monitoring Binmail. : : : : : : : : : 70
5.6 A Trace Policy for Accesses to the Password �le. : : : : : : : : : : : : : : : 72
5.7 An PE-grammar for a Multi-Level Security Policy. : : : : : : : : : : : : : : 75
5.8 An PE-grammar for a Clark-Wilson Policy. : : : : : : : : : : : : : : : : : : 76

6.1 Architecture of the Execution Monitor from the Perspective of a Host : : : : 78
6.2 Structure of an Analyzer : 82
6.3 Architecture of an Analyzer : 83
6.4 A Report Generated by the Execution Monitor : : : : : : : : : : : : : : : : : 90
6.5 A Report of the Synchronization Violation : : : : : : : : : : : : : : : : : : : 90

vi

List of Tables

1.1 An Example Signature : 9

2.1 System Call Sequence of Rdist : 16
2.2 System Calls done by Rdist and the Attacker : : : : : : : : : : : : : : : : : 17
2.3 A Comparison of the Audit Records in a Normal Execution and in an Intrusion 20
2.4 System Call Sequence of Fingerd : 22
2.5 An Example Intrusion of Mail : 23
2.6 Two Variants of the Mail Intrusion : 24
2.7 Operation Sequence of Binmail : 26
2.8 Timing of the Events : 27

4.1 An Example Parallel Derivation : 44
4.2 A Parallel Derivation of Trace 1 : 60
4.3 An Unsuccessful Parallel Derivation of Trace 2 : : : : : : : : : : : : : : : : : 60
4.4 An Unsuccessful Parallel Derivation of Trace 2 : : : : : : : : : : : : : : : : : 61

vii

Chapter 1

Introduction

As computer systems are used increasingly for processing critical information and performing

critical jobs, our society heavily depends on the secure operation of these systems. Lack of

security in these systems could result in loss of money, manpower, national competitiveness,

and even threaten lives.

1.1 Computer Security

Generally speaking, computer security is concerned with protecting the computing resources

and the information stored in computer systems. Con�dentiality, integrity, and availability

are the three typical high-level requirements of a secure computer system. Con�dentiality is

concerned with preventing unauthorized disclosure of information and unauthorized accesses

to information. Integrity is concerned with maintaining consistency and correctness of data

in the system. Availability is concerned with preventing exhaustion of resources and denial

of services to authorized users.

Most computer systems employ access controls [33, 34, 44] as the �rst line of defense

to protect resources and information in the systems. Access controls ensure that all direct

accesses by subjects (e.g., users or processes) to objects (e.g., �les and records) are author-

ized. Access controls regulate direct accesses to objects, but not what subjects might do

with information contained in these objects [14]. In order to achieve con�dentiality, inform-

ation ow controls [5, 6] are needed to regulate dissemination of information. Besides access

controls and ow controls, authentication is also needed in a computer system to assure the

identity of users. Also, it is important to assure that the security mechanisms work properly.

1

1.2. Con�guration Analysis 2

Both formal [40, 43] and informal [22, 35] techniques for assuring the security of a system

have been investigated.

Despite the advance in computer security and software engineering, current computer

systems are still vulnerable to attacks. Many existing computer systems contain vulnerabilit-

ies [49, 47, 18] that enable attackers to penetrate the systems. The proliferation of computer

networking further exacerbates the problem, as computer systems are not just accessible by

insiders who are presumably trusted, but by virtually anyone on the network. An insecure

computer system connected to the Internet is opened to attackers around the world. As re-

design is not a feasible and cost-e�ective solution to cope with the current situation, retro�t

approaches that require only minor changes to systems are needed to enhance the security

of current computer systems.

Intrusion detection has been proposed as an approach to cope with current security

problems. The goal of intrusion detection is to detect activities in a system that violate

the security policy or compromise a system's security. It is an after-the-fact approach to

security as oppose to the preventive approaches used traditionally. As intrusion detection

requires as its data source only a log of the activities of the system, it can be applied to

most existing systems. In addition, it can enhance the security of even a very secure system,

for example, to detect insiders who accidentally or maliciously exceed their privileges. In

the next three sections, we describe current approaches to intrusion detection, including

con�guration analysis, anomaly detection, and misuse detection. We evaluate the approaches

and then describe a novel approach to intrusion detection, the speci�cation-based approach.

1.2 Con�guration Analysis

The goal of con�guration analysis (also known as static analysis) is to check whether a

system has been or could be compromised. Static analysis involves examination of the

current system con�guration such as the content of system �les and system tables. The

term static refers to the static characteristics of the system, not the system activity. The

rationale behind con�guration analysis is twofold: a security compromise may leave behind

a residue that can be detected by checking the state of the system, and system administrators

and users often make mistakes in setting up a system, enabling attackers to compromise a

1.2. Con�guration Analysis 3

system's security. As con�guration analysis can reveal potential problems before they occur,

it is also a preventive approach to security.

A widely used con�guration checking tool is the Computer Oracle Password and Se-

curity System (COPS) [19]. COPS enforces a prede�ned and �xed con�guration policy

represented in a set of shell scripts that check for common miscon�gurations in a Unix sys-

tem. For example, it checks the permission mode of security-relevant �les and directories

such as the password �le, /etc/passwd, the group �le, /etc/group, and the /etc directory

to ascertain that only the superuser can modify these �les.

COPS uses a set of rules-of-thumb to determine whether a system's con�guration is

correct. An example of a rule-of-thumb is that no setuid root 1 �les should be writable by

all users. Other rules deal with search paths, system initialization �les, and programming

conventions. This approach simpli�es the task of securing a system's con�guration, but

excludes alternative con�gurations set up by individual administrators which are useful.

The U-Kuang system [4] is a rule-based expert system for checking the security of

a Unix �le system's con�guration. Instead of a prede�ned con�guration policy, U-Kuang

enforces a high-level, user-speci�ed policy which de�nes the set of privileges available to

each user. It enumerates the set of operations directly or indirectly accessible to each user.

The rule base describes the behavior of the security kernel, privileged programs, and

the ways an attacker can extend his privileges. One example rule is \if a user can write

to a directory, then the user can replace any �le inside the directory". In Unix, a user

can delete a �le if he has write permission on the directory containing the �le, and the rule

follows because the user can �rst delete the �le that he wants to replace, and subsequently

recreate the �le with the desired content. Another example rule is \a user who can replace

the password �le is able to acquire superuser privileges". The U-Kuang system exhaustively

searches for all possible plans of actions that enable a user to acquire privileges inconsistent

with the speci�ed policy. One limitation of U-Kuang is that the policy can specify only user

and group privileges that can be acquired by a user.

The Miro' security constraint �le checking system [23] checks a �le system against a

set of user-speci�ed security constraints that de�nes the legal con�gurations of the system.

1A �le is setuid root if it is owned by root and has the setuid bit on. When a setuid root program is
executed, the resulting process possesses superuser privileges instead of the privileges of the invoker.

1.2. Con�guration Analysis 4

Security constraints are speci�ed graphically as pictures in the Miro' constraint language. A

system administrator uses a graphical editor to create and modify constraint pictures, which

are subsequently fed to the constraint checker to verify the current �le system con�guration.

The use of visual notations enhances the understandability and readability of the security

constraints, which are otherwise similar to the rules-of-thumb in COPS.

Tripwire [30] is a �le integrity tool that aids system administrators and users in mon-

itoring a designated set of �les for any changes. Attackers tend to leave behind backdoors

(e.g., in the login program) or Trojan horses after they penetrate a system that enable

them to re-enter the system even after the exploited vulnerability is removed. Moreover,

an attacker might install a sni�er program and replace utility programs (e.g., ls, ps) that

can reveal information about the sni�er program [10]. This technique makes it di�cult to

discover the compromise. In Tripwire, each �le to be protected is provided with a precom-

puted cryptographic checksum which is theoretically unbreakable without the key. The �le

is then periodically checked for any modi�cations by comparing the current checksum with

the precomputed checksum.

1.2.1 Evaluation of Con�guration Analysis

A signi�cant percentage of computer break-ins is caused by improper system con�gurations.

Even in operating systems with strong protection mechanisms, their incorrect use leads to

security aws. System administrators and users make mistakes because of carelessness and

misunderstanding the complexity of protection systems. In most current operating systems

(e.g., Unix), a user does not set up an access policy directly, but by setting the permission

bits of �les or by other low-level mechanisms. Con�guration analysis aids in ascertaining

that the con�guration is consistent with a standard security policy.

Con�guration analysis provides a reasonable solution to many security problems. However,

it is not a complete solution. Even if a system's con�guration is correct, it may still con-

tain potential vulnerabilities such as errors in trusted programs that facilitate penetrations.

Also, insiders could misuse their privileges in a correctly con�gured system. To further

enhance a system's security, activities in a system should be monitored to detect potential

compromises.

1.3. Anomaly Detection 5

1.3 Anomaly Detection

Anomaly detection, �rst proposed by Anderson [2] to detect intrusions in computer systems,

involves monitoring activities in a system using audit trails. Later, Denning [15, 16] presen-

ted a model of an anomaly-based intrusion detection system. The basic premise behind

anomaly detection is that exploitation of a system's vulnerabilities involves abnormal use of

the system; security violations can, therefore, be detected from abnormal patterns of system

usage. This technique can potentially reveal a masquerader or a legitimate user abusing

his/her privileges [2]. The basic idea is to establish normal behavior patterns of subjects

(e.g., individual users, groups of users, hosts, etc.) by observing audit trails over a dura-

tion of time. An audit trail that deviates from the subject's established behavior pattern is

regarded as an indication of an intrusion.

Current anomaly detection systems use statistical or rule-based pro�les. A pro�le is

a description of a subject's normal behavior in terms of intrusion-detection measures or

features such as login time, login location, CPU time used, and �le accesses. A statistical

pro�le consists of statistics such as frequencies, means, and variances of the features. In a

statistical pro�le-based anomaly detector, statistical methods are used to determine whether

an audit trail deviates from the norm signi�cantly. A rule-based pro�le is a set of rules that

specify the legal values of features which may depend on the values of other features. Rules

can, in principle, be generated automatically from the past behavior. However, selecting

features that best delineate normal behavior from intrusive behavior is a di�cult problem

[17, 20].

1.3.1 Statistical Pro�le-based Approaches

SRI International's Next Generation Real-Time Intrusion-Detection Expert System (NIDES,

formerly IDES) [37, 38, 27] is a statistical pro�le-based anomaly detection systems. The

anomaly detector observes audit data and adaptively draws conclusions about the normal

behavior of subjects, which can be individual users, groups, remote hosts and the overall

system. It uses multivariate methods for pro�ling normal behavior and identifying deviations.

It maintains a statistical knowledge base of subjects and audited activity is described by a

vector of intrusion-detection variables, corresponding to the features recorded in the pro�les.

1.3. Anomaly Detection 6

As an audit record arrives, the relevant pro�les are retrieved from the knowledge base and

compared with the vector of intrusion-detection variables. If the point in N-space de�ned

by the vector of intrusion-detection variables is su�ciently far from the point de�ned by

the values stored in the pro�les, the record is considered anomalous. Also, as subjects alter

their behavior, their corresponding pro�les change.

The NIDES statistical component is also used to monitor activities of application

programs in the SAFEGUARD project [1]. Its main goal is to detect unauthorized use of

applications or application classes on restricted data, but the methodology is useful in the

detection of Trojan horses and masquerading applications too.

1.3.2 Rule-based Approaches

Wisdom and Sense (W & S) [53] is a rule-based anomaly detection system. It uses a tree-

structured rule forest to describe historical behavior patterns that are statistically signi�cant.

The rules specify normal feature values conditioned on the values of other features. Rules

can overlap in speci�city due to incomplete information in the history. Rule pruning occurs

if there are too many normal values for a feature, too few historical values, the rule is too

deep, or a rule is conditioned on an anomalous value. The rule base tends to be very large

(104 to 106 rules). An expert can add to or modify the rule base using an English-like

syntax.

The Time-based Inductive Machine (TIM) [52] is also a rule-based anomaly detection

system. TIM uses an inductive method to generate rules, which are modi�ed dynamically

during the learning phase. Rules remain in the rule-base only if they are highly predictive

or con�rmed by many observations. Prediction is calculated using an entropy model. The

user must specify the behavior TIM is to predict. An example of a rule generated by TIM

is

E1 ! E2 ! E3) (E4 = 95%, E5 = 5%)

where E1 through E5 are security events. This rule indicates that after the sequence of

events E1, E2, and E3, the probability of E4 occurring is 95% and that of E5 is 5%. This

rule is generated based on previously observed data. In TIM, rules are modi�ed over the

lifetime of a system in order to keep the rule set representative and manageable.

1.4. Misuse Detection 7

1.3.3 Evaluation of Anomaly Detection

Anomaly detection provides a method to detect penetrations without requiring speci�c know-

ledge about the operating system or its security aws. It is also the only viable technique

to detect masqueraders.

Nevertheless, it is di�cult to establish behavior patterns for users in many environ-

ments and to determine the threshold values that signal anomaly. In addition, anomaly

detection alone cannot detect all kinds of intrusions, since not all penetrations produce an

identi�able anomaly. Moreover, an experienced attacker can change his behavior slowly to

avoid detection by an anomaly detection system.

1.4 Misuse Detection

Misuse detection is concerned with the detection of user actions that are suspicious, that

resemble known intrusions, that exploit known vulnerabilities in the system, or that are

in direct violation of the security policy. The goal of misuse detection is to identify these

suspicious actions (or misuse signatures) and check for the occurrences of these actions in

audit trails. Misuse signatures are often crafted by security experts who are familiar with

the vulnerabilities in the target system, the internals of the operating system, and known

intrusions. To date, there is no systematic way to identify misuse signatures, and misuse

detection is highly driven by known intrusion scenarios and known system vulnerabilities.

There are many misuse detection systems being developed [38, 32, 24]. They di�er in

the way attack signatures are represented and the mechanisms used for checking occurrences

of signatures in the audit trails. They can be classi�ed into four approaches: expert sys-

tems (if-then-else), state transition analysis, pattern matching, and model-based intrusion

detection. We discuss these approaches, focusing on the expressive power of the signatures

as well as on the e�ciency of the detection mechanisms.

1.4.1 Expert Systems

Most early misuse detection systems employ expert systems to detect penetrations. NIDES

[38], W & S [53], MIDAS [45], and NADIR [26] have expert-system components that supple-

ment their anomaly detectors. In these systems, penetrations are encoded as expert system

1.4. Misuse Detection 8

rules. A rule has the form \if condition then action " where condition speci�es constraints

on individual �elds of audit records and action speci�es the actions to be taken when the

rule is �red. An action can be the assertion of new facts, or the raising of a user's suspicion

rating. The rules may recognize single auditable events or a sequence of events that represent

a penetration scenario. An example of an expert rule of NIDES is shown in Figure 1.1.

1. rule[SimuLogon(#1;*):
2. [+tr:transaction]
3. [+se:session|userid == tr.userid]
4. [?|se.terminal != tr.terminal]
5. ==>
6. [!|printf("SimuLogon: user %s at terminals %s, %s\n",

tr.userid, tr.terminal, se.terminal)]

Figure 1.1: An Expert Rule of NIDES

This rule, SimuLogon, is written in the expert-system speci�cation language PBEST

[38]. It detects a user logging in on a terminal while already logged in somewhere else. When

a user logs in, a transaction fact is asserted, and a session fact is added to the fact-base

of the expert system if the login is successful. The rule checks each transaction fact to

determine if there is any session fact with the same userid �eld (Lines 2 and 3). If such a

session exists, it compares the terminals of the transaction fact with the session fact, and

�res the rule if they are di�erent. When the rule is �red, a message is written to the terminal

of the security o�cer (Line 6).

One advantage of using expert-system rules to represent intrusions is that the mechan-

ism for checking audit trails is provided automatically { the expert system interprets audit

records as facts and determines whether they satisfy the rules. However, using expert-system

rules to represent a sequence of actions is nonintuitive, and updating is di�cult for all but

experienced knowledge-base programmers. Also, it is di�cult to use expert system rules to

detect cooperating attacks. Additionally, expert systems are general tools, and as such, are

less e�cient than a monitoring system handcrafted for audit analysis.

The Distributed Intrusion Detection System (DIDS)

The Distributed Intrusion Detection System (DIDS) [46] monitors hosts in a local area

network for intrusions. It has a signature analysis component that uses a di�erent way to

1.4. Misuse Detection 9

represent intrusions. An attack signature consists of a key event and the context in which

an occurrence of the event is to be considered an intrusion.

Subject userid=dragyn

Object NULL

Action rlogin

Context: The account was �ngered within the last 5 seconds

Table 1.1: An Example Signature

The attack signature in Table 1.1 captures what an attacker might do when he logs in

as another user, assuming he has the password of the victim. The attacker �rst executes the

�nger command to check whether the victim is on the system. If not, he executes the rlogin

command to enter the system as the victim. Therefore, the signature de�nes that an rlogin

action is suspicious in the context where the account was �ngered within the last 5 seconds.

In general, the context is an abstraction of all previous events in the system. An

attribute of context may be the origination of a session: whether it is from the console or from

a host outside the domain. The notion of context is important in identifying penetrations, as

an action could be perfectly legitimate in one context, but indicate an intrusion in another

context. The signature-analysis mechanism recognizes a signature based on both the actions

and the context. It also maintains the current context of the system and of each user session.

Tracking Users' Movement Across the Network

Recognizing the importance of aggregating users' activities in a distributed environment,

DIDS pays particular attention to tracking user movements across the network. DIDS im-

plemented the Distributed Recognition and Accountability algorithm (DRA) [31] which as-

signs a unique Network Identi�er (NID) to each session and maps remotely created sessions

to the originating sessions (sessions initiated from physical devices or from hosts outside

of the monitored domain). The algorithm observes audit data generated by all monitored

hosts and the network monitor to keep track of user movements across the network. It uses

a directed graph to relate remote sessions to the originating sessions. The unique NID of

a session is considered part of the context of a session. Two sessions with the same NID

1.4. Misuse Detection 10

are considered to be owned by the same individual so that the activities of the sessions are

aggregated together.

In DIDS, both the prototype signature analysis mechanism and the DRA algorithm

are implemented using the Clips [39] expert-system shell. DIDS consists of a centralized

data analyzer that analyzes the audit data collected from the hosts in a local area network.

It is also the �rst intrusion detection system designed to monitor the hosts on a local area

network. However, as the analysis is centralized, DIDS as it stands, cannot be used in a

large network consisting of many hosts owing to performance limitations.

1.4.2 State-Transition Analysis

The state-transition analysis approach [41] was implemented in USTAT [24, 25]. USTAT

is a rule-based expert system for detecting intrusions in real-time based on state-transition

analysis.

In state-transition analysis, an intrusion is a sequence of actions performed by the

attacker that leads from some initial states to a compromised state. A state is a snapshot of

the system representing the values of all volatile, semi-permanent and permanent memory

locations on the system. It is represented by the values of a set of system attributes. The

initial state corresponds to the state of the system just before the start of the intrusion,

and the compromised state corresponds to the state resulting from the completion of the

intrusion. One or more intermediate state transitions may occur between the initial and

the compromised state. After identifying the initial and compromised states, the main step

is to identify the key actions, called signature actions that, if omitted, would prevent the

intrusion from completing successfully. This information is represented graphically using

state-transition diagrams, and used for generating the expert rules for detecting the intrusion.

State-transition analysis focuses on the e�ects that the individual steps of an intrusion

have on the state of the computer system. The rule base is independent of audit records

and thus is easier to read. It also has the ability to detect cooperating attackers and attacks

across user sessions. However, this model can represent an intrusion only as a totally

ordered sequence of signature actions; it does not allow more complex ways of specifying

penetrations such as partially ordered actions. Also, there is no general-purpose mechanism

to prune partial matches of attacks other than through assertion primitives built into the

1.4. Misuse Detection 11

model.

1.4.3 Pattern Matching

The pattern matching approach [32] by Sandeep for detecting intrusions deals with the four

types of intrusions below; they are based on the signatures used for their detection.

1. Existence: The existence of an event in the audit trail indicates an intrusion.

2. Sequence: The occurrence of a sequence of events in the audit trail indicates an intru-

sion.

3. Partial order: The occurrence of a partially ordered sequence of events in the audit

trail indicates an intrusion.

4. Duration and interval: The occurrence of a sequence of events within a certain duration

or time interval in the audit trail indicates an intrusion.

In this approach, an attack signature is a Colored Petri Network (CPN) [28]. A CPN is

a directed graph in which nodes represent states and edges represent transitions. Optional

guards with expressions can be placed at transitions. These expressions permit assignment

to the token local variables that ow past the transition. There can be several start states,

but only one �nal state. At the start of a match, a token is placed in each initial state. A

CPN may have a set of variables associated with it, representing the context.

The model has the expressive power to specify partially ordered actions and the timing

constraints among actions. The objective is to translate the intrusion detection problem

into the pattern matching problem: the audit trail is an abstracted event stream, and the

detector is a pattern matcher. An advantage of using the pattern-matching approach is that

it has been extensively studied. It is amenable to several optimizations that can make a

system built around it practical and e�cient. Therefore, using pattern matching to detect

penetrations is more e�cient than using expert systems.

1.4.4 Model-based Intrusion Detection

Model-based intrusion detection [21] deals with intrusions at a higher level of abstraction

than audit records. In model-based detection, scenario models that represent the charac-

1.5. Speci�cation-based Monitoring 12

teristic behavior of intrusions are built. Scenario models allow administrators to generate

penetrations in an abstract manner. Model-based techniques thus di�er from rule-based

techniques, which simply match audit records to expert rules.

1.4.5 Evaluation of Misuse Detection

A signi�cant advantage of misuse detection is that it can guarantee detection of known

intrusions if the signatures of the intrusions are included in the database of the misuse

detector. However, current approaches to identifying misuse signatures are mostly driven

by previous intrusions and known vulnerabilities. Although it is relatively easy to include

an intrusion into the misuse database to detect subsequent occurrences of the intrusion, it

is di�cult to capture all the variants of an intrusion. We illustrate the di�culties involved

by an example presented in Chapter 3.

The fundamental limitation of current misuse detection approaches is their inability to

deal with novel attacks and unknown system vulnerabilities: it is infeasible to identify all

possible undesired behaviors. Also, it is not intuitive to enforce a security policy using a

misuse detection system, as the policy has to be expressed in terms of signatures of prohibited

actions.

1.5 Speci�cation-based Monitoring

This dissertation describes a new approach to intrusion detection, called speci�cation-based

monitoring. The idea is to write security speci�cations for the security-critical programs

(e.g., privileged programs) that describe their desirable behavior, and to monitor the exe-

cution of these programs for violations with respect to the speci�cations. A speci�cation is

driven by the functionality of the programs and the system security policy.

In more detail, a speci�cation captures the valid operation sequences of the execution

of one or more programs. A sequence of operations performed during an execution of

the program that is outside the speci�cation are considered a security violation. As the

speci�cation determines whether an execution trace of a program is valid or not, it is called

a trace policy. Audit trails are used to monitor the execution of a program.

Grammars are used as speci�cations of valid operation sequences of programs, where

1.5. Speci�cation-based Monitoring 13

the alphabets of the grammars are system operations. We developed a novel type of gram-

mar, parallel environment grammars (PE-grammars), for specifying trace policies. A PE-

grammar can describe parametric and context-sensitive languages. It can describe many

di�erent classes of trace policies that are important to security. Besides, it can describe

traces of a concurrent program execution in which the concurrent processes are synchron-

ized. Also, a PE-grammar serves as a design speci�cation for the development of a parser

that determines whether a trace of a program execution is a sentence of the grammar. In-

trusion detection thus becomes parsing.

We designed a speci�cation-based monitoring system for a distributed system. The

monitoring system consists of analyzers distributed over multiple hosts in the distributed

system. Each analyzer monitors a subject, which can be a single program execution, multiple

program executions, a user, multiple users, etc. The system combines distributed data

collection and �ltering as well as decentralized data analysis. We developed a prototype

execution monitor for a Unix system and the trace policies for setuid root programs in Unix.

The prototype detects intrusions that exploit vulnerabilities in these programs in real time.

Because of the way these programs are speci�ed, their speci�cations are independent of

the vulnerabilities in these programs. Thus, speci�cation-based monitoring has the potential

to detect attacks that exploit unknown vulnerabilities in these programs.

1.5.1 Terminology

This section explains the terms used throughout the dissertation.

� Attack : An attack is any set of actions whose purpose is to compromise the integrity,

con�dentiality, or availability of a resource. The set of actions may be performed

by a single attacker or by a group of cooperating attackers. An attacker exploits

vulnerabilities in a system to gain necessary privileges to achieve his/her goal.

� Exploitation: An exploitation is a set of actions that result in a violation of the security

policy of a computer system. Intruders exploit system vulnerabilities or aws to gain

unauthorized access to the system.

� Flaw : A aw is an error of commission omission or oversight in a system that allows

protection mechanisms to be bypassed [36]. A program aw is an error in a program,

1.5. Speci�cation-based Monitoring 14

either in design or implementation, that causes the program to malfunction. We use

vulnerabilities and aws synonymously.

� Intrusions: An intrusion is an attack. Attacks and intrusions are used synonymously

in this dissertation.

� Security policy : A security policy is a set of laws, rules, and practices that regulate

how an organization manages, protects and distributes sensitive information.

� Privileged program: A privileged program is a program that is executed with special

privileges, enabling it to bypass the system security mechanism in order to accomplish

its task. In Unix, examples are those programs that are owned by root and have the

setuid bit on. They are refered to as setuid root programs throughout the dissertation.

� Privileges: Privileges are capabilities given to subjects so that they can perform oper-

ations that are not accorded normal users.

� Vulnerabilities: A vulnerability is a weakness in automated system security procedures,

administrative controls, or internal controls that could be exploited by a thread to gain

unauthorized access to information or to disrupt critical processing [36].

1.5.2 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 presents a few attack scenarios

to motivate our work. These intrusions exploit the vulnerabilities of privileged programs in

Unix to gain unauthorized access to the system. The goal is to illustrate the subtleties of the

vulnerabilities and of the intrusions that exploit the vulnerabilities. Chapter 3 describes the

terms and concepts that are used later in the dissertation. Chapter 4 describes a language for

specifying trace policies. It �rst gives the formal de�nition of the language in a general setting

and then describes how it is used to specify trace policies. Chapter 5 presents several example

trace policies for the problematic programs described in Chapter 2. Chapter 6 presents the

design of a distributed monitoring system and the implementation of a prototype. It also

describes our experience with the prototype. Chapter 7 discusses various issues of our work

and suggests future research.

Chapter 2

Intrusion Scenarios

In this chapter we present several vulnerabilities in Unix privileged programs that can be

exploited to gain unauthorized access to the system. We also include several intrusion

scenarios to illustrate how these vulnerabilities are exploited. We focus on the fundamental

problems behind the vulnerabilities as well as the relevant system actions associated with an

exploitation. The goal is to give the reader a better understanding of the vulnerabilities, the

ways they are exploited, and the ways the exploitations can be detected by monitoring the

system actions.

2.1 Rdist

Rdist [48] (Remote File Distribution Program) is a Unix utility for maintaining identical

copies of �les over multiple hosts. Since its release in 4.3 BSD Unix, Rdist has been widely

used by system administrators and users on almost every major Unix Platform.

Rdist is normally invoked by a user in the host where the master copies reside to

update the copies of �les in remote hosts. It preserves the content, the owner, the group,

the mode and the modi�cation time of the master. Rdist employs the client-server approach

to perform �le updates on the remote hosts. For each host whose copies of �les are to be

updated, rdist invokes the rdist server 1 (hereafter referred to as rdistd) in the remote host

using the rcmd(3) interface 2. After that, a connection is established between rdistd and

1In most Unix systems, the single executable �le of rdist (e.g., /usr/ucb/rdist) contains the code of the

rdist client and the rdist server. The rdist server is invoked with a special ag, -Server [48].
2The rcmd(3) interface is also used by the rsh(1c) command.

15

2.1. Rdist 16

rdist through which commands are sent to the server to perform the �le update. Rdist is a

setuid root program because root privileges are required in order to use the rcmd routine

in which privileged ports are used for authentication. Therefore, rdist and rdistd run with

root privileges that enable them to perform operations inaccessible by normal users { this is

the basis for the exploitation.

Rdist has a race-condition aw, 3 which enables an attacker to acquire root privileges

illegally. The aw relates to the way rdist updates a �le as well as to the semantics of the

chown and chmod system calls in dealing with symbolic links. Speci�cally, the aw enables

a nonprivileged user to change the permission mode of any �le in the system. It has been

exploited by attackers to set the setuid bit of a system shell (e.g., /bin/sh), resulting in a

setuid root shell that is publicly executable.

The aw exists in the server portion of the program. When rdistd is instructed by

the client to update a �le, say F1, rdistd does not overwrite the �le directly; instead, it

creates a temporary �le, writes the new data to the temporary, changes the ownership and

the permission mode of the temporary to correspond to the master, and if necessary, renames

the temporary �le to F1.

Step System Call

1. fd = creat("/ko/rdista768");

2. write(fd, ...);

3. close(fd);

4. chown("/ko/rdista768", owner);

5. chmod("/ko/rdista768", pmode);

6. rename("/ko/rdista768", "/ko/data");

Table 2.1: System Call Sequence of Rdist

Table 2.1 summarizes the system calls that rdistd makes to update the �le /ko/data.

In Step 1, rdistd creates a temporary �le (rdista768) in the directory where /ko/data resides

using the creat system call. In Steps 2 and 3, it writes the new contents of the �le to the

temporary �le and closes the �le. In Steps 4 and 5, it uses chown and chmod to change the

owner and the mode of the temporary �le. Lastly, in Step 6, it renames the temporary �le

/ko/rdista768 to /ko/data using the rename call. Both chown and chmod take a symbolic

3The aw exists in 4.3 BSD Unix and other variants of Unix.

2.1. Rdist 17

path name as parameters. If the path name is a symbolic link, chown changes the ownership

of the symbolic link itself, while chmod changes the permission mode of the �le to which the

symbolic link points. The sequence of system calls looks perfectly legitimate at �rst glance.

The e�ect is that the content and the permission mode of the �le named /ko/data are set to

that of the master. However, the e�ect of the sequence of operation is correct only when the

sequence of operations is done atomically, without any intervening operations.

We describe an intrusion scenario in which an attacker exploits the sequence of system

calls made by rdistd to change the permission mode of a system shell (/bin/sh). In the

exploitation, the attacker performs operations that change the meaning of the temporary �le

name while rdistd is updating the �le.

Step System calls done by rdistd System calls done by the attacker

0'. execve("/usr/ucb/rdist");

1'. fd = creat("/ko/rdista768");

2'. write(fd, ...);

3'. close(fd);

4'. rename("/ko/rdista768", "/ko/tmp");

5'. symlink("/bin/sh", "/ko/rdista768");

6'. chown("/ko/rdista768", owner);

7'. chmod("/ko/rdista768", pmode);

8'. rename("/ko/rdista768", "/ko/data");

Table 2.2: System Calls done by Rdist and the Attacker

Table 2.2 describes the steps in the exploitation. The attacker, who has acquired

normal user access to the system, invokes rdist with appropriate commands (Step 0') to

update a �le (/ko/data) in the local host, in e�ect causing rdistd to update the �le. Rdistd

follows the normal procedure as described to update the �le. In Step 1', rdistd creates the

temporary �le. In Step 2' and 3', rdistd writes the new data to the temporary �le and closes

the �le. Meanwhile, the attacker renames the temporary �le (Step 4'), creates a symbolic

link and names it after the temporary �le (Step 5'). The symbolic link points to the target

�le, the permission of which he desires to change (/bin/sh) 4. Then, in Steps 6' and 7',

rdistd performs the chown and chmod system calls to change the permission mode of the

4An attacker can have better control of the timing and the �nal permission mode of the target �le if he

invokes the rdist server directly and gives internal commands to the rdist server to update a �le.

2.1. Rdist 18

(a) Normal Sequence of Operations

Pathname Inode Inode perm
root
owner content

3867 ^A\043^A...-rwxr-xr-x
Pathname Inode Inode perm

root
owner content

/bin/sh 3867 3867 ^A\043^A...-rwxr-xr-x3867
4234 4234 srwxr-xr-x ko

/bin/sh
4234 4234 srwxr-xr-x ko

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234

-rwxr-xr-x
srwxr-xr-x ko

root3867
4234

/bin/sh

/ko/rdista768 534 534 srwxr-xr-x ko

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234

-rwxr-xr-x
srwxr-xr-x ko

root3867
4234

/bin/sh

534 534 srwxr-xr-x ko/ko/dummy

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234 srwxr-xr-x ko

root3867
4234

/bin/sh
/ko/data

534 534 srwxr-xr-x ko/ko/dummy
/ko/rdista768 537 537 lrwxrwxrwx /bin/shko

srwxr-xr-x

Step 2 & 3. rdist: write(fd, ...); close(fd);

Step 1. rdist: fd = creat("/ko/rdista768");

Step 2’ & 3’. rdist: write(fd, ...); close(fd);

(b) Attack Sequence of Operations

/ko/master aiejkdkb.../ko/master

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234
534

-rwxr-xr-x
srwxr-xr-x
srwxr-xr-x ko

ko
root3867

4234
/bin/sh

/ko/rdista768 534

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234
534

-rwxr-xr-x
srwxr-xr-x
srwxr-xr-x ko

ko
root3867

4234
/bin/sh

/ko/rdista768 534
/ko/master

aiejkdkb...

aiejkdkb... aiejkdkb...

aiejkdkb..

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234

-rwxr-xr-x
srwxr-xr-x ko

root3867
4234

/bin/sh

/ko/rdista768 534 534 srwxr-xr-x ko
aiejkdkb... aiejkdkb...

/ko/master

/ko/master/ko/master

/ko/master

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234

-rwxr-xr-x
srwxr-xr-x ko

root3867
4234

/bin/sh

534 534 srwxr-xr-x ko/ko/dummy
/ko/rdista768 537 537 /bin/shlrwxrwxrwx ko

Pathname Inode Inode perm owner content
3867 ^A\043^A...
4234

-rwxr-xr-x
srwxr-xr-x ko

root3867
4234

/bin/sh
/ko/data

534 534 srwxr-xr-x ko/ko/dummy
ko/ko/rdista768 537 537 lrwxrwxrwx /bin/sh

/ko/master

aiejkdkb...

aiejkdkb...

aiejkdkb...

aiejkdkb...

aiejkdkb...

aiejkdkb...
aiejkdkb...

aiejkdkb...
aiejkdkb...

Inode perm owner contentPathname Inode
/bin/sh 3867 3867 -rwxr-xr-x root ^A\043^A...

Inode perm owner contentPathname Inode
/bin/sh 3867 3867 -rwxr-xr-x root ^A\043^A...

534 534 -rwxr-xr-x ko/ko/rdista768

/ko/rdista768 534 534 srwxr-xr-x ko

/ko/master

/ko/master

4234 4234

42344234

srwxr-xr-x

srwxr-xr-x

ko

ko

aiejkdkb...

aiejkdkb...
aiejkdkb...

aiejkdkb...

Step 6’. rdist: chown("/ko/rdista768", ko);

Step 4. rdist: chown("/ko/rdista768", ko);

Step 5. rdist: chmod("/ko/rdista768", 04755);
Step 7’. rdist: chmod("/ko/rdista768", 04755);

Step 1’. rdist: fd = creat("/tmp/rdista768");

Step 4’. Attacker: rename("/ko/rdista768", "/ko/dummy");

Step 5’. Attacker: symlink("/bin/sh", "/ko/rdista768);

Figure 2.1: Operation Sequence of rdist

2.1. Rdist 19

temporary �le /ko/rdista768. However, since the path name /ko/rdista768 was changed to

a symbolic link pointing to /bin/sh, chown changes the owner of the symbolic link itself in

Step 6'. In Step 7', chmod changes the permission mode of /bin/sh to set the setuid bit.

Therefore, the attacker can obtain root privileges by invoking /bin/sh.

Figure 2.1 compares the system operations occurring in a normal execution of rdist

(shown in Table 2.1) and in the exploitation (shown in Table 2.2). Also, it shows the relevant

portion of the �le system state and highlights the changes to the state of the �le system caused

by each operation. In both cases, the �le system starts o� in the same state, in which the

setuid bit of /bin/sh is o� and the setuid bit of master �le (/ko/master) is on. Also, rdistd

performs the same sequence of system calls with the same parameters in both situations.

After the �rst three steps, the resulting states are the same in both cases. After Step 1

(1'), a new �le (inode = 534) is created and a new path name /tmp/rdista768 is created to refer

to inode 534. After Steps 2 and 3 (2' and 3') , the content of the �le identi�ed by inode 534

is modi�ed to that of the master. In Steps 4 and 5 of a normal execution, chown and chmod

change the owner and permission mode of the �le of inode 534, which is the the temporary

�le created in Step 1. However, in the exploitation, the attacker performed Step 5' and 6',

which change the �le system so that the path name /ko/rdista768 now refers to a symbolic

link pointing to /bin/sh instead of the temporary �le created in Step 1'. Therefore, in Step

7', chmod changes the permission mode of /bin/sh to that of the master �le /ko/master, in

e�ect setting the setuid bit of /bin/sh.

We can detect this intrusion in two ways. First, we can detect it by just looking at the

operations performed by rdistd . Although the sequence of calls and parameters performed by

rdistd are the same in both cases, the actual physical �les modi�ed by the calls are di�erent.

Table 2.3 shows the audit records generated by a SUN Solaris BSM audit system for rdistd

under normal execution and under the exploitation. In Unix, each physical �le is identi�ed

by a unique inode number. In the normal sequence, chmod changes the �le corresponding

to the inode of the temporary �le created. However, in the sequence of audit records of

rdistd under the exploitation, chmod changes the �le whose inode is di�erent from that of

the temporary �le created. Thus, by checking the inode of the �les chown and chmod change,

which are usually available in the audit trail, we can detect occurrences of this intrusion.

Second, we can detect the intrusion by checking whether operations that change the

2.2. Fingerd 20

Audit Records in a Normal Execution Audit Records in an Intrusion

Event path inode Event path inode

creat "/ko/rdista768" 534 creat "/ko/rdista768" 534

chown "/ko/rdista768" 534 chown "/ko/rdista768" 534

chmod "/ko/rdista768" 534 chmod "/ko/rdista768" 3867

Table 2.3: A Comparison of the Audit Records in a Normal Execution and in an Intrusion

meaning of the temporary �le name are performed by other processes between the time rdistd

makes the creat call and the chown call. Some ways of specifying the valid order among

these operations are needed in order to detect the intrusion in that way.

In the exploitation, rdist is made to perform operations outside the behavior intended

for it. Speci�cally, rdist is used by a user to update his �les in a host; therefore, when

invoked by a user, rdist should update only the �le owned by the user. In addition, rdist

should change the permission mode and the ownership of only the �les it creates, not other

�les. By specifying the valid operations that are intended to be performed by rdist , the

exploitation can be detected.

2.2 Fingerd

Our second example is the �nger daemon (�ngerd), which provides to remote clients inform-

ation on system status and individual users. Fingerd listens for connections on the TCP

port 79, also known as the �nger port. Once connected, it reads a single line containing the

request and invokes the �nger program with the request as parameter, which in turn collects

the information from various status �les in the system and reports the information back to

the requestor. Fingerd is executed with root privileges because it listens to the �nger port,

which is a privileged port in Unix.

The �nger daemon versions before 1989 contain a well-known bu�er-overow bug which

has been exploited to cause �ngerd to execute any arbitrary program. Speci�cally, �ngerd

reads a �nger request using the gets() C library call, which does not restrict the size of

the input. As a result, when �ngerd is given a very long request message, the data could

overwrite the memory location beyond the bu�er, causing unexpected behavior.

Figure 2.2 shows an excerpt of the �ngerd program that is related to the aw and the

2.2. Fingerd 21

gets put the
input into
the memory
pointed to
by buf

main()

{ char buf[256];

 gets(buf);

}

.....

returned Value
 &&
Parameters

Temporaries
 &&

local data

buf:

Run-time Stack

local data

contains

 &&
temporaries

Activiation Record of main()

Activiation Record of gets()

return address

Figure 2.2: Fingerd Attack

content of the run-time stack when gets() is invoked. When gets() is called, the run-time

stack consists of the activation record of the main function followed by the activation record

of gets(), which consists of the parameters, the return address, and local variables. When

an attacker sends a long request message consisting of code to the �nger daemon, gets() �lls

the read bu�er and beyond with the message so that the bu�er now contains the injected

code and the return address is overwritten with an address pointing to the bu�er. When the

subroutine returns, it branches into the bu�er and executes the attacker's code.

Obviously, we can detect attacks that exploit this vulnerability by checking the data

�ngerd reads. However, most auditing systems do not record the content of read/write

operations because of the huge volume of data associated with these operations. In fact,

most auditing systems do not even record the read and write system calls; they just record

the open and close system calls. Therefore, it is not possible to tell whether from the audit

trails, �ngerd is given a long request message or just a normal-length message. However,

if we look at the operations performed by �ngerd, we can detect the intrusion. Table 2.4

compares the operations performed by �ngerd in a normal execution and under an attack.

2.3. Mail 22

Note that the �nger daemon should only execute the �nger program (/usr/bin/�nger) after

it reads the request message. Any other operation performed by �ngerd is an indication of

a possible intrusion. Therefore, by specifying the valid operations that can be performed by

the �nger daemon, we can detect intrusions that exploit the vulnerability.

Step Normal Operation Sequence Attack Operation Sequence

1. read(stdin) read(stdin)

2. execve("/usr/ucb/finger") open("/tmp/worm")

3. fork()

Table 2.4: System Call Sequence of Fingerd

The bu�er-overow bug is not unique to �ngerd, but exists in many other privileged

programs, for example, httpd, sendmail, syslog, etc.. In fact, it still exists in recent releases

of the Unix operating system [11, 12].

2.3 Mail

This section describes a vulnerability in the 4.2 BSD UNIX mail utility and several related

intrusions that exploit this and similar vulnerabilities. The goal here is to illustrate the

di�culties in identifying all variants of an intrusion that exploit the same vulnerability.

The vulnerability relates to the permission mode of root's mail-box �le and the way

the mail utility delivers mail: it changes the owner of root's mail-box �le to root without

checking the permission mode of the �le. The vulnerability in the mail utility actually exists

in the back-end mailer program, binmail. Binmail is a setuid root program since it needs to

append to the mail-box of any user. When a user invokes the mail utility program to send

a message, it invokes the mail intermediary and passes it the message for delivery. The mail

intermediary (sendmail in most systems), after determining that the mail message is to be

delivered locally, invokes the back-end mailer (usually binmail) to delivery the message. To

deliver a message to a user, binmail appends the message directly to a user's mail-box �le,

which is in the mail spool directory. Last, it changes the owner of the mail-box �le to the

user. However, it does not check the permission mode of the mail-box �le before it changes

the owner of the �le; it assumes a mail-box �le should be readable and writeable only by

the owner and has the setuid bit o�. If an attacker can create a root's mail-box �le that is

2.3. Mail 23

Step Command Comment

1. % cp /bin/csh /usr/spool/mail/root - assumes no root mail �les

2. % chmod 4755 /usr/spool/mail/root - make setuid �le

3. % touch x - create empty �le

4. % mail root < x - mail root with the empty �le

5. % /usr/spool/mail/root - execute setuid-to-root shell

6. root%

Table 2.5: An Example Intrusion of Mail

publicly executable and has the setuid bit on when binmail is executed, binmail will change

the owner of root's mail-box �le to root, resulting in a setuid �le which is owned by root

and publicly executable.

We describe an intrusion that exploits the mail utility to illegally acquire root priv-

ileges. Table 2.5 summarizes the steps of the intrusion. In step 1, the attacker creates a

copy of csh(1) and names it after root's mail-box �le (/usr/spool/mail/root). In general, the

mail-box of a user is the �le named \/var/spool/mail/<username>", which should be owned by

\username" and readable and writeable only by the owner. The attacker can do that only

when there is no unread mail of root so that the mail-box �le of root does not exist. In Step

2, the attacker enables the setuid bit of the fake mail-box �le. In steps 3 and 4, the attacker

creates and sends a message to root using the mail utility. When the mail subsystem delivers

the message, it changes the owner of the �le to root, resulting in a setuid root shell which is

publicly executable. As a result, the attacker is able to obtain a root shell by executing the

publicly executable shell program.

It is straightforward to encode this sequence of operations as expert rules in a rule-

based misuse detection system. However, it is not trivial to identify all variants of this

intrusion. For example, steps 3 and 4 can be replaced by a single \mail root" command

in which the attacker keys in the content of the mail interactively. Also, some steps can be

omitted and the order of them can be permuted.

Table 2.6 presents two variations of the intrusion, both of which create a counterfeit

root's mail-box �le that is publicly executable and has the setuid bit on before the mail

utility is invoked to delivery a mail message to root. In the �rst variant, the attacker creates

a copy of csh(1) and names it after root's mail-box �le (/usr/spool/mail/root) in step one. In

2.3. Mail 24

Variant No. 1

Step Command Comment

1. % cp /bin/csh /usr/spool/mail/root - create a counterfeit mail �le of root

2. % ln -s /tmp/mroot /usr/spool/mail/root - create an alias of the mail �le

3. % chmod 4777 /tmp/mroot - make the mail �le setuid

4. % mail root - mail root and give input interactively

5. % /usr/spool/mail/root

6. root%

Variant No. 2

Step Command Comment

1. % cp /bin/csh /usr/spool/mail/tmp - creat a temporary copy of C shell

2. % chmod 4777 /usr/spool/mail/tmp - make the copy setuid

3. % mv /usr/spool/mail/tmp /usr/spool/mail/root - rename the temp copy

4. other% mail root - another user send mail root

5. % /usr/spool/mail/root

6. root%

Table 2.6: Two Variants of the Mail Intrusion

step 2, the attacker creates an alias of the mail-box �le by making a symbolic link pointing

to the �le. In step 3, instead of changing the permission mode of the counterfeit mail-box �le

directly, the attacker invokes chmod with the symbolic link as parameters, in e�ect changing

the permission mode of the mail-box �le to setuid and publicly executable. In step 4, the

attacker invokes mail and interactively keys in an empty message.

In the second variant, the attacker �rst creates a temporary copy of csh in the mailbox

directory, /usr/spool/mail. In step 2, the attacker enables the setuid bit of the copy of csh

and makes it publicly executable. In step 3, the attacker renames the temporary copy to the

mail-box �le of root, in e�ect creating a counterfeit mail-box �le of root. Then the attacker

does not send mail to root, but waits until another user sends mail to root. After a user

sends mail to root using mail, the attacker executes the setuid mail-box �le of root to obtain

root accesses.

The state transition analysis approach [25] touches on this issue. It attempts to identify

the key actions in an intrusion without which the intrusion will not succeed. However, this

approach can only identify variants of the intrusion that consist of the same sequence of

2.4. Binmail 25

key actions. There could be other variants of the intrusion using actions other than the key

actions. For example, in [25], the authors identify three key actions: 1) the attacker creates

a counterfeit mail-box �le of root, 2) the attacker changes the permission of the counterfeit

�le, and 3) the attacker changes the ownership of the mail-box �le. However, these three

signature actions cannot represent all possible intrusions that exploit this vulnerability of

mail. For instance, the signature fails to represent the second variant of the intrusion we

presented above because the attacker uses mv to create the counterfeit mail-box �le.

It is not straightforward to identify all possible sequences of actions that exploit a

vulnerability. One needs to know the intrinsic problem behind the vulnerability. The aw

presented in this section allow the system to move into a compromised state if the mail-box

�le of root is setuid and publicly executable when binmail is run, or more exactly, when

binmail performs the chown call to change the owner of root's mail-box �le. Therefore,

in order to detect exploitations of this vulnerability, we want to 1) detect the actions by

the attacker that result in a counterfeit mail-box �le of root that is setuid and publicly

executable, and 2) detect when binmail changes the owner of the �le /var/spool/mail/root to

root while the mode of the �le is setuid and publicly executable.

2.4 Binmail

This section describes a aw in binmail that enables a normal user to replace any �le in the

system. Binmail is part of the mail system in Unix. It is responsible for directly appending

a mail message to users' mail-box �les. Binmail is a setuid root program because it has to

append to the mail-box �le of any user (including root). It is not intended to be executed

by users directly, but by sendmail to deliver mail locally.

The vulnerability is concerned with the way in which binmail creates a temporary �le

to hold a user's mail-box. When invoked to deliver a mail message, binmail �rst creates a

temporary �le in the /tmp directory. It uses the mktemp library call to obtain a �le name

for the temporary �le. It deletes any existing temporary �le with this name. Then it creates

the temporary �le and copies the current mail-box �le of the recipient to the temporary �le.

Table 2.7 summaries the operations binmail performs. In Step 1, binmail makes the

library call mktemp() to obtain a �le name for the temporary �le. In Step 2, it performs a

2.5. Modifying the Password File 26

Step Operation

1. s = mktemp()

2. stat(s)

3. if exist(s) unlink(s)

4. fd = open(s, CREAT | TRUNC | WRITE | READ)

5. write(fd, ...)

Table 2.7: Operation Sequence of Binmail

stat call to check the existence of a �le named by the temporary �le name. It deletes the

�le if it exists using unlink (Step 3). In Step 4, binmail uses the open system call to create

the temporary �le. It calls open with the TRUNC and CREAT ags, which causes open to

create the �le if it does not exist, or truncate the �le if the �le already exists. Also, open

follows symbolic links, that is, if the path name is a symbolic link, open operates on the �le

to which the symbolic link points.

We describe an intrusion in which an attacker causes binmail modify the password �le

in the system. An attacker �rst invokes binmail directly to deliver an empty message to

himself. Knowing the �le name of the temporary �le that binmail will create, the attacker

renames the temporary �le, creates a symbolic link pointing to the �le he wants to replace (in

this case, /etc/passwd) and gives it the original temporary �le name. If the symlink operation

is scheduled to execute after binmail performed Step 2 and before it performs Step 4, the

temporary �le name is actually a symbolic link to the password �le when binmail performs

the open call in Step 4. Therefore, open replaces the content of the password �le.

2.5 Modifying the Password File

This section presents a scenario resulting in security failure because of improper synchroniza-

tion between programs that access the password �le. In Unix, the password �le (/etc/passwd)

contains the encrypted passwords of and important information about users. The password

�le is con�gured to be writeable only by the superuser; however, a normal user can change

his/her password, login shell, as well as his/her full name recorded in the password �le using

the passwd program. Therefore, the password �le could be accessed by multiple processes at

the same time. For example, two administrators could edit the password �le simultaneously

2.5. Modifying the Password File 27

using the vi editor program.

In this scenario, a user invokes the passwd program to change his password while an

administrator is editing the password �le. The two programs modify the password �le sim-

ultaneously, leaving it with an incorrect content. The scenario begins when an administrator

invokes vi to modify the password �le. When being invoked, vi �rst creates a temporary

�le and copies the data from the password �le into the temporary. Then, it displays the

data on the terminal and lets the administrator edit the �le. The new contents of the �le is

kept in the temporary �le, which will be copied back to the actual password �le when the

administrator issues a write command. Meanwhile, a user invokes the passwd program to

change his password. The passwd program prompts the user for the old password and a new

password. It then updates the password �le to reect the changes of the password. At the

same time, the administrator �nishes editing the passwd �le and issues a write command,

causing vi to replace the password �le with the new content.

Step System Call System Call

vi passwd

1. fd = open("/etc/passwd", RD);

2. fd1 = open("/tmp/ex0072", WR);

3. read(fd); write(fd1);

4. close(fd); close(fd1);

EDITING
5. fd = open("/etc/passwd", RD);

6. fd1 = creat("/etc/ptmp");

7. fd = open("/tmp/ex0072", RD);

8. fd1 = open("/etc/passwd", WR & TR);

9. read(fd); write(fd1);

10. read("/etc/passwd");

11. write("/etc/ptmp");

12. close(fd); close(fd1);

13. read(fd); write(fd1);

14. close(fd); close(fd1);

15. rename("/etc/ptmp", "/etc/passwd")

Table 2.8: Timing of the Events

Figure 2.8 summarizes the relevant system calls occurring in this scenario. The left

column denotes the sequence of system calls made by vi. The right column denotes the se-

quence of system calls made by passwd to update the password �le. When the administrator

2.5. Modifying the Password File 28

invokes vi to edit the password �le, it �rst opens the password �le for reading (Step 1) and

creates a temporary �le for writing (Step 2). It then copies the data of the password �le

into the temporary �le via read and write calls 5 (Step 3). After it �nishes, it closes the two

opened �les (Step 4). Then, context switches and passwd is scheduled to execute, which is

about to update the password �le. The passwd program opens the password �le for reading

(Step 5) and creates a temporary �le for writing (Step 6). Context switches and vi opens

the temporary �le for reading (Step 7). Then, it opens the passwd �le for writing (Step 8)

with the TRUNC ag, causing the �le to be truncated. After that, it performs a read system

call to read the �rst block of the temporary �le and a write system call to write the �rst

block to the password �le (Step 9). Context switches and passwd makes a read call which

reads the entire �le (Step 10). Since vi writes back only the �rst block of the original data

to the password �le, passwd reads only the �rst block of the �le. Then, passwd updates the

password entry of the user (which happens to be in the �rst block of the �le) and writes

the data to the temporary �le /etc/ptmp. After that, it closes the two opened �les. Context

switches again and vi writes the remaining data to the password �le with another write call

(Step 13) and closes the �le (Step 14). Now, the password �le contains the content updated

by the administrator. However, at last, passwd renames the temporary �le /etc/ptmp to the

password �le, causing the current password �le to contain only the �rst block of the original.

In fact, a normal user can invoke passwd and stop the passwd program when the

program is in the process of updating the password �le (e.g., between steps 10 and 11).

After an administrator changes the password �le, the user can continue the program (by

sending a continue signal) so that passwd will perform the rename call and replace the

password �le with an old version (a version without the administrator's changes).

The detection of multiple processes that are modifying the password �le requires the

identi�cation of all programs that can modify the password �le. Moreover, some constraints

on their relative order must be speci�ed.

5The number of read and write calls vi uses to copy the �le depends on the size of the �le. The vi
program reads and writes a �le using a block size of 1024 bytes.

Chapter 3

The Model

3.1 System Model

A distributed system consists of a number of hosts that are connected by a network. The

basic entities that perform operations on objects in the system (e.g., �les) are processes. An

event denotes an execution of an operation in the system, and is attributed to the process

that performs the operation. Events happening in the system can be totally ordered, and

the history of the system is the sequence of events that occurred since the system started.

De�nition 3.1 (System Traces) The execution of a distributed system S produces a

sequence of events

v1; v2 � � � ; vi; vi+1; � � � ;

which is called a system trace of the system. Each event vi has an occurrence time, denoted

by C(vi). Events are totally ordered, that is, C(vi) < C(vi+1) for all i � 1. A sequence

of events vl0 ; vl1 ; � � � ; vlk is a subtrace of a system trace if l0; l1; � � � ; lk is a subsequence of

1; 2; � � � ;. Also two subtraces va1 ; v
a
2 ; � � � ; v

a
k and vb1; v

b
2; � � � ; v

b
l are said to be distinct if and

only if vai 6= vbj for all 1 � i � k, 1 � j � l.

The execution of a sequential process (or just process) pl in the system produces a

sequence of events

vl1; v
l
2; � � � ; v

l
i; v

l
i+1; � � � ; :

29

3.2. Monitoring Programs 30

The sequence of events is called a process trace, and denotes the sequence of operations

performed by the process from the time it starts to the time it terminates. A process trace

is a subtrace of the system trace.

De�nition 3.2 (Merge of Traces) Given two distinct subtraces V1 and V2 of V , the

merge of the two traces is a subtrace of V , denoted by V1 � V2, and is de�ned by V1 �

V2 = v1; v2; v3; v4; � � � ; vm+n if and only if there exists two subsequences of 1; 2; � � � ;m + n,

i1; � � � ; im and j1; � � � ; jn, s.t. V1 = vi1 ; vi2 ; � � � ; vim , V2 = vj1 ; vj2 ; � � � ; vjn , and C(vi) <

C(vi+1).

De�nition 3.3 (Filter of Traces) A �lterrp is a function that maps a trace V = v1; v2; � � � ; vn

to another trace Vs, a subtrace of V , where p is a predicate on the set of possible event attrib-

utes, in which Vs is obtained from V by removing all events vi (i � 0) in V s.t. p(vi) = false.

For example, given a predicate q s.t. q(v) is true if only if the event e describes an operation

performed by the user ko, rq(V) is a subtrace of V that consists of events in which the

operations are performed by ko.

3.2 Monitoring Programs

A program is a passive entity. To monitor a program means to monitor the executions

of the program. An execution of a program is a distributed process dp = fp1; p2; � � � ; png,

n � 1, which consists of one or more processes. For instance, an execution of a sequential

program is a distributed process consisting of a single process, while an execution of a

distributed program or a concurrent program is a distributed process which consists of

multiple processes.

Figure 3.1 depicts the distributed process associated with a sendmail execution in

Unix, which consists of 5 processes. Assume that sendmail is invoked to deliver a mail

message to two users. The sendmail program creates a number of processes to do the job.

When executed, the top-level main process (6772) does not deliver mail directly, but creates

a second-level child process. The child process creates a record in the mail queue directory,

and then it creates a third-level child process. The third-level child process then creates a

fourth-level child process, which looks at the record and performs the delivery. It creates a

3.2. Monitoring Programs 31

sendmail:6772

6773

fork

6774

fork

6775

fork

6776

fork

6777

fork

maillog

write

binmail

exec

Figure 3.1: The Process Hierarchy of a Sendmail Execution

process (6776) to deliver mail to �les, and another process (6777) to deliver mail to a user's

mailbox.

The trace of a program execution is the sequence of events corresponding to the op-

erations performed by the distributed process, which is the merge of the individual traces

of the processes forming the distributed process. With dp = fp1; p2; � � � ; png denoting the

distributed process, the execution trace is

Vdp = Vp1 � Vp2 � � � � � Vpn ;

where Vpi (1 � i � n) is the execution trace of process pi. Vdp is a subtrace of the system

trace V .

A single program could have a number of executions existing at the same time. For

example, two users can execute the same program at the same time, resulting in two distrib-

uted processes both running the program under the operating system. In some situations,

we want to monitor one execution at a time. In other situations, we want to monitor all

3.3. The Subject of Monitoring 32

executions of a program. For example, in order to detect the synchronization failure in

Section 2.5, we need to monitor all executions of vi by the administrator (i.e., root) and all

executions of passwd. In this case, the input to the monitor is the merge of the �ltered traces

corresponding to all executions of vi (predicate: user root) and the traces of all executions

of passwd.

3.3 The Subject of Monitoring

A trace policy describes the valid operation sequences of a single program execution, multiple

program executions, a user, a group of users, a host, etc. The entity or entities are collectively

called a monitored subject, or simply a subject. Therefore, a subject could be a distributed

process, a group of distributed processes, a user, a group of users, or a host. The basic

components of a subject are processes. A host refers to all processes running on the host.

A user refers to all processes that are owned by the user.

Monitoring a subject means analyzing the sequence of operations performed by the

subject. The execution trace of a subject is the time-ordered sequence of operations per-

formed by the processes forming the subject. Each process has its own trace, and the subject

trace is the merge of the individual traces. Figure 3.2 depicts the situation of monitoring

a program execution which involves three processes. Each process produces an execution

trace. The process traces are merged to form the single trace of the three processes. The

latter trace is then the input to the monitor (the parser is driven by a speci�c grammar).

3.4 Characteristics of a Program Execution

A program execution is characterized by attributes on which its desirable behavior depends,

including the user associated with it and the host on which it takes place.

3.4.1 The User of a Program

We associate with each program execution a user who is accountable for the actions of the

program. In general, a program is a high-level tool used to manipulate data in the system;

the services provided by the kernel are often too primitive for users to use directly. Users

3.4. Characteristics of a Program Execution 33

Single Stream of operations

Streams of operation done
by different processes

subject

called a

Collectively

Merge by time

Process 3Process 2Process 1

ParserGrammar

RESULTS

+

. .
 .

. .
 .

. .
 .

. .
 .

Figure 3.2: The Monitoring Model

invoke programs to accomplish a job on their behalf. Therefore, users should be accountable

for the execution of programs. The valid execution trace of a program execution is generally

a function of the user associated with the execution.

The idea is similar to the integrity policy of Clark andWilson [9] in which high-integrity

data can only be accessed by authorized users using a particular program. The concept of

a user or a process as a subject in an operating system is well understood. Here, we employ

both users and programs as subject attributes.

3.5. Security-Relevant Aspects of Program Behavior 34

3.5 Security-Relevant Aspects of Program Behavior

In this section, we discuss and identify aspects of program behavior that are relevant to

security. The goal is to motivate the speci�cation language for specifying trace policies. The

following four aspects of program behavior are security-relevant considerations:

1. Accesses of system objects (e.g., �les).

2. Sequencing, should do operations in some particular order.

3. Synchronization among processes of a parallel program or among processes of related

programs, access to shared data objects.

4. Race conditions.

3.5.1 Accesses

A simple but intuitive aspect of the behavior of a program is the set of objects being ac-

cessed. In this case, a program is treated as the subject of access control. It is necessary

to restrict the accesses of a privileged program. As in the examples shown in Chapter 2,

a privileged program could be forced by an attacker with normal user privileges to release

system privileges or expose the system to the attacker. Therefore, by specifying the valid

accesses of a privileged program, it is possible to detect attacks that trick the privileged

program into performing accesses outside the speci�cation.

In addition, one can specify the access policy of a suspect program so that even if the

program is a Trojan horse, any access to �les outside the speci�cation can be detected. For

this kind of access policy, the speci�cation is just the sequence of actions that are allowed

to appear in the traces of the program.

3.5.2 Sequencing

In some situations, not only the set of operations performed by a program is of concern, but

also the order of these operations. For example, one may want to make sure that the login

program reads the password �le before it lets a user enter the system by executing a shell

program and passing the control to the user. Thus, we want to make sure that the operation

3.5. Security-Relevant Aspects of Program Behavior 35

of reading the password �le appears prior to the execution of a shell in the trace of a login

program. As another example, when a process locks a �le for exclusive access, we may want

to make sure that the process removes the lock on the �le before it exits in order to prevent

the �le from being locked permanently.

Therefore, we should be able to specify the sequence of operations a program is allowed

to perform.

3.5.3 Synchronization

In a distributed system, a security failure can result from improper synchronization of

programs. As illustrated in Section 2.5, concurrent access to the password �le can leave

the �le inconsistent. It is necessary to specify the desirable interactions between programs

that access shared �les. In addition, synchronization problems occur in a parallel program,

whose execution consists of multiple processes.

Therefore, the trace-policy language should be able to describe the traces of multiple

programs that are synchronized in a desirable way. There are two main problems concerned

with synchronization: Mutual exclusion and Precedence.

Mutual Exclusion: In some cases, two processes cannot access a �le in the

system simultaneously. When a process is accessing a �le, the other one has to

wait until the former process �nished.

Precedence: There may be a precedence relation between operations of di�erent

processes. For example, process B should not read �le C until process A �nishes

writing it.

3.5.4 Race Conditions

A race condition is a special case of the synchronization problem. If a program has a race-

condition aw, an attacker can a�ect the operations of the program by performing certain

operations during the execution of the program. To monitor exploitations of a race condition,

we need to monitor the operation sequence of the program during execution as well as all

other relevant processes in the system.

3.5. Security-Relevant Aspects of Program Behavior 36

We have identi�ed four di�erent characteristics of traces that are relevant to security.

In the next chapter, we describe a language framework that is capable of describing these

characteristics of traces.

Chapter 4

Speci�cation Language

This chapter presents a language framework for specifying trace policies. We attempt to

achieve, as much as possible, two conicting goals: expressibility and detection e�ciency.

The language should be capable of describing all possible interesting trace policies, yet have

an e�cient algorithm for determining whether an execution trace satis�es a speci�ed policy.

In addition, compactness and readability of a policy speci�cation are also considerations.

We use a grammar as the speci�cation of a trace policy. A grammar de�nes a language,

which is a set of sentences. In our problem domain, the set of alphabets is the set of

operations, and a sentence is a sequence of operations. A trace policy for a program is a

grammar, and an execution trace of a program satis�es the policy if it is a sentence of the

language speci�ed by the grammar. Using grammars as speci�cations has the advantage

that formal languages are a mature discipline and many results can readily be applied.

From a grammatical point of view, describing valid traces of a program involves a

parameterized and context-sensitive language. For example, the valid operation sequences

of a program execution could be a function of the con�guration of the system (e.g., the name

of the mail spool directory or the name of the host) and the characteristics of the process

(e.g., the owner or the process ID). We treat these characteristics as parameters of a trace

policy. In addition, one common policy for a program is that it is allowed to change the

permission mode of only the �les it creates. That is, a change permission mode operation

on a �le X is allowed if a create �le X operation occurs earlier in the program trace. Also,

describing valid traces of a concurrent program whose execution consists of set of concurrent

processes involves a language that describes the merge of the traces of these processes.

37

4.1. Notation 38

For programming languages, a context-free grammar typically de�nes the underlying

language structure and additional rules impose the context-sensitive constraints. The form-

alization of such rules leads to a variety of extensions of context-free grammars, such as

attribute grammars [7] and a�x grammars [13]. Environment grammars [42] permit the

parameterization of the language syntax and feature so-called environment variables which

aid in parsing e�ciency, parameterization, the linking of semantic and syntactic information

and clarity of presentation. They enable the speci�cation of a language in a compact form

and have an e�cient parsing algorithm in all practically important cases. Environment

grammars have been employed in the translation and transfer of relational data in real time.

We developed a novel type of grammar, a parallel environment grammar, for specify-

ing trace policies of programs. Based on environment grammars, a parallel environment

grammar is able to specify traces of concurrent processes. We de�ne parallel environment

grammars in Section 4.2 and discuss their properties in Section 4.3. Then, we present a

parallel parsing method that is e�cient for a restricted class of languages in Section 4.4.

Last, we describe how parallel environment grammars are used to specify trace policies of

programs and illustrate the use of parallel environment grammars by an example in Section

4.5.

4.1 Notation

This section de�nes the terminology used throughout this chapter.

� ; and " denote the empty set and the empty string, respectively.

� [and] bracket optional syntactic quantities.

� A� denotes the set of strings whose components are elements of the set A.

� A+ denotes A� � f"g.

� CnB (C 2 A�; B � A) denotes string C with all elements of B removed.

� T1 � T2, denotes the ordered merge of the two traces T1 and T2 as de�ned in Chapter

3.

4.2. De�nition of Parallel Environment Grammars 39

4.2 De�nition of Parallel Environment Grammars

The concepts on which parallel environment grammars are based are closely related to those

of the environment grammars described in [42].

De�nition 4.1 A parallel environment grammar (PE-grammar) is an ordered 6-tuple

(E; P; T; IE; R; S)

where

� E is the set of environment variables, whose ordered set of values is called the environ-

ment e. Each environment variable in E is either global or local. EG (EL) denotes the

set of environment variables E that are global (local), E = EL[EG and EL\EG = ;.

� P is a �nite set of protovariables, where E \ P = ;.

� T is a �nite set of terminals or tokens, on which the occurrence time function C is

de�ned.

� IE is a �nite set of initial environment assignments of the form RX X = Y , where

X 2 E , Y 2 RX , and RX is the value range of X (IE results in the initial composite

environment e0).

� R is a �nite set of hyperrules of the form

X0 ! Z [B] or X0 ! X1 X2 � � � Xm [B]

where X0 2 N , Z 2 T , Xi 2 N for 1 � i � m, m � 0,

N = f< x1; x2; � � � ; xn > j xj 2 (E [P+); 1 � j � n; n � 1g

is the �nite set of hypernotion, B � A is an optional set of attached actions, A =

AS [AE , AS is the set of semantic actions, AE is the set of environment assignments

of the form Y = Z where Y 2 E and Z is an expression formed from elements of E,

P , and any auxiliary variables maintained for semantic actions.

4.2. De�nition of Parallel Environment Grammars 40

� S is the parallel start expression of the form

s1 k s2 k � � � k sn;

where n � 1, and si 2 f< x > j x 2 (E [P+)g is called a start notion.

The sets of environment variables E, protovariables P , terminals T , initial environment

assignments IE , and hyperrules R above are analogous to those of environment grammars

[42]. However, in a parallel environment grammar, there are no metavariables and the

start expression which consists of one or more start notions replaces the start notion in an

environment grammar.

The parallel aspect of a parallel environment grammar arises from the start expression,

which is a parallel expression of one or more start notions. Each start notion si together

with the other 5 elements of G actually de�nes an environment grammar, referred to as

sub-grammar Gi. Therefore, a parallel environment grammar consists of one or more sub-

grammars. Intuitively, a sentence of a parallel environment grammar is the merge of the

sentences generated by each sub-grammar. In a parallel derivation, each si derives a sentence

xi in sub-grammarGi, and the sentence derived from the start expression is the ordered merge

x1 � x2 � � � � � xn.

The environment variables E serve to parameterize the grammar. Their values are

initialized by the initial environment assignments IE , and may be changed by environment

assignment AE attached to a rule. Semantic actions may also be attached to a hyperrule.

The set E is divided into the set of global environment variables EG and the set environment

variable EL which are local to a sub-grammar. This concept is analogous to the concept of

global and local variables in programming languages. A sub-grammar has its own copy of the

local environment variables EL and shares the same set of global environment variables EG

with all other sub-grammars. Therefore, the environment seen by two sub-grammars can be

di�erent. From a global perspective, the composite environment is the ordered set of values of

the local environment variables of all sub-grammars and the values of the global environment

variables. The initial environment assignment IE initializes the local environment variables

by initializing the values of all copies of the local environment variables.

De�nition 4.2 Given a PE-grammar G = (E; P; T; IE; R; S) with a hyperrule rH in R,

4.2. De�nition of Parallel Environment Grammars 41

X0 ! Z [B] or X0 ! X1 X2 � � � Xm [B]

which contains the environment variable Vh 2 E(1 � h � l), the production rule rp(rH ; e)

corresponding to the hyperrule rH in the current environment e is

X0 ! Z [B] or Y0 ! Y1 Y2 � � � Ym [B]

where Yi(0 � i � m) are obtained from Xi by the following uniform replacement : each

occurrence of the environment variable Vh in Xi is replaced by the current value of Vh.

Hence, Y0 2 F , Yi 2 (T [F), 1 � i � m, where

F = f< y1; y2; � � � ; yn > j yj 2 P �; 1 � j � n; n � 1g

is called the set of protonotions.

Each hyperrule rH 2 R gives rise to a production rule rp(rH ; e) that depends on

the environment e. Therefore, the set of production rules for the current environment e is

Rp(e) = frp(rH ; e) j rH 2 Rg.

A hyperrule serves as a template for the replacement which causes the left-hand side of

the resulting production rule to be composed of a single protonotion and the right-hand side

of protonotions and terminals. Hence, production rules are equivalent to production rules

of context-free grammars (protonotions are nonterminals) and their applications correspond

to derivation steps in context-free grammars.

However, the set of production rules Rp(e) is not constant; it varies with the environ-

ment e as a derivation progresses. A change in the environment occurs when an environment

assignment in B is executed upon successful application of a production rule. Note that the

uniform replacement does not a�ect the environment variables in B ; they are evaluated when

an environment assignment in B is executed (see below).

De�nition 4.3 The language speci�ed by a PE-grammar G = (E; P; T; IE ; R; S),

S = s1 k s2 k � � � k sn, is L(G), which is the set

fx1 � � � � � xn j (s1 k � � � k sn; e0)
p

=)
�
(x1 k � � � k xn; ef); xi 2 T �(1 � i � n)g;

4.2. De�nition of Parallel Environment Grammars 42

where e0 is the initial composite environment de�ned by the initial environment variable

assignment IE , ef is the �nal composite environment, and the symbol
p

=)
�
is the reexive

and transitive closure of the relation
p

=) de�ned below. The symbol
p

=)
�
is called a parallel

derivation as every start symbol derives a sentence of tokens, and
p

=) is called a parallel

derivation step.

A parallel derivation step corresponds to an application of a production rule to one

of the sentential form in the parallel expression. Exactly one sub-grammar is involved

in a parallel derivation step. A parallel derivation step transforms a sentential form in

the parallel expression into another and keeps the other sentential forms in the parallel

expression the same. We de�ne
p

=) from the perspective of a sub-grammar separately in

a) and b) depending on whether the right-hand side of the applied production rule contains

protonotions or only a terminal and environment assignments. In the latter case, optional

environment assignments may have to be executed.

a) De�nition of a derivation step without environment changes:

(X; e)
p

=) (X 0; e) if and only if there exist P 2 T �, Q 2 (F [T [A)�, and

W 0 =2 (T [A)� such that X = PWQ, X 0 = PW 0Q, and (W !W 0) 2 Rp(e)

b) De�nition of a derivation step with possible environment changes:

(X; e)
p

=) (X 0; e0) if and only if there exist P 2 T �, Q 2 (F [T [A)�, W 0 2

(T [A)�, U 2 (T [A)�, and V 2 (F [fright end marker of Xg) such that X =

PWUV Q, X 0 = P (W 0nA)(UnA)V Q, (W ! W 0) 2 Rp(e), e
0 = (W 0UnT)(e),

i.e., e0 is obtained by starting with environment e and executing the environment

assignments in U in left-to-right order. Note that the environment assignments

change both the global part of the composite environment and the part that is

local to the sub-grammar.

From the perspective of a sub-grammar, a (leftmost) derivation step transforms one

sentential form (X) of protonotions, terminals, environment assignments, and semantic ac-

tions into another (X 0). Environment assignments and semantic actions that are attached

to a production rule are elements of the sentential form. They are discarded from a senten-

tial form only after they have been executed. This happens as soon as the elements of the

sentential form to the left of the environment assignment or semantic action consists solely

4.2. De�nition of Parallel Environment Grammars 43

of terminals. Also, the environments e and e0 are the environments from the perspective of

sub-grammar Gi before and after the derivation step, not the composite environments. A

derivation step does not changes the local variables that are not private to the sub-grammar

Gi. In our de�nition, the derivation steps in di�erent sub-grammars are done sequentially.

However, we will illustrate in Section 4.X that the parsing of the sentences of di�erent

sub-grammars can be done concurrently.

A parallel derivation can be thought of as n individual derivations. The derivation of xi

consists of a sequence of (leftmost) derivation steps
p

=) � � �
p

=), corresponding to si derives

xi in sub-grammar Gi (1 � i � n). The parallel derivation is driven by the occurrence time

of the tokens. That is, the time associated with the tokens generated in subsequent parallel

derivation steps is greater than the time associated with the token generated in the current

parallel derivation step.

We illustrate a parallel derivation using a very simple parallel environment grammar

shown in Fig 4.1. The langauge de�ned by the PE-grammar is f open A close A open B

close B, open B close B open A close A g.

Environment Variables
1. int E = 0;

Start Expression
2. <progA> || <progB>

Hyperrules
3. <progA> -> <writeA, E>.
4. <writeA, 0> -> <openA> <closeA> { E = E - 1;}.
5. <open> -> open_A { E = E + 1; }.
6. <close> -> close_A.

7. <progB> -> <writeB, E>.
8. <writeB, 0> -> <openB> <closeB> { E = E - 1;}.
9. <openB> -> open_B { E = E + 1; }.
10. <closeB> -> close_B.

Figure 4.1: An Example Parallel Environment Grammar

Table 4.1 depicts a parallel derivation of open A close A open B close B, which consists

of 8 parallel derivation steps 1 (steps 1-8). Sentential forms labeled with yrepresent inter-

1The subscripts t1 to t4 denote the time associated with the tokens.

4.3. Properties of Parallel Environment Grammars 44

Step Sub-grammar 1 Sub-grammar 2 E

<progA> <progB> 0

1. (I) <writeA, 0> 0
2. (II) <openA> <closeA> fE = E � 1g 0
3. (III) yopen At1 fE = E + 1g <closeA> fE:::g 0

open At1 <closeA> fE = E � 1g 1
4. (IV) open At1 close At2 0

5. (i) <writeB, 0> 0
6. (ii) <openB> <closeB> fE = E � 1g 0
7. (iii) yopen Bt3 fE = E + 1g <closeB> fE:::g 0

open Bt3 <closeB> fE = E � 1g 1
8. (iv) open Bt3 close Bt4 0

Result: open A close A open B close B

Table 4.1: An Example Parallel Derivation

mediate results of derivation steps that involve executions of environment assignments or

semantic actions. The parallel derivation can be thought of as two derivations, correspond-

ing to the derivation of open A close A in sub-grammar 1 (steps I-IV) and the derivation

of open B close B in sub-grammar 2 (steps i-iv). In derivation step 1, the production rule

<progA>! <writeA; 0>, which is obtained from hyperrule 3 at the initial environment

(E = 0), is applied to the �rst sentential form, changing it to < writeA; 0 >. In step 3,

< open A > changes to open A, and the environment assignment changes E to 1. Note

that the parallel derivation is driven by the occurrence time of the tokens. The �rst few

derivation steps expand the �rst sentential form until the �rst token open A which has the

earilest time is generated. The next two derivation steps also expand the �rst sentential

form as the second token is close B. Also, open A open B close A close B is not a sentence

of the grammar because after step III, E = 1, progB derives <write; 1>, which does not

match any left-hand sides of the production rules.

4.3 Properties of Parallel Environment Grammars

For a grammar to be useful in practice, parsing must be unambiguous and e�cient. In this

section, we discuss several properties of parallel environment grammars that are related to

ambiguity and parsing e�ciency. Many of the properties of environment grammars described

in [42] also apply to parallel environment grammars.

4.3. Properties of Parallel Environment Grammars 45

De�nition 4.4 A PE-grammar G is called ambiguous if for some x 2 L(G) there is more

than one parallel derivation of x from S in G. Otherwise, G is called unambiguous.

The languages arising in practical applications tend to be unambiguous. Given an

ambiguous grammar of such a language, techniques such as left-factoring or precedence

grouping may often be applied to disambiguate it.

De�nition 4.5 In a PE-grammar G = (E; P; T; IE; R; S) a pair of distinct hyperrules

rH and r0H with left-hand sides X0 and X
0
0, respectively, rH 6= r0H and rH ; r

0
H 2 RH , is said

to be left-disjoint if the following two constraints hold.

(a) A 6= C if X0 6= X 0
0; (A! B) = Rp(rH ; e); and (C ! D) = Rp(r

0
H ; e);

(b) B 6= D if X0 = X 0
0; (A! B) = Rp(rH ; e); and (C ! D) = Rp(r

0
H ; e);

A PE-grammar G = (E ; P; T ; IE ; R; S) is said to be left-disjoint if all its hyperrules

are pairwise left-disjoint.

In a left-disjoint PE-grammar no two production rules have the same left-hand side

unless they have been obtained from two hyperrules with the same left-hand sides. In

the latter case, the right-hand sides of the two production rules di�er. Thus, Rp(rH ; e) 6=

Rp(r
0
H ; e), i.e., each production rule can be obtained from only one hyperrule. This property

is useful not only for parsing but also when environment assignments or semantic actions

are attached to a hyperrule.

De�nition 4.6 A hyperrule r0H with the left-hand side hypernotion < x01; x
0
2; � � � ; x

0
n > is

called a reference of a protonotion < y1; y2; � � � ; yn > on the right-hand side of a produc-

tion rule rp(rH ; e) if the uniform replacement for the hypernotion < x01; x
0
2; � � � ; x

0
n > is

< y1; y2; � � � ; yn >.

In a derivation step, the right-hand side of the applied production rule contains ter-

minals and protonotions. The references of the latter specify the hyperrules from which the

production rules of subsequent derivations steps will be obtained.

Lemma 4.7 In a left-disjoint PE-grammar G = (E; P; T; IE; R; S) all references of a

protonotion < y1; y2; � � � ; yn > have the same hypernotion on the left-hand side, and this

hypernotion can be uniquely identi�ed.

Proof: It follows from left-disjointness that two or more references of the same protono-

tion have the same left-hand side. Now consider only those hyperrules whose left-hand sides

4.4. Parallel Hyperparsers 46

< x01; x
0
2; � � � ; x

0
n > consist of exactly n elements; the others cannot generate a production

rule whose left-hand side equals the given protonotion. The �rst hyperrule with a left-hand

side for which the uniform replacement is < y1; y2; � � � yn > determines the unique left-hand

side of the reference. If no such hyperrule exists, the protonotion does not have a reference.

De�nition 4.8 In a parallel environment grammar G = (E; P; T; IE; R; S), S = s1 k

s2 k � � � k sn, G is said to be token-disjoint if and only if 9T1; T2; � � � ; Tn � T such that

T = T1 [T2 [� � � [Tn, Ti \ Tj = ; 8i 6= j, and any tokens generated from si must belong

to Ti

A sentence of a token-disjoint PE-grammar thus can be split into n sentences based

on the sets T1; T2; � � � ; Tn. The token-disjoint property of a PE-grammar is important for

parsing the generated language e�ciently and unambiguously.

De�nition 4.9 In a parallel environment grammar G = (E; P; T; IE; R; S), a hyperno-

tion X =< x1; x2; � � � ; xn > is said to be local if and only if it does not contain any global

environment variables, 8i xi =2 Eg.

A hyperrule X0 ! X1X2 � � �Xm[B], where X0 is a hypernotion, Xi (1 � i � m) can

be a hypernotion or a terminal, is said to be local if and only if each hypernotion Xi in the

hyperrule is local. For a local hyperrule rH , the production rule Rp(rH ; e) is independent

of the global environment, i.e. Rp(r; e) = Rp(rH ; e
0) if and only if the local portions of the

environments e and e0 are the same.

A block of environment assignments B is said to be local if and only if it does not

contain any global environment variables. That is, execution of B does not refer to or

modify global environment variables. For a local block of environment assignments B, the

local portion of any environment e is equal to the local portion of B(e). Also, if the local

portions of e and (e0) are the same, so are the local portions of B(e) and B(e0).

4.4 Parallel Hyperparsers

This section describes a parsing method for recognizing sentences generated from a parallel

environment grammar. A parallel hyperparser Hp is a top-down parser for recognizing

sentences of L(G) where G = (E; P; T; IE; R; S), is a left-disjoint, token-disjoint, and

4.4. Parallel Hyperparsers 47

unambiguous PE-grammar.

Figure 4.2 depicts the structure of a parallel hyperparser. A parallel hyperparser

consists of a hyperdispatcher, several sequential hyperparsers(or hyperparser), a set EG of

global environment variables shared by all hyperparsers, and an initialization procedure for

performing the initial environment assignments to the global environment variables. Each

hyperparser is a top-down parser, and is very similar to the hyperparser described in [42].

Dispatcher
Hyper

Hyper

Parser

Hyper

Parser

Hyper

Parser

Hyper

Parser

Environment Variables

Shared Memory

gE : the set of global

Figure 4.2: A Parallel Hyperparser

4.4. Parallel Hyperparsers 48

4.4.1 Hyperparsers

There is a hyperparser associated with each si in S. Each hyperparser contains a set EL of

local environment variables private to the parser, a local initialization procedure for perform-

ing the initial environment assignments on the local environment variables, a set of lexical

procedures for reading and recognizing the terminals T, and a set of (possibly recursive)

hyperprocedures for generating and applying production rules. There is one hyperprocedure

per hyperrule, where a hyperrule may contain alternative right-hand sides. Also, each thread

hyperparser has a local variable current token which holds the token it is processing.

Hyperprocedures

The hyperprocedures form the core of a hyperparser. Let HP X0() be the hyperprocedure

corresponding to the hyperrule X0 ! X1X2 � � �Xm[B]. When called, it �rst inspects the

next token in the input queue and sets current token to that token. If the input queue is

empty, it waits until the next token arrives. Then, it uses the environment variables to

generate the current production rule by obtaining the protonotions (or terminals) Yi from

the hypernotions (or terminals) Xi on the right-hand side of the hyperrule. The hyperpro-

cedures for the references of the protonotions Yi (or lexical procedures in case the latter are

terminals) are �rst identi�ed and subsequently called in sequence. If allm procedures return

successfully, any attached environment assignments or semantic actions B are performed and

the hyperprocedure returns indicating success.

If HP X0() represents a set of hyperrules, the order in which they are processed

is determined by consulting the next input token. Processing is as above, but a failure

indication by a called procedure causes the thread hyperparser to backtrack and start the

processing of the next alternative rather than to immediately return with a failure indication.

To parse a given sentence, the hyperdispatcher �rst performs the global initialization

procedures to initialize the global environment variables, and starts all thread hyperparsers.

It then reads the tokens one by one and dispatches them into the input queue of the appro-

priate hyperparsers. The hyperdispatcher does not wait until the hyperparser accepts the

token before it dispatches the next token. Therefore, the input queue of a thread hyperparser

could consist of several tokens.

4.4. Parallel Hyperparsers 49

When a hyperparser starts, it �rst performs the local initialization procedure to ini-

tialize its local environment variables. It then calls the hyperprocedure HP si() for the

hyperrule with the start symbol si on the left hand side. The execution of each hyperparser

is driven by the input token. A thread hyperparser either pauses in a lexical procedure or

at the beginning of a hyperprocedure when the next token is not available, i.e., the input

queue is empty. For example, the hyperprocedure HP Si() stops if the next input token is

not available when the hyperparser starts.

The hyperparsers run in parallel to accept the sequence of tokens placed in their input

queues. The purpose of a hyperparser is to parse the sequence of tokens in its input queue

and report any errors. When the hyperdispatcher �nishes reading and dispatching tokens

to the hyperparsers and each hyperparser parses the sequence of tokens in its input queue

without any errors, the parsing is considered to be successful, i.e., the sentence is recognized

by the parallel hyperparser. Otherwise, the input sentence is not a sentence of the PE-

grammar.

4.4.2 Synchronization among Hyperparsers

In parsing an input sentence, the sentence is split into n disjoint sentences, each of which is

fed into one of the hyperparsers. Nevertheless, the parsing operations of the hyperparsers are

not totally independent. A thread hyperparser occasionally synchronizes with other thread

hyperparsers. We describe the synchronization conditions and the additional procedures for

handling synchronization in this subsection.

De�nition 4.10 The execution of a thread hyperparser can be divided into execution steps.

Each execution step corresponds to the generation of a production rule from a hyperrule

and application of the rule or to an execution of a block of environment assignments. An

execution step is local if the hyperrule is local or the block of environment assignments is

local. Otherwise, the execution step is nonlocal.

In general, when a thread hyperparser needs to read from or write to global environ-

ment variables, it synchronizes with other thread hyperparsers. Precisely, the synchroniza-

tion condition (SC) is

When a thread hyperparser executes a nonlocal execution step in processing a

token x, it cannot start until all execution steps processing with tokens that have

4.4. Parallel Hyperparsers 50

a time earlier than that of x have �nished.

A waittoken(t) procedure is used for synchronization, where t is the timestamp of

current token. The procedure returns when the timestamp of the invoking procedure is

earlier than the timestamps of current token of all other hyperparsers. At that time, all

tokens preceeding current token have been processed.

There are two situations where waittoken() will be called: In generally, waittoken() is

called when the hyperparser needs to access (read or write) global environment variables.

Speci�cally,

� In a hyperprocedure HF X0() that corresponds to a nonlocal hyperrule

X0 ! X1X2 � � �Xm[B], the hyperprocedure calls waittoken(t) before it uses the en-

vironment variables to generate the protonotions and terminals of the production rule.

� When a hyperprocedure is about to perform an action B, it calls waittoken(t) before

it performs the environment assignments in B if B is not local, i.e., if the environment

assignments in B have references to global environment variables.

De�nition 4.11 A strongly synchronized parallel hyperparserHp0 is a parallel hyperparser

in which the thread hyperparsers synchronize themselves for every token. A strongly syn-

chronized parallel hyperparser is exactly the same as a parallel hyperparser except the token

dispatcher passes a token from the input into a hyperparser and waits until the hyperparser

�nished processing the token before it feeds the next token to another hyperparser. Although

it consists of multiple hyperparsers running in parallel, it can be considered as a sequential

machine. It is because at any single time, only one hyperparser is in action, all the others

are blocked waiting for the next token.

Figure 4.3 compares the execution of a strongly synchronized parallel hyperparser

and a parallel hyperparser consisting of 4 thread hyperparsers. The execution steps in a

strongly synchronized parallel hyperparser occur in sequence while the execution steps in a

parallel hyperparser could overlap and occur in a di�erent order. In the example in (Fig 4.3,

execution step s2 starts before execution step s1 completes. Nevertheless, no two execution

steps that are both nonlocal overlap. It is because the two thread hyperparserss executing

the two steps will both call waittoken() and one of them has to wait for the other to �nish

before it can proceed. In general, we can name the execution steps in a strongly synchronized

4.4. Parallel Hyperparsers 51

parallel hyperparser by their order of occurrences as s1; s2; � � � ; sn.

TP1 TP2 TP3 TP4

M
I

E

T

s1

s2

s3

s4

s5

s6

s7

s8

s9

s1
s2

s3 s4

s5

s9

s6

s7

s8

TP1’ TP2’ TP3’ TP4’

Execution of the Parallel Hyperparser HPExecution of a Strongly Schronized Parallel
Hyperparser HP’

Figure 4.3: Execution of Two Hyperparsers

Lemma 4.12 A strongly synchronized parallel hyperparser recognizes sentences of L(G)

where G = (E; P; T; IE; R; S), S = s1 k s2 k � � � k sn, is a left-disjoint, token-disjoint and

unambiguous PE-grammar.

Proof: A strongly synchronized parallel hyperparser mirrors a parallel derivation which

is unique since G is unambiguous.

The token-disjoint property assures that a token is fed into the input queue of the

right thread hyperparser, i.e., if si derives xi, then xi is fed into the input queue of thread

hyperparser i. Therefore, each thread hyperparser is given the right sentence to parse.

Lemma 4.7 (the property of left-disjointness) assures that the parse proceeds exactly

as the derivation in each thread hyperparser. Since the input is a trace, tokens are fed one

4.4. Parallel Hyperparsers 52

by one in increasing time. Thus, the parsing is driven by the occurrence time of the tokens

as in the parallel derivation. The thread hyperparsers simulate a parallel derivation which

is driven by the occurrence time of the tokens. Therefore a strongly synchronized parallel

hyperparser accepts the language generated by the parallel environment grammar G. 2

Theorem 4.13 A parallel hyperparser recognizes sentences of L(G), where G = (E; P; T;

IE ; R; S) is a left-disjoint, token-disjoint and unambiguous PE-grammar.

We prove the theorem by showing that a strongly synchronized parallel hyperparser

Hp0 and a parallel hyperparser Hp accept the same language. By Lemma 4.11, the theorem

follows. Before we present the proof, we �rst describe the symbols used.

� p1; p2; � � � ; pm denote the execution steps occurring in the execution of Hp and Hp0.

The steps are named according to their occurrence order in Hp0.

� Tpm and Tp0m denote the mth thread hyperparser of Hp and Hp0.

� Qm;i (Q
0
m;i) denotes the local state of Tpm (Tp0m) at the time it just �nished execution

step pi and � (�0) denotes the global state of Hp (Hp0) at the time pi is �nished.

If Tpi and Tp0i both perform an execution step at the same starting local state, they

behave the same and end in the same local state. Also, the execution step does not a�ect the

global state (4.1). In addition, when a thread hyperparser performs a nonlocal execution

step at a state (Q;�), where Q is the local state of the thread hyperparserand � is the global

state, if there is no other global execution steps overlapping with the step, it always behaves

the same and transits to the same new state (4.2).

Proof: We want to prove that given an input sentence X, each thread hyperparser Tpi

in Hp performs the same execution steps as the corresponding thread hyperparser Tp0i in

Hp0. First, the sequences of tokens being dispatched to the input queue Tpi and Tp0i are

the same for all i. The proof is by induction on the number of execution steps started in Hp

using the following induction assumption:

Let pli by the ith execution step starts in Hp. (Note that li = i for Hp0, but it is not

necessarily true for Hp). For any (1 � i � k), let pli is performed by Tpm; when sii is

completed, we have

� Tpm and Tp0m behavior the same in this execution step.

4.4. Parallel Hyperparsers 53

� Qm;li = Q0
m;li

, and

� �li = �li if pli is not a local step.

Base case: (n = 1) Let the �rst execution step in Hp, pl1 and �nishes at t1. If i1 = 1,

then only local execution steps can start before t2, hence by (4.2), the induction assumption

holds. If i1 6= 1, then pl1 must be a local step, otherwise pl1 cannot start. By (4.1), the

induction assumption also holds.

Induction Step: Assume the induction assumption holds when k = n� 1. Let pln be

the nth execution starts in Hp, and is performed by thread hyperparser m and �nishes at

tln .

Case 1: pln is a local step. Let the last step performed by Tpm be pi, by the induction

assumption, we have Qm;i = Q0
m;i. That is, the local state of Tpm at the time Tpm starts

pln is equal to the local state of Tp0m at the time Tp0m starts pln . Since pln is a local step,

by (4.1), the induction assumption holds for k = n.

Case 2: pln is a not a local step. Let the last step performed by Tpm be pi, by the

induction assumption, we have Qm;i = Q0
m;i - (a). In addition, the steps s1; s2; � � � sin�1 must

have been completed (because of the synchronization constraints). Let pj be the last step

in s1; s2; � � � sik�1 which is nonlocal. We have �j = �0
j by the induction assumption. Also

�0
ln
= �0

j because of the de�nition of pj. As sj; � � � ; sik�1 are local steps, and any step that

start between tj and tln must be local steps, �ik�1 = �j = �0
j = �0

ln
- (b). Therefore, by

(a), (b) and (4.1), the induction assumption hold for n = k.

4.4.3 Tokens

The tokens of a PE-grammar may be audit records and are de�ned in the lexical descrip-

tion. An audit record describes an occurrence of a system event (or an audit event), which

corresponds to the execution of a system operation (e.g., a system call). An audit record

consists of an event type �eld denoting the type of the event and other data �elds describing

other information pertained to the event, such as information about the subject that per-

formed the action, information about the objects being accessed , the occurrence time, and

other relevant information. The format of an audit record varies from system to system. In

general, we model the set of audit records as a set of tuples

4.4. Parallel Hyperparsers 54

f(f0; f1; f2; f3; � � � ; fN)g

where

� f0 is the audit event type, f 2 Ev, the set of audit events

� fi(1 � i � N) are the values of the ith data �eld of the audit record, fi 2 Ri, the range

of the ith data �eld. Each data �eld has a name Ni.

4.4.4 Lexical Procedures

A token is recognized by a lexical procedure which may consider only a subset of event

attributes. A lexical procedure is constructed based on a token de�nition. A token de�nition

has the form

name1-name2- � � � -namem : [�] (T1 j T2 j � � � j Tn)

where the right-hand side symbol is called a token-name template, namei could be a name

or a variable Wi, and Ti is token expression of the form

(t; e1; e2; � � � ; en); 0 � n;

t 2 (Ev [�), ei, 1 � i � n, is �eld expression of the form a = expr, a 6= expr, a =� expr,

a !� expr, a 2 expr, a =2 expr, a 2 Vt , expr is an expression formed from Wi, 1 � i � m,

Ni, 1 � i � N .

In a lexical description, the �rst name in each token-name template must be di�erent.

In this way, it is obvious to identify from a given token name, the token-name template (the

reference) that de�nes the meaning of the token name. Given a token name str-y1-� � �-y2,

which reference is the token-name template str-X1-X2-� � �-Xn. The set of tokens represented

by the token name is

f (t; v1; v2; � � � ; vk) j 9i(1 � i � m) s:t: T 0
i = trueg : if the de�nition does not start with �

f (t; v1; v2; � � � ; vk) j 8i(1 � i � m) s:t: T 0
i = falseg : if the de�nition starts with �

Shown below are the de�nitions of several token-name templates.

4.5. Illustration of the Use of PE-grammars for Specifying Trace Policies 55

open_r_passwd : [(open_r, path == ``/etc/passwd'')].
not_open_r_passwd : ~[(open_r, path == ``/etc/passwd'')].
open_r-P1 : [(open_r, path == ``P1'')].

The �rst template open r passwd refers to all audit records describing an open r event

on a path equal to /etc/passwd. The second template refers to all audit records that do not

describe an open r event on a path equal to /etc/passwd. It refers to all other audit records

that are not referred to by the �rst template. The last template consists of a variable P1.

The tokens it refers to depend on the value of the variable. Basically, it refers to all audit

records with an open r event on a path equal to the value of P1.

Let TP tk be the lexical procedure corresponding to the token-name template tk-X1-

X2-� � �-Xm, whose de�nition is (T1 j T2 j � � � j Tn). To recognize a token of a particular token

type tk-y1-y2-� � �-ym, a hyperparser calls a lexical procedure TP tk with actual paramet-

ers y1; y2; � � � ; yn. When called with actual parameters y1; y2; � � � ; yn, the lexical procedure

LP tk evaluates the �rst token expression Ti with the current token. To evaluate a token

expression, it substitutes the �eld names with the values in the current token, and evaluates

the resulting truth value for each �eld expression. If the event matches the event of the

current audit record, and the values of all �eld expressions expr0i, 1 � i � n are true, it

returns success. Otherwise, it evaluates the next alternative token expression and so on. If

all token expressions are evaluated to false, it returns with a failure indication. In case the

de�nition is of the form � (T1 j T2 j � � � j Tn), the lexical procedure evaluates the truth

value of every token expression, and returns success if all of them are false. Otherwise, it

returns with a failure indication.

4.5 Illustration of the Use of PE-grammars for Specifying

Trace Policies

In this section we illustrate the use of PE-grammars for specifying the valid execution traces

of programs. We give an example of a PE-grammar that describes the valid execution trace

of two programs. In addition to the notation introduced above, we shall adhere to the

following conventions in our examples of parallel environment grammars.

4.5. Illustration of the Use of PE-grammars for Specifying Trace Policies 56

� CAPITAL LETTERS are used for environment variables

� Small letters are used for token types or protovariables.

� < x1 x2 � � � xn > will be written for hypernotions instead of < x1; x2; � � � ; xn >, i.e.,

signi�cant blanks are used to separate elements instead of commas.

� j denotes alternatives in hyperrules.

� f g is used to enclose environment assignments or semantic actions.

� ; is used to terminate initial environment assignments.

� . is used to terminate hyperrules.

The illustrative PE-grammar describes the valid execution traces of two Unix programs,

program A and program B. Both programs modify the password �le during execution. They

perform the following sequence of operations during their executions. Note that the actual

read and write operations are omitted.

Steps of Program A Steps of Program B

1. open r(file1) 1. open r(file1)
2. close(file1) 2. close(file1)
3. open r(passwd) 3. open r(passwd)
4. close(passwd) 4. close(passwd)
5. open w(passwd) 5. open w(ptmp)
6. close(passwd) 6. close(ptmp)

7. rename(passwd; ptmp)

Program A �rst reads file1 in steps 1-2 and then modi�es the password �le in steps

3-6. Program B �rst reads file1 in steps 1-2 and then modi�es the password �le in steps

3-7. When the two programs execute simultaneously, they must not modify the password

�le at the same time. Therefore, the synchronization constraint is that steps 3-6 of program

A cannot overlap with steps 3-7 of program B.

Figure 4.4 shows a PE-grammar that de�nes the valid operation sequence of the ex-

ecution of the two programs with respect to the stated synchronization constraint. The

start expression on line 2 consists of two start notions <progA> and <progB>; <prog A>

4.5. Illustration of the Use of PE-grammars for Specifying Trace Policies 57

describes the operations performed by program A and <progB> describes the operations

performed by program B.

Environment Variables
1. LOCAL int PID = getpid();
2. ENV int CS = 0;

Start Expression
3. <progA> || <progB>

4. <progA> -> <init> <modify >
5. <init> -> <open_r file1> <close file1>
6. <modify> -> <open_r passwd>

{ if CS != 0 then violation();
CS = CS + 1; }

<close passwd>
<open_w passwd>
<close passwd>
{ CS = CS - 1; }

7. <open_r file1> -> open_r_file1-PID.
8. <close file1> -> close_file1-PID.
9. <open_r passwd> -> open_r_passwd-PID.
10. <open_w passwd> -> open_w_passwd-PID.
11. <close passwd> -> close_passwd-PID.

12. <progB> -> <look> <change>
13. <look> -> <open_r file1> <close file1>
14. <change> -> <open_r passwd>

{ if CS != 0 then violation();
CS = CS + 1; }

<close passwd>
<open_w ptmp> <close ptmp>
<rename ptmp passwd>
{ CS = CS - 1; }

15. <open_w ptmp> -> open_w_ptmp-PID.
16. <close ptmp> -> close_ptmp-PID.
17. <rename ptmp passwd> -> rename_ptmp_passwd-PID.

Figure 4.4: An Illustration of a PE-grammar

Lines 1-2 show the initial environment assignment. The local environment variable

PID stores the process ID of the running program. The copy of PID local to <progA>

(<progB>) is assigned to the process ID of the process running program A (B) during

the local environment initialization. It gets the value from the function getpid(). CS stores

the number of processes that are accessing the password �le. It is initialized to 0 and is

increased by 1 in the environment assignment attached to the hyperrules on lines 6 and 14.

4.5. Illustration of the Use of PE-grammars for Specifying Trace Policies 58

This happens when program A or B opens the password �le for reading, which is the �rst

step it uses to modify the password �le. When the hyperrules on lines 6 and 14 recognize

the last hypernotions, CS is decreased by 1.

The hyperrules on lines 4-11 describe the execution of program A. The hyperrule on

line 3 speci�es the execution of program A as the concatenation of hypernotions <init> and

<modify>, which describe the operations program A performs to read /home/�le1 (steps 1

and 2) and the operations program A performs to modify the password �le. The hyperrule

on line 5 recognizes the operations in steps 1 and 2. The hyperrule on line 6 describes the

operations performed by program A to modify the password �le, which correspond to the

operations in steps 3-6. The �rst operation is represented by the token open r passwd-PID.

There are two actions after the �rst operation. The �rst one raises a violation if CS is not

zero, i.e., another process is modifying the password �le; the second action increases CS by 1,

indicating the process is now modi�ng the password �le. There is an environment assignment

attached to the end of the hyperrule on line 6, which decreases CS by 1 after program A

performed the last operation in modifying the password �le. The hyperrules on lines 7-11

accept tokens open r file1-PID, close file1-PID, open r passwd-PID, open w passwd-PID,

and close passwd-PID. The tokens they accept depend on the value of PID. For the �rst

sub-grammar (the one associated with progA), PID contains the ID of the process executing

program A. Therefore, the hyperrules accept the tokens corresponding to the operations of

the process executing program A.

For the second sub-grammar, the hyperrules accept the tokens corresponding to the

operations done by the process executing program B.

The hyperrules on lines 12-17 describe the execution of program B. The hyperrule

on line 12 speci�es the execution of program B as the operations for reading �le1, which

is <look> followed by the operations for modifying the password �le, <change>. The

hyperrule on line 13 describes the operations for reading �le1 (steps 1-2) . The hyperrule on

line 14 describes the operations performed by program B to modify the password �le. When

program B performs the �rst operation (represented by <open r passwd>) the semantic

action raises a violation if CS is not zero and increases CS by 1. Therefore, the PE-grammar

prohibits steps 3-6 of program A from overlapping with steps 3-7 of program B in their

execution. Lastly, the environment assignment attached at the end of the hyperule on line

4.5. Illustration of the Use of PE-grammars for Specifying Trace Policies 59

14 decreases CS by 1 after program B �nished modifying the password �le.

The tokens to be recognized by the lexical procedure are open r file1-X, close file1-X,

open r passwd-X, open w passwd-X, close passwd-X, open w ptmp-X,

close ptmp-X, rename ptmp passwd-X for 1 � X � MaxPid. Note that environment vari-

ables may be used in the formation of token names.

For illustration purposes, consider the two traces of the execution of two programs

shown in Figure 4.5. A trace (Def. 3.1) is a sequence of audit records corresponding to the

operations performed by the two programs during the execution. A simpli�ed audit record

may be denoted by a 4-tuple (event; file; pid; time), where event denotes the operation,

�le denotes the �le involved in the operaton, pid denote the process ID, and time denote

the occurrence time of the operation. In the �rst trace, program B does not start until

program A �nishes. Therefore, it satis�es the synchronization requirement. In the second

trace, program A and program B modify the password �le simultaneously, thus violating the

synchronization requirement.

Trace 1 Trace 2

(open r; =home=file1; 23; t1) (open r; =home=file1; 23; t1)
(close; =home=file1; 23; t2) (close; =home=file1; 23; t2)
(open r; =etc=passwd; 23; t3) (openr; =home=file1; 40; t3)
(close; =etc=passwd; 23; t4) (open r; =etc=passwd; 23; t4)
(open w; =etc=passwd; 23; t5) (close; passwd; 23; t5)
(close; =etc=passwd; 23; t6) (close; file1; 40; t6)
(open r; =home=file1; 40; t7) (open w; passwd; 23; t7)
(close; file1; 40; t8) (open r; passwd; 40; t8)
(open r; passwd; 40; t9) (close; passwd; 40; t9)
(close; passwd; 40; t10) (open w; ptmp; 40; t10)
(open w; ptmp; 40; t11) (close; ptmp; 40; t11)
(close; ptmp; 40; t12) (close; passwd; 23; t12)
(rename; =etc=ptmp; =etc=passwd; 40; t13) (rename; =etc=ptmp; =etc=passwd; 40; t13)

Figure 4.5: Execution Traces of Program A and Program B.

Tables 4.2 and 4.3 show the parallel derivations of traces 1 and 2. Because of space lim-

itation, we use the following abbreviations in the tables. open r, close, open w, and rename

are written as R, C, W , and RN respectively; =etc=passwd, =home=file1, =etc=ptmp are

written as pw, f1, and ptmp respectively, and an audit record (X1;X2; � � � ;Xn) is written

as (X1 X2 � � �Xn).

4.5. Illustration of the Use of PE-grammars for Specifying Trace Policies 60

Each parallel derivation consists of two derivations, corresponding to the derivations

starting from < progA > and < progB >. There is a step number associated with each

step, indicating the order of the steps in the parallel derivation. The derivation of trace

1 is successful while the derivation of trace 2 is unsuccessful as the violation() function is

executed in step 14.

Step <progA> jj <progB> CS

<progA> 0

1 <init> <modify> 0

2 <open r �le1 > <close �le1> <modify> 0

3 (R f1 23 t1) <close �le1> <modify> 0

4 (R f1 23 t1) (C f1 23 t2) <modify> 0

5 (R f1 23 t1) (C f1 23 t2) <open r passwd> f if CS ... g <close pw> <open w pw> <close passwd> f CS ... g 0

6 (R f1 23 t1) (C f1 23 t2) (R pw 23 tQ) <close passwd> <open w pw> <close pw> f CS ... g 1

7 (R f1 23 t1) (C f1 23 t2) (R pw 23 t3) (C pw 23 t4) <open w pw> <close pw> f CS ... g 1

8 (R f1 23 t1) (C f1 23 t2) (R pw 23 t3) (C pw 23 t4) (W pw 23 t5) <close pw> f CS ... g 1

9 (R f1 23 t1) (C f1 23 t2) (R pw 23 t3) (C pw 23 t4) (W pw 23 t5) (C pw 23 t6) 0

<progB> 0

10 <look> <change> 0

11 <open r f1> <close f1> <change> 0

12 (R f1 40 t7) <close f1> <change> 0

13 (R f1 40 t7) (C f1 40 t8) <change> 0

14 (R f1 40 t7) (C f1 40 t8) <open r passwd> fif CS ...g <close passwd> ... <rename ptmp passwd> fCS ...g 0

15 (R f1 40 t7) (C f1 40 t8) (R pw 40 t9) <close passwd> <open w ptmp> ... <rename ptmp passwd> fCS ...g 1

16 (R f1 40 t7) ... (R pw 40 t9) (C pw 40 t10) <open w ptmp> <close ptmp> <rename ptmp passwd> fCS ...g 1

17 (R f1 40 t7) ... (R pw 40 t9) (C pw 40 t10) (W ptmp 40 t11) <close ptmp> <rename ptmp passwd> fCS ...g 1

18 (R f1 40 t7) ... (R pw 40 t9) (C pw 40 t10) (W ptmp 40 t11) (C ptmp 40 t12) <rename ptmp passwd> fCS ...g 1

19 (R f1 40 t7) ... (R pw 40 t9) (C pw 40 t10) (W ptmp 40 t11) (C ptmp 40 t12) (RN ptmp pw 40 t13) 0

Table 4.2: A Parallel Derivation of Trace 1

Step <progA> jj <progB> CS

1 (A) <init> <modify> 0

2 (A) <open r f1 > <close �le1> <modify> 0

3 (A) (R f1 23 t1) <close �le1> <modify> 0

4 (A) (R f1 23 t1) (C f1 23 t2) <modify> 0

5 (B) <look> <change> 0

6 (B) <open r f1> <close �le1> <change> 0

7 (B) (R f1 40 t3) <close �le1> <change> 0

8 (A) (R f1 23 t1) (C f1 23 t2) <open r passwd> f if CS ... g <close pw> <open w pw> <close pw> f CS ... g 0

9 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) <close passwd> <open w passwd> <close passwd> f CS ... g 1

10 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) (C pw 23 t5) <open w passwd> <close passwd> f CS ... g 1

11 (B) (R f1 40 t3) (C f1 40 t6) <change> 1

12 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) (C pw 23 t5) (W pw 23 t7) <close passwd> f CS ... g 1

13 (B) (R f1 40 t3) (C f1 40 t6) <open r passwd> fif CS ...g <close passwd> ... <rename ptmp pw> fCS ...g 1

14 (B) (R f1 40 t3) (C ...) (R pw 40 t8) <close passwd> <open w ptmp> ... <rename ptmp passwd> fCS ...g 2 V!!!

15 (B) (R f1 40 t3) (C ...) (R ...) (C pw 40 t9) <open w ptmp> <close ptmp> <rename ptmp passwd> fCS ...g 2

16 (B) (R f1 40 t3) (C ...) (R ...) (C pw 40 t9) (W ptmp 40 t10) <close ptmp> <rename ptmp passwd> fCS ...g 2

17 (B) (R f1 40 t3) (C ...) (R ...) (C pw 40 t9) (W ptmp 40 t10) (C ptmp 40 t11) <rename ptmp passwd> fCS ...g 2

18 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) (C pw 23 t5) (W pw 23 t7) (C pw 23 t12) 1

19 (B) (R f1 40 t3) (C f1 40 t6) (R pw 40 t8) (C pw 40 t9) (W ptmp 40 t10) (C ptmp 40 t11) (RN ptmp pw 40 t13) 0

Table 4.3: An Unsuccessful Parallel Derivation of Trace 2

4.6. Summary 61

In Table 4.2, steps 1-9 correspond to the derivation steps in sub-grammar 1, and steps

10-19 correspond to the derivation steps in sub-grammar 2. In Table 4.3, steps 1-4, 8-10,

and 18 (those followed by an A) correspond to the derivation steps in sub-grammar 1, and

steps 5-7, 11, 13-17, and 19 (those followed by a B) correspond to the derivation steps in

sub-grammar 2. Table 4.3 shows the derivation steps in the order they occur in the parallel

derivation. To aid visualizing the derivation in each sub-grammar, Table 4.4 depicts the

derivation steps from the perspective of sub-grammars 1 & 2.

Step <progA> jj <progB> CS

<progA> 0

1 (A) <init> <modify> 0

2 (A) <open r f1 > <close �le1> <modify> 0

3 (A) (R f1 23 t1) <close �le1> <modify> 0

4 (A) (R f1 23 t1) (C f1 23 t2) <modify> 0

8 (A) (R f1 23 t1) (C f1 23 t2) <open r passwd> f if CS ... g <close pw> <open w pw> <close pw> f CS ... g 0

9 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) <close passwd> <open w passwd> <close passwd> f CS ... g 1

10 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) (C pw 23 t5) <open w passwd> <close passwd> f CS ... g 1

12 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) (C pw 23 t5) (W pw 23 t7) <close passwd> f CS ... g 1

18 (A) (R f1 23 t1) (C f1 23 t2) (R pw 23 t4) (C pw 23 t5) (W pw 23 t7) (C pw 23 t12) 1

<progB> 0

5 (B) <look> <change> 0

6 (B) <open r f1> <close �le1> <change> 0

7 (B) (R f1 40 t3) <close �le1> <change> 0

11 (B) (R f1 40 t3) (C f1 40 t6) <change> 1

13 (B) (R f1 40 t3) (C f1 40 t6) <open r passwd> fif CS ...g <close passwd> ... <rename ptmp pw> fCS ...g 1

14 (B) (R f1 40 t3) (C ...) (R pw 40 t8) <close passwd> <open w ptmp> ... <rename ptmp passwd> fCS ...g 2 V!!!

15 (B) (R f1 40 t3) (C ...) (R ...) (C pw 40 t9) <open w ptmp> <close ptmp> <rename ptmp passwd> fCS ...g 2

16 (B) (R f1 40 t3) (C ...) (R ...) (C pw 40 t9) (W ptmp 40 t10) <close ptmp> <rename ptmp passwd> fCS ...g 2

17 (B) (R f1 40 t3) (C ...) (R ...) (C pw 40 t9) (W ptmp 40 t10) (C ptmp 40 t11) <rename ptmp passwd> fCS ...g 2

19 (B) (R f1 40 t3) (C f1 40 t6) (R pw 40 t8) (C pw 40 t9) (W ptmp 40 t10) (C ptmp 40 t11) (RN ptmp pw 40 t13) 0

Table 4.4: An Unsuccessful Parallel Derivation of Trace 2

4.6 Summary

In this chapter we described a language framework for specifying trace policies. The lan-

guage is based on a novel type of grammar, a parallel environment grammar (PE-grammar).

We applied the formal framework to the speci�cation of valid execution sequences of pro-

grams. We also presented an e�cient parsing method for recognizing valid execution trace

of subjects in a distributed setting.

Chapter 5

Example Trace Policies

In this chapter we present several example trace policies of the Unix programs described in

Chapter 2. The trace policies can be used to detect exploitations of the vulnerabilities in

these programs. Our goal is to illustrate the usefulness of our speci�cation-based approach

and the expressiveness of parallel environment grammars. We show that parallel environ-

ment grammars can specify many di�erent kinds of trace policies, and we comment on the

approaches to their development.

Many approaches can be taken to develop trace policies for programs. One approach

is to identify what operations a program needs to perform in accomplishing its function

and to allow in the policy only these operations. This approach actually applies the least

privileges principle [44], and is particularily useful for specifying programs that are designed

to performed speci�c functions (e.g., privileged programs). Another approach is to focus on

some important properties of a program such as synchronization and specify the desirable

behavior with respect to these properties. Also, one can develop a trace policy based on

some suspected or existing weaknesses of the program.

5.1 Rdist

We present two trace policies for rdist that can be used to detect the exploitation of rdist

described in Chapter 2. The �rst trace policy speci�es the valid accesses of rdist and rdist

server. It is developed based on what operations rdist and rdistd need to do in order to

accomplish their functions. The second policy describes exactly the sequence of operations

performed by an rdist server during execution.

62

5.1. Rdist 63

When invoked, an rdist client reads the speci�ed dist�le, executes rdistd on the remote

machine, and sends commands to rdistd to perform the remote updates. Therefore, the client

should read only �les belonging to the invoker, and should not write to any �le. For the

server, the main function is to listen to the client commands and perform the �le updates.

To update a �le F , rdistd creates a temporary �le, writes the new contents to the temporary,

and renames the temporary �le to F . The rename operation essentially replaces the contents

of the �le F . It also changes the ownership and the permission mode of the �le to correspond

to the original �le when necessary. Therefore, rdistd is allowed to create a temporary �le,

change the owner and the permission mode of the �le it creates, and rename the temporary

�le to the target �le. We cannot specify exactly what �les rdist will update because they are

speci�ed in the input dist�le and are not recorded in the audit trails. However, rdist should

update only the �les owned by the invoker in the remote machine. Therefore, rdist should

be allowed to rename the temporary �le to a pathname that is under the home directory of

the invoker.

Figure 5.1 shows the �rst trace policy for rdist . The PE-grammar describes the valid

operations of a single rdist execution. Line 1 shows the header of the speci�cation which

consists of a selection expression indicating the subjects with which the speci�cation is

concerned. The meaning of a selection expression is described in Chapter 6. For this spe-

ci�cation, it describes the operation sequence of a single execution of rdist on the host blanc.

Lines 2-6 show the initial environment assignment. U is initialized to the user associated with

the execution, which is returned from getuser(). PID contains the process ID (obtained from

getpid()) of the process corresponding to the execution. FILECD (PATHCD) is an associative

array for storing the inode numbers (pathnames) of the �les created by the program execu-

tion. They are both initialized to empty and are changed during parsing when a create-�le

operation is recognized. HOMEDIR is initialized to the home directory of the invoker, which is

/export/home/<Username>. Its value will not be changed thereafter.

On line 7, the start expression contains only the start notion <rdist>, which implies

that the input is described by the hypernotion <rdist>. Hyperrule 8 recursively de�nes the

input as a repetition of the valid operations speci�ed by <valid op>; the second alternative

represents the termination condition.

Hyperrule 9 describes the operations rdist is allowed to perform. It has 9 alternative

5.1. Rdist 64

1. SPEC rdist <rdist(I), U, blanc>
2. ENV User U = getuser();
3. ENV int PID = getpid();
4. ENV int FILECD[int];
5. ENV int PATHCD[str];
6. ENV str HOMEDIR = "/export/home/U.name";

7. SE : <rdist>
8. <rdist> -> <valid_op> <rdist> | .
9. <valid_op> -> open_r_worldread

| open_r_not_worldread
{ if !Created(F) then

violation(); fi
}

| open_rw
{ if !(Dev(F)) then violation(); fi; }

| creat_file
{ if !(Inside(P, "/tmp") || Inside(P, HOMEDIR)) then

violation(); fi
FILECD[F.nodeid] = 1;
PATHCD[P] = F.nodeid;

}
| creat_dir

{ if !(Inside(P, "/tmp") || Inside(P, HOMEDIR)) then
violation(); fi

}
| symlink

{ if !(Inside(P, "/tmp") || Inside(P, HOMEDIR)) then
violation(); fi

}
| chown

{ if !(Created(F) and T.newowner = U)) then
violation(); fi

}
| chmod

{ if !(Created(F)) then violation(); fi }
| rename

{ if !(PathCreated(P) && Inside(P1, HOMEDIR)) then
violation() fi;

}.
10. END;

Figure 5.1: A Parallel Environment Grammar for Monitoring Rdist

right-hand sides. The �rst alternative contains just a terminal, and each of the remaining

eight alternatives contains a terminal followed by one or more semantic actions. The tokens

recognized by the hyperrule are of types open r worldread, open r not worldread, open rw,

creat file, creat dir symlink, chown, chmod, and rename.

The semantic actions in various alternatives of the hyperrule check the attributes (such

as the pathname and the inode of the �le) of the recognized operation to determine whether

5.1. Rdist 65

the operation is valid. They raise a violation for an invalid operation by calling the function

violation(). Two attributes of operations are referenced in the semantic actions: F denotes

characteristics of the process and the �le associated with the recognized operation, and P

denotes the pathname of the �le associated with the recognized operation. See Appendix C

for a full listing of the attributes of the operations for a Unix system.

1. #define WorldReadable(F) ((F.pmode & 004) != 0)
2. #define Inside(A, B) (A ~= B/*)
3. #define Created(F) (FILECD[F.inode] == 1)
4. #define PathCreated(P) (PATHCD[P] == 1)
5. #define Dev(F) ((F.pmode & P_DEV) != 0)

Figure 5.2: De�nitions of the Macros

Macros are used in the semantic action. Their de�nitions are shown in Figure 5.2.

Their meanings are as follows.

� WorldReadable(F) takes a �le as parameters and returns true if the �le is publicly

readable.

� Inside(A, B) takes two pathnames as parameters and returns true if the �rst pathname

is inside the second pathname. It uses regular pattern matching to determine the result.

� Creat(F) is used in conjunction with the environment variable FILECD, which stores

all the �les created by the process. It returns true if the given �le is de�ned in the

associative array FILECD, i.e., the �le is created by the program execution.

� Pathcreat(P) is used in conjunction with the environment variable PATHCD, which stores

all the pathnames created by the process. It returns true if the given pathname is

de�ned in the associative array PATHCD, i.e., the pathname is created by the program

execution.

� Dev(F) returns true if the given �le is a device �le.

The semantic action in the second alternative raises a violation if the �le is not created

by the process. The semantic action in the third alternative raises a violation if the recognized

5.1. Rdist 66

open rw operation is not associated with a device �le. There are three semantic actions

following creat �le in the fourth alternative. The �rst semantic action raises a violation if

the �le associated with the operation is not inside the /tmp directory or the home directory

(speci�ed by the environment variable HOMEDIR). The second and third semantic actions

update the environment variable FILECD and PATHCD to indicate that a new �le and a new

path has been created. The semantic action following symlink raises a violation if the �le is

not inside the /tmp directory or the home directory. The semantic actions following chown

and chmod raise a violation if the �le is not created by the process. The semantic action

following rename raises a violation if old pathname associated with the rename operation

is not created by the program or the new pathname is not inside the home directory of the

invoker.

To summarize, the policy speci�es that rdist can (1) open a publicly readable �le for

reading, (2) open a �le that is created by itself for reading, (3) open a device �le for both

reading and writing, (4) create a new �le, directory, or symbolic link that is inside the /tmp

directory or the home directory of the invoker, (5) change the permission mode and the

ownership of a �le that is created by the program execution itself, and (6) rename a �le

whose name is created by the program and inside the /tmp directory.

The exploitation of rdist described in Chapter 2 cause rdist change the permission of

/bin/sh. Therefore, the exploitation makes rdist violate this trace policy and hence will be

detected.

5.1.1 Sequence of Operations

Figure 5.3 shows the second PE-grammar, which describes the sequence of operations per-

formed by an rdist server during execution. In order to develop with this speci�cation, a

fairly good knowledge about rdistd is required.

Line 1 shows the header of the speci�cation, which indicates that this speci�cation is

concerned with a single execution of rdist . Lines 2-3 show the initial environment assign-

ment. U is initialized to the user associated with the process. NODEID is initialized to

0. It is used to hold the inode number of the �le associated with the operation recognized

by hyperules 7, 9 and 10 temporarily. Hyperrule 5 describes the execution of rdistd as a

repetition of the hypernotion <command>, which describes the operations rdistd performs

5.1. Rdist 67

1. SPEC rdist (<?, rdist, *, *>)
2. ENV User U = getuser();
3. ENV int NODEID = 0;

4. SE: <rdist>
5. <rdist> -> <command> <rdist> |.
6. <command> -> <up_file> | <up_slink> | <up_dir>.
7. <up_file> -> creat { NODEID = F.nodeid; }

<opt_chmod>
<opt_chown>
<efile>.

8. <efile> -> rename-NODEID | unlink-NODEID.
9. <up_slink> -> symlink { NODEID = F.nodeid; }

<efile>.
10. <makedir> -> (mkdir) { NODEID = F.nodeid; }

<opt_chmod>
<opt_chown>.

11. <opt_chmod> -> chmod-NODEID.
12. <opt_chown> -> chown-NODEID-U |.
13. END;

Figure 5.3: A Parallel Environment Grammar for Monitoring Rdistd

in a command. The hyperrule models the way an rdist server works: it repeatedly waits

for the next command and performs the command. Hyperrule 6 describes <command> as

either <file>, <slink>, or <dir>, which represents the sequence of operations rdist per-

forms in an update-�le command, an update-symbolic-link command, or an update-directory

command. Hyperrules 7-8 and 11-12 describe the operation sequence in an update-�le com-

mand. Hyperrule 7 speci�es a update-�le command as a concatenation of the terminals and

hypernotions creat, <opt chmod>, <opt chown>, and <efile>. When hyperrule 7 recog-

nizes creat (a create operation), its attached environment assignments set NODEID to the

inode of the newly created temporary �le. Hyperrules 11 and 12 recognize tokens of types

chmod-NODEID and chown-NODEID-U, which represent chmod operations on a �le whose inode

is equal to NODEID, as well as chown operations on a �le to a new owner UID whose inode is

equal to NODEID. Therefore, the two hyperrules recognize chmod and chown operations on

�les that are created by the program. Hence, the intrusion 1 described in Section 2.1 can

be detected using this trace policy. Hyperrule 8 speci�es the last operation in the sequence,

which could be a rename or unlink operation depending on whether the update is successful.

Similarly, hyperrule 9 describes the operation sequence in an update-symbolic com-

1The intrusion exploits rdist to change the permission of /bin/sh to enable the setuid bit of the �le.

5.2. Fingerd 68

mand. rdist creates a temporary symbolic link and then renames it to the target. Lastly,

hyperrule 10 describes the operation sequence in a update-directory command.

The tokens recognized by the lexical procedures are creat, rename-i, 1 � i �MaxInode,

unlink-i, 1 � i � MaxInode, chmod-i 1 � i � MaxInode, and chown-i-j, 1 � i �

MaxInode, 1 � j � MaxUid. creat represents all creat operations; rename-i, unlink-i,

and chmod-i represent all rename, unlink, and chmod operations on a �le whose inode is

equal to i; chown represents all chown operations on a �le whose inode is i to a new owner

j.

5.2 Fingerd

We describe a PE-grammar that speci�es the valid operation sequence of the �nger daemon,

including the main �ngerd process as well as the child process. The goal is to illustrate a

PE-grammar that describes the execution trace of two or more processes.

In current Unix systems, the �nger daemon does not run continuously in the back-

ground waiting for incoming �nger requests. It is invoked by the internet daemon (inetd)

when a �nger request arrives at the �nger port. When invoked, it forks a child to serve

the �nger request. The child process reads a single command line containing the request

and invokes the �nger program with the request as parameters. The �nger program then

collects the information from various status �les in the system and reports back to the re-

questor. Basically, �ngerd needs to create a child process and read some status �les. The

child process needs to execute the �nger program, which reads system status �les.

Figure 5.4 shows the PE-grammar. The start expression consists of the start notion

<fingerd> and <finger>; <fingerd> describes the valid operation sequences of the parent

�ngerd process and <finger> describes the valid operation sequences of the child process.

The PE-grammar describes any trace of the two processes, which consists of two subtraces

described by <fingerd> and <finger>.

Hyperrules 5-6 specify the valid operation sequence for the main process, which is

a repetition of the valid operations described by <valid op>. According to Hyperrule 6,

<valid op> refers to tokens of types open r worldread or fork. The former represents

open r operations on a publicly readable �le, and the latter represents fork operations. The

5.3. Race Condition: Binmail 69

1. SPEC fingerd <?, fingerd, *, *>

2. LOCAL ENV user U = getuser();
3. LOCAL ENV int PID = getpid();

4. SE: <fingerd> || <finger>

5. <fingerd> -> <valid_op> <fingerd> |.
6. <valid_op> -> open_r_worldread

| fork
{ printf("Child pid = %d\n", M.chpid); }.

7. <finger> -> <valid_op1> <finger> |.
8. <valid_op1> -> open_r_worldread

| exec_finger
| open_rw_dev.

9. END;

Figure 5.4: A Parallel Environment Grammar for Monitoring Fingerd

second alternative of hyperrule 6 has a semantic action which prints out the process ID of the

child process. All other operations of the main process will not be recognized by hyperrule

6 and are considered violations.

Hyperrules 7-8 specify the operation sequence for the child process, which is a repetition

of the operations described by <valid op1>. Hyperrule 8 de�nes the valid operations of

the child, which are represented by the three tokens open r worldread, exec finger, and

open rw dev. It speci�es that the child process can read any publicly readable �le, execute

the �nger program, and write to the terminal �le.

As mentioned in Section 2.2, the �nger daemon contains a vulnerability that enables

a remote attacker to inject his own code and make the daemon execute the code. This

vulnerability was exploited by the Internet Worm [47, 18] to execute a copy of the worm in

hosts that provide the �nger service. The worm attack obviously violates the trace policy

since �ngerd is allowed to execute only the �nger program.

5.3 Race Condition: Binmail

The binmail example illustrates how to specify a trace policy that can be used to detect

exploitation of a race-condition aw in a program using a PE-grammar. The program

5.3. Race Condition: Binmail 70

selected for this example is the backend mail delivery program in Unix, binmail, which

contains a race-condition aw.

1. SPEC <(?, binmail, U, H)>

2. ENV int CREATTMP = 0;
3. ENV int PID = getpid();

4. SE: <binmail> || <other>
5. <binmail> -> <init> <mktemp> <rest>.
6. <init> -> <not_mktemp> <init> | Nil.
7. <reat> -> any_op <rest> | Nil.

8. <mktemp> -> open_tmpfile-PID { CREATTMP = 1; }.

9. <not_mktemp> -> not_open_tmpfile-PID

10. <other> -> <vop, CREATTMP> <other> | Nil.
11. <vop, 0> -> not_chgtmp.
12. <vop, 1> -> any_op.

13. END;

Figure 5.5: A Parallel Environment Grammar for Monitoring Binmail.

As mentioned in Chapter 2, an attack can user binmail to compromise a system. When

invoked, binmail creates a temporary �le using the open rwtc system call. If an attacker

process performs an operation that changes the binding of the name of the temporary �le (of

the form "/tmp/ma?PID") to a �le he wants to replace before binmail creates the temporary

�le, binmail will overwrite the �le. In order to check whether the execution of binmail is

secure, the execution of binmail itself, as well as all other processes in the system need to

be monitored.

Figure 5.5 shows a PE-grammar that prohibits traces in which the race-condition aw

in binmail is exploited. On line 2, the environment variable CREATTMP is initialized to 0,

indicating binmail has not created the temporary �le. It is set to 1 when hyperrule 5

recognizes an operation which creates a temporary �le of the form /tmp/ma?PID. On line 3,

PID is initialized to the pid of the process running binmail.

Hyperrules 5-9 describe the operation sequence of binmail as the initial sequence

<init> followed by the create-temporary-�le operation <mktemp> and the rest of the oper-

ations, <rest>. Hyperrule 5 describes the initial sequence, which consists of any operations

5.4. Concurrent Access to the Password File 71

except the operations that create a temporary �le. Hyperrule 6 describes the <rest> as a

repetition of any operation, represented by the token any op. Hyperrule 8 recognizes an op-

eration that creates the temporary �le, which is represented by the token open tmpfile-PID.

The token open tmpfile-PID represents any open rwtc or open rwt operations on a �le whose

pathname matches the regular expression /tmp/ma?PID, where the environment variable

PID contains the process ID of the process executing binmail. There is a semantic action

attached, which changes CREATTMP to 1, indicating binmail has created the temporary

�le. Hyperrule 9 recognizes operations of type not open tmpfile-PID, which are all opera-

tions except those described by open tmpfile-PID.

Hyperrules 10-13 describe the operation sequence of all other processes. Hyperrule 10

describes a valid operation sequence as the repetition of the valid operations described by

<vop, CREATTMP>. The operation represented by <vop, CREATTMP> depends on the value

of the environment variable CREATTMP. If CREATTMP equals 0, <vop, CREATTMP> is described

by hyperrule 11 as any operations except link or symlink on the temporary �le. If CREATTMP

equals 1, <vop, CREATTMP> is described by hyperrule 12 as any operations. If a process

performs a link or symlink operation that changes the binding of the temporary �le when

CREATTMP is 0, the parsing will, therefore, fail. The PE-grammar thus describes a trace

in which binmail is not exploited.

5.4 Concurrent Access to the Password File

This section presents a PE-grammar that describes valid execution sequences of the passwd

and vi programs in Solaris 2.X with respect to synchronization. The PE-grammar disallows

any concurrent accesses to the shadow password �le /etc/shadow. The input trace is the

merge of traces of processes that are executing passwd as well as processes that are executing

vi and owned by root.

Figure 5.6 shows the parallel environment grammar. Line 1 indicates that the trace

policy is concerned with all executions of vi and passwd. Lines 2-3 show the initial en-

vironment assignment of the two environment variables in the PE-grammar. The global

environment variable MUTEX holds the number of program executions (or processes) that are

modifying the shadow password �le; it is initialized to 0, indicating that no process is modi-

5.4. Concurrent Access to the Password File 72

1. SPEC (<*, passwd, *, H>, <*, vi, root, H>)
2. ENV int MUTEX = 0;
3. LOCAL ENV int FD = 0;

4. SE is <passwd>* || <vi>*

5. <passwd> -> <begin> <update> <end>.
6. <begin> -> not_lock <begin> | Nil.
7. <end> -> any_op <end> | Nil.
8. <update> -> <Lock> <Rd_shpw> <Wr_shpw> <Unlock>.
9. <Lock> -> fcntl_lock.

10. <Rd_shpw> -> open_r_shadow
{ if MUTEX > 0 then violation();

MUTEX++; }
| not_open_r_shadow <Rd_shpw>.

11. <Wr_shpw> -> rename_shadow_stmp
{ MUTEX--; }

| not_rename_shadow_stmp <Wr_shpw>.

12. <Unlock> -> not_fcntl_unlock <Unlock> | fcntl_unlock.

13. <vi> -> <initseq> <mod_shpw> <rest>

14. <initseq> -> not_open_r_shadow <initseq> | Nil.
15. <mod_shpw> -> <read_shpw> <pad> <write_shpw> | Nil .
16. <read_shpw> -> open_r_shadow

{ if MUTEX > 0 then violation(); fi;
MUTEX++;

}.
17. <write_shpw> -> creat_shadow { FD == F.fd; }

close_shadow-FD
{ MUTEX--; }

| Nil.

18. <pad> -> not_creat_shadow <pad> | Nil.

19. <rest> -> any_op <rest> | Nil.

Figure 5.6: A Trace Policy for Accesses to the Password �le.

fying the shadow password �le at the beginning. The local environment variable FD holds

a �le descriptor temporarily after hyperrule 16 recognizes creat shadow, which represents a

create operation on the �le /etc/shadow. It is used later in the token close shadow-FD for

recognizing the close operation on the same �le descriptor.

The start expression is <passwd > � jj <vi> �, which indicates that the input trace

consists of any number of passwd executions and vi executions. The symbol � applied to a

start notion means any number of the start notions in parallel.

5.4. Concurrent Access to the Password File 73

Hyperrules 5-12 describe the trace of a passwd execution, speci�ed by < passwd >.

The hyperrules do not model the execution of passwd in detail. Instead, only operations that

are related to modi�cation of the shadow password �le are modeled. Hyperrule 5 speci�es a

passwd execution as the concatenation of the hypernotions<begin>,<update>, and<end>,

which specify the initial sequence of operations, the sequence of operations passwd performs

to modify the shadow password �le, and the remaining sequence of operations. Hyperrule 6

describes the initial sequence of operations by recursively recognizing operations other than

the lock operations (speci�ed by not lock); the second alternative serves as the termination

condition of the �rst alternative. Hyperrule 7 describes the end sequence, which is a sequence

of any operations, represented by any op.

Hyperrule 8 describes the update sequence, which models the way that passwd modi�es

the shadow password �le. It locks the lock �le /tmp/.pwd.lock, opens the shadow password

�le for reading, renames the temporary �le into the shadow password �le, and unlocks

the lock �le. Hyperrule 9 recognizes the �rst lock operation, represented by the token

fcntl lock. Hyperrule 10 describes the open-read operation on the shadow password �le,

open r shadow. It also accepts other operations before it accepts the open-read operation.

It is because passwd may perform other operations between the lock operation and the

open-read operation. Similarly, Hyperrule 11 and 12 describe the rename-shadow operation

(open r shadow) and the unlock operation (open shadow stmp).

Hyperrule 10 has two attached actions; the �rst of these checks MUTEX and issues a

violation if the value is not zero. The second increases the value of MUTEX by 1, indicating

that the process is in the midst of modifying the shadow password �le. Hyperrule 12 has an

attached environment assignment which decreases MUTEX by 1, indicating that it has �nished

modifying the shadow password �le.

Hyperrules 13-19 specify the execution of vi. Hyperrules 13 speci�es the trace as the

concatenation of the initial sequence <initseq>, the update sequence <mod shpw>, and the

rest of the sequence <rest>. Hyperrule 14 describes <initseq> recursively, which is a

sequence of operations other then the open r operation on /etc/shadow. Hyperrule 15-18

describes the update sequence, which consists of an read operation followed by a sequence

of operations and then by a write operation, or just an empty sequence, which indicates

that an execution of vi may or may not modify the shadow password �le. Hyperrule 15

5.5. Other Policies 74

recognizes the read operation as open r on /etc/shadow. It has two environment assignments

attached; the �rst of these checks the value of MUTEX and reports an error if the value is greater

than 0; the second increases the value of MUTEX. Hyperrule 16 recognizes the write operation

to the shadow password �le, open w(/etc/shadow) and close(). The attached environment

assignment decrements MUTEX by 1. Hyperrule 17 recognizes the operations between the read

and write operation. Hyperrule 18 recognizes the rest of the operations after the modify

sequence.

5.5 Other Policies

This section illustrates how commonly used policies can be speci�ed using PE-grammars.

We deal with the Bell-LaPadula Policy and the Clark-Wilson Policy.

5.5.1 Bell-LaPadula Policy

Figure 5.7 shows the Multi-level Security (MLS) Policy [5] for a Unix system written as a

PE-grammar. The MLS policy requires that a user read only �les whose security level is

not greater than his current clearance level (Basic Security Property) and write only to �les

whose security level is not less than his current clearance level (*-Property).

The trace policy is concerned with the execution traces of all non-privileged programs

in the system, that is, those programs that must not violate the MLS policy. Lines 2-3

describe the environment variables. SL is an array for storing the security level of every

physical �le (uniquely identi�ed by an inode number) in the system. CL is an array which

stores the clearance level of each user in the system. The initial environment assignment

initializes the two arrays to correspond to the current security state of the system.

Line 4 de�nes the start expression as the hypernotion <opns>. Hyperrule 5 speci�es

the input as a repetition of valid operations represented by <opn>, where the second altern-

ative serves as the termination of the �rst recursive alternative. Hyperrules 5-9 de�ne valid

operations. Hyperrule 6 recognizes four di�erent types of operations. The �rst alternative

recognizes read operations read; the attached semantic action requires that the clearance

level of the user be not less than the security level of the �le. The second alternative re-

cognizes write operations write; the attached semantic action requires that the clearance

5.5. Other Policies 75

1. SPEC <*, NonPriv, *, *)>

2. ENV Slevel SL[Inode];
3. ENV Clevel CL[User];

4. SE : <opns>
5. <opns> -> <opn> <opns> | .
6. <opn> -> read { if CL[U] < SL[F] then

violation();
}

| write { if CL[U] > SL[F] then
violation();

}
| creat { SL[F] = CL[U];

}
| rdwr { if CL[U] != SL[O] then

violation();
}.

7. END;

Figure 5.7: An PE-grammar for a Multi-Level Security Policy.

level of the user should not exceed than the security level of the �le. The third alternative

recognizes create operations create; the attached semantic action sets the security level of

the �le to be the clearance level of the user. The fourth alternative recognizes operations

(rdwr) that give both read and write access on the �le to the process; the attached semantic

action requires that the clearance level of the user must be equal to the security level of the

�le as it has to satisfy both the basic security property and the *-property.

5.5.2 Clark-Wilson Policy

A Clark-Wilson Policy [9] requires that not only a �le (or a piece of data) should be accessed

by authorized users, but also using authorized programs (or transformation procedures).

That is, an access to an object is regulated based on the user and the program the user

is using. We present a Clark-Wilson Policy written as a parallel environment grammar in

Figure 5.8.

Line 1 shows the speci�cation header, which indicates that the policy is concerned with

every program in the system. Line 2 shows the environment variable CWMatrix, which is the

Clark-Wilson Access Matrix de�ning the accesses that the ordered pair (user, program) has

over objects. If a user U using a program P is authorized to access a �le F, then CWMatrix[U,

5.5. Other Policies 76

1. SPEC <*(*), U, *)>

2. ENV Bool: CWMatrix[ProgId, User, Inode];

3. <opns> -> <opn> <opns> | nil.
4. <opn> -> modify { if CWMatrix[S.prog, S.ruid, F.NodeId] != 1

violation(); fi;
}.

5. END

Figure 5.8: An PE-grammar for a Clark-Wilson Policy.

P, F] is 1, otherwise, it is 0. We assume that CWMatrix is initialized to correspond to the

current integrity policy.

The speci�cation describes the accesses a program has over objects. On line 4, when

a program modi�es a �le, the attached action raises a violation if the modi�cation is not

authorized. It consults CWMatrix to check whether a program used by a user is authorized

to modify a �le.

Chapter 6

Design and Implementation

Overview

Chapter 5 presented a language for specifying the trace policies and a method for checking

whether an execution trace conforms to a trace policy. Using the language, we are able

to specify trace policies for security-relevant programs to further restrict the behavior of

these programs in a system. In this chapter we present the design of a monitoring system,

Distributed Program Execution Monitor (DPEM), which monitors executions of programs

in a distributed system to detect behavior inconsistent with their trace policies. We also

describe a prototype implementation of the DPEM and share our experiences in using DPEM

to detect intrusions in computer systems.

6.1 Design of DPEM

The target platform is a distributed system which consists of several hosts connected by a

local area network. Each host in the system collects audit trails about the system operations

that occur in the host, which should include all system calls.

DPEM consists of a director, a speci�cation manager, trace dispatchers, trace senders,

and analyzers situated in various hosts in the distributed system. Our design combines

distributed data collection and data reduction with decentralized analysis. Our system is

the �rst that enable data analysis to be carried out concurrently on multiple hosts. Also,

each component is designed to be as simple as possible, and the amount of audit data that

77

6.1. Design of DPEM 78

Trace
Sender

Director

Dispatcher
Trace

AnalyzerAnalyzer
(123, rdist, ko, H1) (324, fingerd, ko, H1)

Analyzer

(*, vi, root, H1)
(*, passwd, *, H1)

Figure 6.1: Architecture of the Execution Monitor from the Perspective of a Host

needs to be transferred across the network is minimized.

Figure 6.1 depicts the architecture of DPEM from the perspective of a host in the

distributed system. It also shows the data ow among various components. Analyzers are

the components that perform the monitoring. An analyzer checks the execution trace of

a subject for violations with respect to a trace policy, where the policy is the basis for

the analyzer. Thus, an analyzer can be thought of as the runtime counterpart of a policy

speci�cation. The number of analyzers running in the system can change dynamically. In

Figure 6.1, three analyzers are running, and each of them is associated with a di�erent trace

policy. The �rst analyzer is associated with a trace policy concerning the behavior of a

single execution of rdist. The second analyzer is associated with a trace policy concerning

6.1. Design of DPEM 79

the behavior of a single execution of �ngerd. The third analyzer monitors all executions

of passwd and vi. Additional analyzers will be executed when a program that needs to be

monitored is executed, and running analyzers terminate when the subjects being monitored

exit. For instance, if a user executes rdist, an analyzer associated with the trace policy

concerned with rdist will be executed to monitor that execution of rdist. An analyzer

reports any erroneous behavior of the monitored subject to the director, which carries out

the appropriate response for the incident, such as notifying the system security o�cers and

�ring up additional analyzers. An analyzer can run on any host in the system. Therefore,

the analysis of audit data is distributed among multiple hosts in the distributed system.

A trace dispatcher must be presented on each host where analyzers are running. It is

responsible for sending the execution traces of the subjects to the analyzers running on the

host. There is one message queue per analyzer.

A trace sender runs on each host where an audit trail resides. It fetches the audit

records directly from the audit repository and sends the records to the trace dispatchers

(possibly situated on di�erent hosts) that request the records. It performs �ltering in that

only the records requested by the dispatcher will be sent, thus minimizing the network

bandwidth used by the monitoring system.

The speci�cation manager enables the system administrator to manage the security

speci�cations. An administrator can add, modify, or delete the security speci�cations in

the system through the speci�cation manager interface. The speci�cation manager starts

up analyzers to monitor program executions when programs that need to be monitored are

executed.

6.1.1 The Speci�cation Manager

The speci�cation manger keeps all the trace policies in a speci�cation database. Each trace

policy is associated with a selection expression indicating the subjects with which the policy

is concerned. At a high level, a subject could be one or more program executions, one

or more users, and one or more hosts. At the system level, a subject consists of one or

more distributed processes. When a new distributed process is created, i.e., a program

is executed, the speci�cation manager checks the selection expressions to see whether the

distributed process belongs to any of the monitored subjects. When necessary, it invokes

6.1. Design of DPEM 80

the corresponding analyzer to monitor the new process.

The elements in a selection expression are derived from the characteristics of the dis-

tributed system, which include the set of programs P , the set of users U , and the set of hosts

H. Also, two special symbols � and ? are used. Intuitively, they mean \all" and \any". A

selection expression is a list of selectors (s1; s2; � � � ; sn) where si (1 � i � n) is a selector of

the form

< PID; PS; US; HS >;

where

� PID is the distributed process selector, PID 2 f� ; ?g,

� PS is the program, PS 2 P [f� ; ?g,

� US is the user, US 2 U [f� ; ?g, and

� HS is the host, HS 2 H [f� ; ?g.

A selection expression identi�es one or more subjects. A selection expression without

the ? symbol de�nes a single subject; a selection expression consisting of ? de�nes a set of

subjects. The symbol ? in a selection expression is similar to a variable in a generic template,

which is given a value in an instantiation. For instance, < �; rdist; ko; ? > de�nes a set of

subjects which contain the subjects < �; rdist; ko; k2 >, < �; rdist; ko; blanc >, and so on,

with ? replaced by each of the hosts in the distributed system.

We give several selection expressions and the subjects they refer to below.

1. <?; rdist; �; � > de�nes a set of subjects. A subject here is a distributed process

executing the rdist program, and an analyzer monitors one execution of rdist. When

there are multiple executions of rdist, multiple analyzers will be executed, and each

monitors one execution.

2. < �; passwd; �; blanc > and < �; vi; root; blanc > de�nes all executions of passwd and

all executions of vi by root on the host blanc.

3. < �; ?; ko; � > de�nes all executions of a program by user ko on any host.

6.1. Design of DPEM 81

4. < �; �; ko; blanc > de�nes the user ko on the host blanc.

5. < �; �; �; k2 > : the host k2, i.e., all processes on k2.

Recall from Chapter 3 that an execution of a program is a distributed process. A

distributed process is identi�ed by a process ID (pid), the user it is representing, the program

it is executing, and the host on which it is running. Given a selection expression and

a distributed process identi�ed by its pid, user, program and host, a simple matching can

determine whether the distributed process belongs to any of the monitored subjects speci�ed

by a selection expression.

When the speci�cation manager receives an audit record indicating a process pid as-

sociated with a user u who executes a program p on a host h, it matches (pid; p; u; h) with

the selection expression of each trace policy. If the selection expression of a trace policy

matches the audit record, it is instantiated to a subject. A subject is de�ned by a sub-

ject expression, a selection expression that does not contain any ? symbol. For example,

the selection expression <?; rdist; �; � > of a trace policy P is instantiated to the subject

< 456; rdist; �; � > when a user executes rdist, and the pid of the process created is 456. If

there is no analyzer associated with P monitoring the subject, an analyzer will be started to

monitor the subject. In general, no two analyzers which are associated with the same trace

policy and are monitoring the same subject must exist simultaneously.

The part of a speci�cation manager that checks the trace and executes an analyzer

can be thought of as an analyzer, which monitors all program-execution operations in the

system.

6.1.2 Trace Dispatchers

A trace dispatcher is responsible for providing the execution traces needed by the attached

analyzers. Conceptually, it reads the audit trace from each of the hosts in the system, merges

them to form a single time-ordered audit trace of the whole distributed system, and �lters

the trace to obtain a subtrace required an analyzer.

The trace dispatcher keeps a process set for each analyzer it serves. The process set

contains the pid of processes with which the subject expression of the analyzer is associated.

The trace dispatcher updates the process sets as it processes the audit records.

6.1. Design of DPEM 82

Hyperparser Synchronization
Hyper

Dispatcher

Parallel Hyperparser

Semantic

ActionsAnalyzer
Lexical

Figure 6.2: Structure of an Analyzer

When it reads an audit record, it �rst identi�es the analyzers whose process sets contain

the pid associated with the audit record. It then dispatches the record to the input queue

of each of the identi�ed analyzers. If the record denotes a create-process operation, it adds

the process ID of the new process to each process set which contains the parent process. If

the record denotes a program-execution operation, it checks the subject expression of each

analyzer and adds the pid associated with the record to the process set of the analyzer if it

is not in the set already. When a process exits, it removes the process from all the process

sets.

A trace dispatcher gets audit records from the trace senders situated in various hosts.

Depending on the subjects monitored by the attached analyzers, a trace dispatcher may

or may not request audit records from the trace sender in a host. It identi�es the trace

senders from which audit records are needed and requests audit records from them only

when necessary.

6.1.3 Analyzers

An analyzer monitors the execution of a subject with respect to a trace policy. A di�erent

analyzer is constructed for each trace policy and is invoked when a subject that is to be

monitored starts. Each running analyzer has a subject expression which de�nes the subject

in the system it monitors.

Figure 6.2 shows the modules of an analyzer. When an analyzer starts, it �rst calls

the initialization procedure of the parallel hyperparser with information on the monitored

6.1. Design of DPEM 83

Shared CodeShared Memory

PM

Thread 1

PM

Thread n

PM

Thread n+1

PM

PM

Thread 0

Thread 2

Figure 6.3: Architecture of an Analyzer

subject to initialize the environment variables. It also calls the initialization procedure of the

lexical analyzer, the dispatcher module, and the semantic action module with information on

the subject it monitors. After the initialization, it passes control to the parallel hyperparser

which performs the audit data analysis with respect to the trace policy.

The design of the parallel hyperparser is based on the parallel environment grammar

in the trace policy, following the methodology presented in Section 4.4. A parallel hyper-

parser consists of a hyperdispatcher and several hyperparsers. The hyperdispatcher and the

hyperparsers are threads of the analyzer process. The address space of the process is shared

by all threads, which means that they share the same set of global variables. In addition,

they also share the same set of open �les, timers, signals, etc. Nevertheless, each thread has

6.1. Design of DPEM 84

its own private variables [51].

Figure 6.3 depicts the run-time structure of a parallel hyperparser. The set of hyper-

procedures is shared by all threads. When control is passed to the parallel hyperparser,

the analyzer process consists of only the hyperdispatcher thread. The hyperdispatcher reads

the audit records from the input queue, examines the records, and passes the records to the

appropriate hyperparser threads.

The hyperdispatcher creates hyperparser threads on demand. Consider an analyzer

corresponding to the trace policy for vi and passwd presented in Section 5.4. When a new

execution of vi/passwd starts, the hyperdispatcher creates a hyperparser thread to parse

the records associated with the process. When a hyperparser thread starts, it �rst calls the

initialization procedure to initialize its local environment variables. Then it reads its input

from a message queue.

We illustrate the structure of a parallel hyperparser written in the C programming

language using the PE-grammar in Section 5.4. The parallel hyperparser consists of a set

of lexical procedures and a set of (possibly recursive) hyperprocedures.

The parallel hyperparser contains 13 functions, corresponding to the hypernotions

<passwd>, <begin>, <update>, <end>, <Rd shpw>, <Wr shpw>, <vi>, <init>,

<mod shpw>, <rest>, <read shpw>, <write shpw>, and <pad>.

Lines 1-4 show the variable declarations for the environment variables used in the PE-

grammar. Global environment variables are declared as global variables in the program.

Local environment variables are declared as parameters in each hyperprocedure and are

passed in every subsequent call 1. In this way, each hyperparser thread can have its own

local environment variables.

1. typedef struct {
2. int FD;
3. } LOC_ENV;
4. int MUTEX = 0;

Lines 5-19 show the starting function and the hyperprocedure for the hyperrule

<passwd>! <begin> <update> <optupdate> <end>,

where <passwd> is a start notion. When the dispatcher creates a new hyperparser thread

corresponding to <passwd>, the newly created thread calls the Threadparser function with a

1All local environment variables are place into a single structure, for convenience.

6.1. Design of DPEM 85

pointer to the hyperprocedure corresponding to the start notion < passwd >. The Thread-

parser function has a local variable lenv, a structure containing all the local environment

variables. When invoked with a pointer to a hyperprocedure, Threadparser in turns calls the

given hyperprocedure with lenv as the parameter, which is passed in the subsequent calls

so that the hyperprocedures subsequently called can access the local environment variables.

Since the hyperrule does not contain any environment assignments or semantic actions,

it simply calls the four hyperprocedures corresponding to the four hypernotions on the right-

hand side of the rule.

5. Threadparser(startHP)
6. int *(startHP)();

7. {
8. LOC_ENV lenv;
9. int i;
10. i = (*startHP)(&lenv)
11. }

12. HP_passwd(lenvp)
13. Local_Env *lenvp;

14. {
15. HP_begin(lenvp);
16. HP_update(lenvp);
17. HP_optupdate(lenvp);
18. HP_end(lenvp);
19. };

Lines 20-28 show the hyperprocedure corresponding to the hyperrule

<write shpw> ! creat shadow f FD == $F.fd g close shadow FD f MUTEX-- g

The hyperprocedure �rst calls the lexical procedure corresponding to the token creat -

shadow. It then executes the environment assignment on Line 24. It calls the lexical proced-

ure corresponding to the token close shadow FD, which recognizes the audit record whose

event is close, whose path �eld is /etc/shadow, and whose fd �eld (the �le descriptor) is equal

to the environment variable FD.

20. HP_write_shpw(lenvp)
21. Local_Env *lenvp;

22. {
23. LEX_creat_shadow(&token);
24. lenvp->FD = token->fd;
25. LEX_close_shadow(&token, lenvp->FD)
26. MUTEX--;
27. return(SUCCESS);
28. };

6.2. Implementation Overview: A Unix Prototype 86

Synchronization Module

The synchronization module provides support for synchronization among the hyperparser

threads. There is a global array CT for storing the time stamp of the current token each

hyperparser is processing; CT [i] stores the current token of hyperparser i. When thread j

needs to wait, it checks all times CT . If all of them are greater than the current token time

of j, it proceeds. Otherwise, it sends a message to the synchronization thread with the time

of the current token and sleeps.

The synchronization thread maintains a synchronization structure for each waiting

hyperparser. The structure contains the current token time of the waiting hyperparser and

an array of bits for each hyperparser thread. For the waiting hyperparser i, bit j indicates

whether hyperparser j is processing a token whose time is greater than the current token

time of hyperparser i. It checks CT periodically and clears bit j if thread hyperparser j

is processing a token whose time is greater than the current token time of hyperparser i.

When all bits are clear, it wakes up hyperparser i.

The lexical analyzer scans the source input for tokens of the parallel environment

grammar. The hyperparser invokes the lexical analyzer with a speci�cation of the expected

token type, and the lexical analyzer returns a success/failure indication together with the

token value in case of success. The lexical analyzer is constructed based on the lexical

description in the trace policy, following the approach shown in Section 4.4.4. The semantic

action module contains the necessary procedures for performing the semantic actions. It

includes procedure violation() which reports a violation and pertinent information to the

security o�cer. The function does not terminate the parser; it allows parsing to continue.

In general, users can code up their own procedures for use in semantic actions.

6.2 Implementation Overview: A Unix Prototype

We built a prototype execution monitor for a single host based on the design above. It

serves as a proof of concept implementation for our approach.

The prototype is written in the C programming language [29]. The C programming

language was chosen because of its wide-spread use, free availability, and portability across

di�erent Unix platforms. The prototype runs under the Solaris 2.4 operating system and

6.2. Implementation Overview: A Unix Prototype 87

uses the auditing services provided by the Sun BSM audit subsystem [50].

The BSM audit subsystem provides a log of the activities that occur in the system.

It records the sequence of system events in the order of occurrence. Thus, the audit trails

contain a trace of the system. An audit record contains information such as the process id

(pid) and the user id (uid) of the process involved as well as the path name, the inode, and

the permission mode of the �les being accessed. However, it does not contain information

about the program the process is running. Therefore, additional preprocessing is needed to

associate a program with each audit record. The audit subsystem lets administrators decide

what subjects to audit, and manage the audit data. We con�gured the audit system to audit

all successful operations for all users in the system, including pseudo users 2. Appendix A

provides a description of the BSM audit subsystem.

The prototype consists of a trace dispatcher and a number of analyzers. The trace

dispatcher reads audit records directly from the audit �les and dispatches the records to the

appropriate analyzers.

6.2.1 The Audit Record Preprocessor

The audit record preprocessor is part of the trace sender in our design. It serves two pur-

poses. First, it �lters audit records that are irrelevant to the monitoring system. Appendix

B lists the audit records used by the prototype. Second, it translates the BSM audit records

into the format required by the monitoring system. Our design requires that each audit

record should be associated with the program the process is executing. The audit record

preprocessor associates a program with an audit record as follows.

The audit record preprocessor keeps an array pg that holds the program each process

is currently executing. When it reads an audit record associated with process ID x, it

associates the program in pg[x] with that record. It monitors all exec and fork calls and

updates the array accordingly:

� exec: when a process invokes a program P, the program associated with the new

process becomes P.

2In Unix, pseudo users are user accounts that are not associated with any real users. They are created
for administrative purposes. For instance, many daemons (e.g., inetd) are running as pseudo users.

6.3. Experience 88

� fork : when a new process is created, the program associated with the new process is

that of its parent.

When the execution monitor is started, several processes are typically executing in

the system. It is impossible to trace back how the processes got created from the audit

trail as the audit records could have been modi�ed or deleted. To obtain the program each

existing process is executing, the audit record preprocessor inspects the kernel memory and

initializes the array pg when it starts up.

6.2.2 The Dispatcher

The dispatcher contains all the trace policies. It monitors all fork and exec calls. When a

new process is created, it checks the selection expressions of the trace policies to determine

if a new analyzer should be executed. It checks all subject expressions to determine whether

to dispatch future records of the process to the analyzers.

6.2.3 Analyzers

In our prototype, each analyzer is a separate process. Each speci�cation is translated to a

C program equivalent to a parallel hyperparser. When the dispatcher needs to start up an

analyzer, it forks and lets the child process execute the C program.

Our prototype maintains a table of registered programs. Each entry contains the name

of a program, as well as the pathname, and the inode of the physical �le that contains the

program. In the identi�cation of a program started by an execve event, the inode number

in the record is used as the key because a pathname is not a unique identi�er of a program.

For example, an attacker can create a hard link to a setuid root program and execute the

hard link, in e�ect executing the setuid root program. Yet the pathname of the execve record

would not indicate an execution of a setuid root program.

6.3 Experience

This section describes our experience with the prototype. We have written trace policies

for many setuid root programs and servers in Unix, including the programs described in

6.3. Experience 89

Chapter 2. Using these trace policies, we tested the prototype with three di�erent kinds of

intrusions. These intrusions exploit vulnerabilities in rdist, sendmail, and binmail described

in Chapter 2.

The experiments described below were performed on a Sun SPARCstation 5 with

32MB of memory running Solaris 2.4. Auditing was enabled with the default con�guration,

which logs all successful events, and all network daemons, including inetd, �ngerd, rlogind,

and telnetd. The original version of rdist and sendmail were replaced by the SUN 4.3

versions, as their vulnerabilities have been removed in Solaris 2.4. The execution monitor

runs continuously. It analyzes the audit data generated by the audit system in real time and

reports any violations to the security speci�cation.

The �rst intrusion was simulated using a Perl [54] script. The script essentially per-

forms the operations that exploit the vulnerability in rdist described in Section 2.1. The

script was executed when the execution monitor was running. Figure 6.4 shows the report

generated by the execution monitor after the program was attacked. The intrusion simulated

by the script actually produces two violations. The �rst is that rdist changes the ownership

of a �le not created by the program. The second is that rdist change the permission mode of

/usr/bin/exsh. The report shows the time each violation was detected and the time the viol-

ation occurred. The time of detection was obtained by the gettimeofday() library call when

the hyperparser executed a semantics action that called the violation() function. The time

of the operation was obtained from the audit records. The time elapsed between the occur-

rence of the violation and the detection was approximately 0.06 second. Also, no noticeable

degradation of performance was noted.

The second and third intrusions were simulated using a Perl script and a C program

respectively . The second intrusion exploits a vulnerability in the sendmail program that

causes sendmail create a setuid shell in the /tmp directory that is owned by root and is

publicly executable. The third intrusion causes binmail overwrite the shadow password �le

with the contents the attacker desires. The execution monitor detected these intrusions

within 0.1 second.

We also tested the prototype with the scenario that involves simultaneous modi�cation

of the password �le. We used the trace policy concerned with passwd and vi described in

Section 5.4. The speci�cation requires that only one execution of passwd or vi can modify

6.3. Experience 90

% rdistattack /bin/sh
% /bin/sh

VIOLATION detected Tue May 14 16:52:20 1996 + 0.894236000 sec
--
Tue May 14 16:52:20 1996 + 0.820003000 sec
lchown, (5456, 5000, 0, rdist), nodeid: 27, path: /tmp/rdista05456

VIOLATION detected Tue May 14 16:52:20 1996 + 0.972195000 sec
--
Tue May 14 16:52:20 1996 + 0.830008500 sec
chmod, (5456, 5000, 0, rdist), nodeid: 4149, path: /usr/bin/exsh, mode: 4777

Figure 6.4: A Report Generated by the Execution Monitor

the password �le. The scenario was simulated manually. On one window, the attacker

logged on as the superuser and executed the command vi /etc/shadow to modify the shadow

password �le. Meanwhile, the author logged on as a normal user on another winder and

executed passwd to change the password. After passwd obtained the old password and the

new password and started modifying the password �le, the execution monitor detected the

violation.

Figure 6.5 shows the report generated by the execution monitor.

VIOLATION detected Tue May 14 16:47:27 1996 + 0.884425000 sec
--
Tue May 14 16:47:27 1996 + 0.830000500 sec
open_r, (5379, 768, 0, passwd), nodeid: 4251, path: /etc/shadow

Figure 6.5: A Report of the Synchronization Violation

The execution monitor detected the violation approximately 0.05 seconds after passwd

opened the shadow password �le.

Chapter 7

Discussion and Future Work

7.1 Discussion

We presented a new approach to intrusion detection: speci�cation-based monitoring. We

identi�ed aspects of program behavior that are security-relevant and developed a formal

policy language for describing the desirable behavior of programs. In addition, we developed

a prototype speci�cation-based monitoring system that is able to detect attacks exploiting

the vulnerabilities of privileged programs in Unix. Below we discuss our work and compare

it with other approaches.

7.1.1 Limitations

Similar to other monitoring approaches using audit trails, the capability of our approach is

limited by the information contained in the audit trails. In current auditing systems, audit

trails contain only limited information about events that occur. For example, an audit record

typically indicates an open operation on a �le for writing, but not the data written to the �le.

The limited information restricts the capabilities of the monitoring system. For instance,

a simple but e�ective trace for the passwd program is that a particular passwd invocation

should modify only the password data corresponding to the invoker in the password �le.

However, our execution monitor cannot enforce this trace policy because it cannot obtain

the information solely from the Solaris BSM audit trails. Nevertheless, active diagnosis

of the system, such as reading the contents of the password �le after it is being modi�ed,

may be used to obtain supplementary information. The active diagnosis can be encoded as

91

7.1. Discussion 92

semantic actions in the grammar rule in an on-line analysis.

The violations that can be detected by the execution monitor depend on the set of trace

policies used. In our approach, the set of trace policies restrict the behavior of programs

beyond that enforced by the protection mechanisms built in the operating system. The trace

policies we speci�ed for setuid root programs in Unix are able to catch all attacks to such

programs known to us. Obviously, one cannot guarantee that the trace policies can catch

all possible attacks to these programs. Further research is needed to identify a methodology

for determining whether a given set of trace policies is adequate for a system. On the other

hand, we can write trace policies of programs that can be used to detect all known attacks

that exploit their vulnerabilities.

Similar to other intrusion detection approaches, our approach is not a panacea to the

intrusion problem. Attacks that do not produce state changes (e.g., passive wiretapping) or

that require massive behavioral analysis can not be detected. This approach also assumes

integrity of the audit data. Thus, attacks that involve spoo�ng, which produce the same

audit trail but from a di�erent source, may not be detected.

Last, our approach is a detection approach, which raises an alarm when an intrusion

occurs. Our approach can, at best, detect security violations, and it is up to the security

o�cer to deal with each detected violation.

7.1.2 Comparison to Misuse Detection

In misuse detection, the goal is to identify actions (or misuse signatures) that represent

intrusive activities and to check for occurrences of these actions in the audit trails. Misuse

signatures are described by expert-system rules, state-transition diagrams, and patterns in

Petri networks.

The speci�cation-based approach can be thought of as the dual of misuse detection.

A misuse signature describes undesired behavior in a system while a trace policy describes

the desirable behavior of a subject. In particular, our approach focuses on the desirable

behavior of security-critical programs (e.g., privileged programs) in a system. On way to

specify the desirable behavior of a program is to enumerate the operations the program needs

to perform in order to accomplish its function.

A misuse detector matches a signature with the whole system trace to identify intrusions

7.1. Discussion 93

while an analyzer in a speci�cation-based execution monitor parses the trace of a subject

to determine whether the subject conforms to a trace policy. Although matching of di�erent

signatures can be distributed over multiple hosts, each misuse detector requires the whole

system trace. In a distributed system with many hosts, the whole system trace would be huge

and cannot be processed by a misuse detector in real time. In our approach, an analyzer

monitors the execution of a particular subject, only the audit records associated with the

subject are needed by the analyzer

In misuse detection, signatures are mostly driven by previous attacks or known vul-

nerabilities. Although possible, it is not intuitive to encode a policy as misuse signatures.

Our approach is more policy-oriented; a trace policy for a subject is speci�ed based on

the functionality of the subject and the system security policy. Therefore, it can succeed

in catching attacks that exploit unknown vulnerabilities in programs. In general, given an

intrusion represented by a sequence of actions, we can write a PE-grammar that rejects the

traces of a subject that contain this sequence of actions.

7.1.3 Comparison to Type Enforcement

In the type-enforcement approach [8], accesses to objects by a subject are restricted by a

type-enforcement policy based on the domain of the subject and the type of the object. Each

subject is running in a domain and each object is assigned to a �xed type when it is created.

The Domain and Type Enforcement (DTE) approach [3] applies type enforcement to

a Unix system. It takes the process hierarchy and the �le hierarchy of current systems into

consideration. The type enforcement policy is speci�ed in a DTE language. Each domain

is associated with one or more entrance programs, when executed by a subject/process

switches, will move the subject/process to that domain. In e�ect, the type enforcement

policy restricts the access of a process based on the program it is executing.

The DTE approach is similar to our approach as it further restricts the accesses of a

program. In general, a DTE policy can be speci�ed by a set of trace policies in our approach.

A trace policy can specify the valid accesses of a program, but also the valid ordering of

the accesses. Therefore, a trace policy is more expressive than a DTE policy regarding the

speci�cation of the behavior of a program.

One di�erence between DTE and our approach is that DTE is a preventive approach.

7.1. Discussion 94

Operations performed by a program during execution that violate the DTE policy are denied

by the DTE subsystem, while ours is a detection approach that raises a warning when a vi-

olation occurs. Nevertheless, one can incorporate our parsing mechanism into a reference

monitor that prohibits any operations that are not accepted by the parser (i.e., those oper-

ations that are in violation of a trace policy).

7.1.4 Experience in Specifying Trace Policies

We speci�ed trace policies for approximately 15 privileged programs in Unix. These pro-

grams include setuid root programs and server programs normally executed by root. Our

experience in specifying the trace policies of these programs are summarized below.

Identifying the legal operations of a program is in general a good approach to specifying

a trace policy for a program. It is not di�cult to enumerate the operations that a privileged

program needs to perform in order to accomplish its function and capture valid sequences

of these operations in a trace policy. Since privileged programs are designed to accomplish

speci�c functions, their expected behaviors are normally simple. Most known attacks that

exploit vulnerabilities in privileged programs cause the programs to perform operations other

than those intended. However, this approach does not work for all privileged programs. For

some programs, the allowable operations may be a function of the input to the program,

such as the command line parameters, interactive input, or �les accessed by the program.

With the exception of the command line parameters, the data read by a program is not

generally available from the audit trails, or it is too application-speci�c to be dealt with

generally. For programs such as login and command interpreters, it is not feasible to specify

just the system calls and �les accessed by these programs. For instance, the login program

authenticates a user and gives him a shell. We cannot know from the accesses performed

by the program whether the authentication is performed correctly, for example, the login

program could contain a Trojan horse such that certain users are incorrectly authenticated.

Our system will not detect such a vulnerability as it would not involved accesses inconsistent

with the speci�cation we would write for this program.

A Trace Policy for a program may be site-speci�c. The desirable behavior of a program

at a particular site can be di�erent from that intended by the designer. Sometimes, the

di�erences are minor, such as the locations of speci�c �les. In this case, the same trace policy

7.2. Conclusions 95

can be used for di�erent sites, and the environment variables in the policy parameterize the

policy for di�erent sites. Sometimes, the di�erences can be signi�cant. For example, the

http daemon (or httpd) is allowed to access the �les corresponding to the locations speci�ed

by the browser connected to it. However, a system administrator may want to restrict the

accesses of his site's daemon. Therefore, two di�erent trace policies for the same program

may be used at two di�erent sites.

7.2 Conclusions

This dissertation described a new approach to security monitoring. The main idea is to

specify the desirable behavior of security-critical programs in a system and to monitor their

executions for behavior inconsistent with the speci�cations. The idea of attempting to spe-

cify the desirable behavior of programs (the speci�cation-based approach) is unique among

other intrusion-detection approaches. It is a more policy-driven and systematic approach to

monitoring the security of a system than current approaches.

We use grammars as speci�cations of the valid traces of programs, which has the

advantage that formal languages are a mature discipline and many results can be readily

applied. We developed a language framework, parallel environment grammars, for specifying

trace policies. Such a grammar is able to describe a parametric, context sensitive language

(a trace policy), yet has an e�cient algorithm for recognizing the generated sentences in

practically important cases. Our language framework permits speci�cations of many di�er-

ent kinds of trace policies in a precise and compact way. We presented a parallel parsing

method for recognizing the generated traces e�ciently based on recursive-decent parsing.

We presented a distributed design of a monitoring system that combines decentralized

analysis, distributed audit collection, and data reduction. Our design minimizes the amount

of data that needs to be transferred across the network. With the language, we speci�ed the

trace policies for a number of programs (privileged and non-privileged) in Unix. We are able

to detect known attacks that exploit vulnerabilities in privileged programs. The monitoring

system also has the potential to detect attacks that exploit unknown vulnerabilities in such

programs.

7.3. Future Work 96

7.2.1 Contributions

The work in this dissertation makes two major contributions. The �rst is the approach

of speci�cation-based monitoring, a novel approach to intrusion detection. The approach

pinpoints one of the major security problems { compromises caused by security aws in

security-critical programs. A major breakthrough of this approach is its potential to detect

unseen attacks in computer systems. The approach leads itself naturally to a decentralized

analysis system, which enhances the scalability of the monitoring system. It is also the �rst

monitoring approach that addresses security problems due to synchronization in concurrent

programs. Second, the parallel environment grammar developed in this dissertation is the

�rst grammar that is able to describe merges of multiple streams. The grammar can describe

valid synchronization behavior among concurrent processes. We envision the use of parallel

environment grammars as a speci�cation tool for describing parallel computations.

7.3 Future Work

This section discusses future research our dissertation suggests.

7.3.1 On the Speci�cation-based Approach

Our execution monitor uses system audit trails to monitor the activities of programs. As

discussed in Section 7.1, current audit trails do not provide su�cient information about the

data being read or written in an operation. In many cases, this limitation a�ects the cap-

abilities of a monitoring system that uses the audit trails. Therefore, other data sources are

useful for monitoring the activities of a system. Network audit trails as well as application-

level audit trails should be considered. For example, the presence of a system call does not

reveal the details of a command that a server receives from a client. Therefore, information

from a network audit trail may be valuable. To use and trust application-level audit trails,

further research is needed on protecting and managing them. Also, we need to combine the

information obtained from di�erent audit trails to form a single operation sequence.

The speci�cation-based detection approach can also be applied to monitor network

components or network services that are relevant to security, such as domain name services

(DNS), network �le systems, and routers. For instance, the speci�cation of the desirable

7.3. Future Work 97

security-relevant behavior of domain name servers can be written and the actual behavior

of these servers can be monitored for violations of this speci�cation. For example, data

received by a DNS server must be consistent with the data provided by the authoritative

servers; the security-relevant behavior is related to the content of the messages transferred

between the servers. To monitor these components, network audit trails are needed because

system audit trails normally do not reveal the content of a message being sent or received

from a server process.

7.3.2 On the Implementation and Testing

We presented a distributed design of an execution monitor, but we implemented a proto-

type for only a single host. Also, the analyzers are developed manually from the corres-

ponding security speci�cations following the approach described in Section 6.1.3, a tedious

and time-consuming process when the security speci�cations are lengthy. Nevertheless, the

implementation serves as a proof of concept of our approach.

One future e�ort is to implement a real distributed monitoring system based on our

design. The distributed monitoring should work on a large distributed system and have

e�cient communication mechanisms. It should have a parser generator that translates a

parallel environment grammar automatically into the corresponding parallel hyperparser.

In addition, more testing of execution monitoring is needed. In particular, it is im-

portant to evaluate the performance of the monitoring system in a very large distributed

system. The test should clarify how large a system the monitoring system can handle. The

performance evaluation should include CPU time, memory requirements, network bandwidth

consumed by the system, and the response time of normal users. Criteria for distributing

the load of the analyzers among di�erent machines are also needed.

7.3.3 On Applications to Other Areas

We developed a language framework for specifying trace policies of programs. Although we

employed a monitoring approach to enforce the trace policies, preventive approaches can be

taken to enforce the trace policies as well.

Parallel environment grammars can be used to specify the behavior of parallel pro-

cesses. We envision that these grammars can evolve as tool for functionally specifying

7.3. Future Work 98

distributed programs.

7.3.4 On Reasoning about the Security of the System

Our approach enables a system administrator to specify trace policies for subjects (e.g.,

users or programs) and monitor their executions for violations of the policies. Subjects in

the system are further restricted by the trace policies, in addition to the basic policy enforced

by the built-in protection mechanisms. Given a set of trace policies for subjects, the overall

policy of the system could be investigated. Such research can guide us in the speci�cation of

the trace policies for di�erent subjects and in determining the degree of security in a system.

A Unix security model that permits reasoning about the security should be developed.

The model should capture the relevant states of a Unix system, the basic protection mech-

anisms, (i.e., the permission bits), and the trace policies of subjects. It should also permit

the determination of whether security can be compromised, and of the ways in which it can

be compromised.

Bibliography

[1] D. Anderson, \Safeguard �nal report: Detecting unusual program behavior using the
NIDES statistical component," Technical report, Computer Science Laboratory, SRI
International, Menlo Park, CA, December 1993.

[2] J. P. Anderson, \Computer security threat monitoring and surveilance," Technical re-
port, James P. Anderson Co., Fort Washington, PA, April 1980.

[3] L. Badger et al., \Practical domain and type enforcement for UNIX," in Proceedings
of the 1995 Symposium on Security and Privacy, (Oakland, CA), May 8-10, 1995,
pp. 66{77.

[4] R. W. Baldwin, \Rule based analysis of computer security," Technical report
MIT/LCS/TR-401, Laboratory for Computer Science, Mass. Inst. of Tech., Cambridge,
MA, March 1988.

[5] D. Bell and L. LaPadula, \Secure computer systems: Mathematical foundations and
model," Technical report M74-244, The MITRE Corp., Bedford, MA, 1973.

[6] K. Biba, \Integrity considerations for secure computer systems," Technical report ESD-
TR-76-372, Air Force Electronic Systems Division, Hanscom AFB, MA, 1977.

[7] G. V. Bochmann, \Semantic evaluation from left to right," Communications of the
ACM, vol. 19, pp. 55{62, Feburary 1976.

[8] W. E. Boebert and R. Y. Kain, \A practial alternative to hierarchical integrity policies,"
in Proceedings of the 8th National Computer Security Conference, (Gaithersburg, MD),
October 1985, pp. 18{27.

[9] D. Clark and D. Wilson, \A comparsion of commercial and military computer security
policies," in Proceedings of the 1987 Symposium on Security and Privacy, (Oakland,
CA), April 27-29, 1987, pp. 184{194.

[10] Computer Emergency Response Team (CERT), Pittsburgh, PA, CA:94-
01 Ongoing Network Monitoring Attacks, Feburary 1994. Available from
ftp://info.cert.org/pub/cert advisories/.

99

Bibliography 100

[11] Computer Emergency Response Team (CERT), Pittsburgh, PA, CA:95-04 NCSA
HTTP Daemon for UNIX Vulnerability, February 1995. Available from
ftp://info.cert.org/pub/cert advisories/.

[12] Computer Emergency Response Team (CERT), Pittsburgh, PA, CA:95-13 Sys-
log Vulnerability - A Workaround for Sendmail, October 1995. Available from
ftp://info.cert.org/pub/cert advisories/.

[13] D. Crowe, \Generating parsers for a�x grammars," Communications of the ACM,
vol. 15, no. 8, pp. 728{734, 1972.

[14] D. Denning, Cryptography and Data Security. Menlo Park, CA: Addison-Wesley Pub-
lishing Company, 1982.

[15] D. E. Denning, \An intrusion-detection model," in Proceedings of the 1986 Symposium
on Security and Privacy, (Oakland, CA), April 7-9, 1986, pp. 118{131.

[16] D. E. Denning, \An intrusion-detection model," IEEE Transactions on Software En-
gineering, vol. 13, no. 2, pp. 222{232, 1987.

[17] J. Doak, \The application of feature selection: A comparision of algorithms, and the
application of a wide area network analyzer," Master's thesis, Dept. of Comp. Sci.,
University of California, Davis, 1992.

[18] M. W. Eichin and J. A. Rochlis, \With microscope and tweezers: An analysis of the
internet virus of novermber 1988," in Proceedings of the 1989 Symposium on Security
and Privacy, (Oakland, CA), May 1-3, 1989, pp. 326{343.

[19] D. Farmer and E. Spa�ord, \The COPS Security Checker System," in Summer USENIX
Conference, (Anaheim, CA), June 11-15, 1990, pp. 165{170.

[20] J. Frank, \Arti�cial intelligence and intrusion detection: Current and future directions,"
in Proceedings of the 17th National Computer Security Conference, (Baltimore, MD),
October 11-14, 1994.

[21] T. D. Garvey and T. F. Lunt, \Model based intrusion detection," in Proceedings of the
14th National Computer Security Conference, (Washington, D.C.), October 1-4, 1991,
pp. 372{385.

[22] B. Hebbard et al., \A penetration analysis of the michigan terminal system," ACM
Operating System Review, vol. 14, no. 1, pp. 7{20, 1980.

[23] A. Heydon, \Specifying and checking Unix security constraints," in Proceedings of
the 3rd USENIX Unix Security Symposium, (Baltimore, MD), September 14-16, 1992,
pp. 211{226.

Bibliography 101

[24] K. Ilgun, \USTAT: A real-time intrusion detection system for Unix," in Proceedings
of the 1993 Symposium on Security and Privacy, (Oakland, CA), May 24-26, 1993,
pp. 16{28.

[25] K. Ilgun, R. Kermmerer, and P. Porras, \State transition analysis: A rule-based intru-
sion detection approach," IEEE Transactions on Software Engineering, vol. 21, no. 3,
1995.

[26] K. Jackson, D. DuBois, and C. Stallings, \An expert system application for network
intrusion detection," in Proceedings of the 14th National Computer Security Conference,
(Washington, D.C.), October 1-4, 1991.

[27] H. S. Javitz and A. Valdes, \The NIDES statistical component description and justi�c-
ation," Technical report, Computer Science Laboratory, SRI International, Menlo Park,
CA, March 1994.

[28] K. Jensen, Coloured Petri Nets { Basic concepts I. New York: Springer Verlag, 1992.

[29] B. Kernighan and D. Ritchie, The C Programming Language. Englewood Cli�s, NJ:
Prentice Hall, 1978.

[30] J. Kim and E. Spa�ord, \The design of a system integrity monitor: Tripwire," Master's
thesis, Department of Computer Science, Purdue University, 1993.

[31] C. Ko et al., \Analyzis of an Algorithm for Distributed Recognition and Accountab-
ility," in 1st ACM Conference on Computer and Communication Security, (Fairfax,
MD), November 3-5, 1993.

[32] S. Kumar, Classi�cation and Detection of Computer Intrusions. PhD thesis, Depart-
ment of Computer Science, Purdue University, August 1995.

[33] B. W. Lampson, \Dynamic protection structures," in Proceedings of the AFIPS Fall
Joint Computer Conference, vol. 35, (Montvale, NJ), AFIPS Press, 1969, pp. 27{38.

[34] B. W. Lampson, \Protection," in Proceedings of the Fifth Annual Princeton Conference
on Information Sciences and Systems, 1971, pp. 437{443. Reprinted in Operating
System Review 8, 1 (Jan. 1974), 18-24.

[35] R. R. Linde, \Operating system pentration," in National Computer Conference, vol. 44,
(Montvale, NJ), AFIPS Press, 1975.

[36] D. Longley and M. Shain, Data and Computer Security: Dictionary of Standards,
Concepts, and terms. New York: Stockton Press, 1987.

[37] T. Lunt et al., \A Real-time Intrusion Detection Expert System (IDES)," Technical
report, Computer Science Laboratory, SRI International, May 1990.

Bibliography 102

[38] T. Lunt et al., \A real-time intrusion detection expert system (IDES) - �nal technical re-
port," Technical report, Computer Science Laboratory, SRI International, Menlo Park,
CA, Feburary 1992.

[39] NASA, Lyndon B. Johnson Space Center, Information System Directorate, Software
Technology Branch, Clips Version 5.1 User's Guide, March 1992.

[40] P. Neumann et al., \A provably secure operating system: The system, its applications,
and proofs," Technical report CSL-116, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, May 1980.

[41] P. Porras and R. Kemmerer, \Penetration state transitin analysis: A rule-based in-
trusion detection approach," in Proceedings of the 8th Computer Security Application
Conference, (San Antonio, TX), Novermber 30 - December 4, 1992, pp. 220{229.

[42] M. Ruschitzka and L. Clevenger, \Heterogeneous data translations based on envir-
onment grammars," IEEE Transactions on Software Engineering, vol. 15, no. 10,
pp. 1236{1251, 1989.

[43] J. M. Rushby, \Design and veri�cation of secure systems," Proceeding of the 8th
Symposium on Operation System Principles, ACM Operating System Review, vol. 15,
December 1981.

[44] J. D. Saltzer and M. D. Schroeder, \The protection of information in computer systems,"
Proceedings of the IEEE, vol. 63, no. 9, 1975.

[45] M. Sebring et al., \Expert systems in intrusion detection: A case study," in Proceedings
of the 11th National Computer Security Conference, October 1988, pp. 74{81.

[46] S. Snapp et al., \DIDS (distributed intrusion detection system){motivation, architec-
ture and an early prototype," in Proceedings of the 14th National Computer Security
Conference, (Washington, D.C.), October 1-4, 1992.

[47] E. H. Spa�ord, \The internet worm program: An analysis," ACM SIGCOM, vol. 19,
no. 1, 1989.

[48] Sun Microsystem, Man Pages: Rdist - remote �le distribution program.

[49] Sun Microsystems, Sun Security Bulletin #120 - 135.

[50] SunSoft, Mountain View, California, Solaris SHIELD Basic Security Module, August
1994.

[51] A. Tanenbaum, Modern Operating Systems. Englewood Cli�s, NJ: Prentice-Hall, Inc.,
1992.

Bibliography 103

[52] H. Teng, K. Chen, and S. Lu, \Adaptive real-time anomaly detection using inductively
generated sequential patterns," in Proceedings of the 1990 Symposium on Security and
Privacy, (Oakland, CA), May 7-9, 90, pp. 278{284.

[53] H. Vaccaro and G. Liepins, \Detection of anomalous computer session activity," in
Proceedings of the 1989 Symposium on Security and Privacy, (Oakland, CA), May 1-3,
1989, pp. 280{289.

[54] L. Wall and R. L. Schwartz, Programming Perl. Sepastopol, CA: O'Reilly and Associ-
ates, Inc., 1992.

Appendix A

A Brief Note on the Audit

Subsystem in Solaris

This chapter describes the audit subsystem in the SUN Solaris 2.4 Operating System (hence-

forth Solaris). The audit mechanism enables logging of security-relevant events that have

occurred in the system. The log, or the audit trail, provides a history of system execution

that enables an administrator to review the cause of a security violation, and to trace it

back to the user accountable. The audit subsystem allows an administrator to select which

activities to monitor. The selection can be �nely tuned to select what to audit for each

individual user. It provides utilities for administrators to inspect the audit trail and �lter

irrelevant data. All administration commands, e.g., enabling and disabling auditing, that

are associated with auditing can be performed only by the superuser.

A.1 Basics

Auditing is enabled and disabled by starting and terminating the audit daemon. The audit

daemon is a daemon process that runs in the background. It is responsible for reading audit

data from the kernel and writing the data into audit �les. The audit daemon runs as root.

All �les it creates are owned by root and readable only by root. The audit daemon itself is

not being audited.

The system actions that are auditable are de�ned as audit events, speci�ed in the

audit event �le. Each audit event is identi�ed by a unique audit event ID. There are two

104

A.1. Basics 105

categories of audit events: kernel events and application-level events. Kernel events are gen-

erated by the kernel when kernel-level system actions such as system calls occur. Application-

level events are events generated by applications, which represent the occurrence of abstract

actions within an application. Kernel events have event IDs from 0 to 2047, while application

events have event IDs from 2048 to 65535. There are 215 kernel events and 16 application

level events con�gured. The de�nition of kernel events cannot be modi�ed without changes

to the kernel. Additional application events can be de�ned by modifying the �le audit event.

In general, most audit events are attributable to individual users who are accounted

for their actions. However, some events are not attributable because they occur at the kernel

interrupt level or before a user is identi�ed and authenticated (e.g., the process running the

login program or daemon processes).

Each audit event is also de�ned as belonging to an audit class or classes. When naming

a class, one can simultaneously address all events belonging to the class, for instance, in

selecting audit events to audit. The system allows a maximum of 32 audit classes to be

de�ned, and 19 of them are prede�ned, including a class null which contains no events and

a class all which contains all de�ned events. The mapping of audit events to classes is

speci�ed in audit event. The class de�nition is kept in the �le audit class. New classes can

be de�ned and existing classes can be rede�ned by modifying the �le.

The activities to audit are preselected by setting up the system-wide audit ags in the

�le audit control and audit ags of individual users in the �le audit user. Audit ags specify

classes of event to audit. Speci�cally, one can specify in a class to audit both successful

events and unsuccessful events, only successful events, or only unsuccessful events. The

system-wide audit ags specify the classes of events to audit for all users in the system. By

setting up a single system-wide audit ag, an administrator can control what to audit for all

users. Yet, the administrator can modify what gets audited for individual users by setting

up the user's audit ags.

Audit data generated are saved by the audit daemon in audit �les. The system allows

an administrator to specify a list of locations (actually directories) in which to store audit

�les. When the audit daemon starts up, it chooses the �rst directory in the list for the new

audit �le. When the current directory is full, the audit daemon closes the current audit �le

and creates a new audit �le in the next directory in the list.

A.2. Internal Components of the Audit Subsystem 106

An audit-�le name has the form starttime.endtime.hostname, indicating the period of

time the audit data covers. The name of the current audit �le is stored in the �le audit data

and has the form starttime.nonterminated.hostname.

An audit �le consists of a sequence of audit records ordered in increasing time of occur-

rence. An audit record describes comprehensively the occurrence of a single audited event.

The information in the audit record is su�cient to identify who performed the action, which

�les (including the inode, and a full pathname) were a�ected, what action was attempted and

whether it succeeded or not, as well as where and when it occurred. The type of information

saved for each audit event is de�ned as a set of audit tokens. Depending on the nature of

the event, an audit record can contains some or all the tokens de�ned.

A.2 Internal Components of the Audit Subsystem

This subsection describes the internal components of the audit subsystem that is related to

our work. The components that are concerned with auditing are the kernel and the audit

daemon.

The kernel generates audit data when an audit event belonging to preselected event

classes occur. In addition, it also receives audit data from application programs (via system

call audit). The audit data generated and received is inserted into an internal audit queue,

which will be fetched and removed by the audit daemon. In normal situations, the audit

daemon should be able to keep up with the generation of audit data. However, when the

queue is full, the kernel may discard the audit data generated, or suspend the processes that

are associated with the data, depending on the current audit policy. Internally, the kernel has

an audit status ag, which indicates whether auditing is enabled. The kernel will generate

audit data only if the ag is set. This ag should be set or reset only by the audit daemon.

The audit daemon is started by executing the audit daemon program. When invoked,

the audit daemon �rst checks whether an audit daemon is already running to avoid having

multiple daemons running at any one time. It then changes the kernel audit status to on,

so that the kernel will generate audit data when security-relevant audit events occur. The

daemon runs with the e�ective user ID set to root. The actions of the daemon are never

audited.

A.2. Internal Components of the Audit Subsystem 107

Each process in Solaris has an audit user ID and an audit preselection mask. The audit

user ID is not associated with any other user IDs (e.g., real user ID). A process acquires its

audit ID at login time, and this audit ID is inherited by all child processes. Even if a user

changes identity (by using su(1M)), all actions performed are tracked with the same audit

ID. A process can read and modify its audit user ID using the getauid and setauid system

calls, which are allowed only if the process's e�ective user ID is root. Normally, only the

process that is running login programs should change its audit user ID.

The audit preselection mask is used to determine whether an event caused by a process

is to generate audit records. When a user logs in, the login program combines the system-

wide audit ags with the user-speci�c audit ags (if any) to establish the process preselection

mask for the user's process. The process preselection mask is inherited by child processes.

The process preselection mask enables e�cient checking of whether an audit event associated

with the process is to be recorded. (The checking consists of the logical and of the process

preselection mask and the class mask of the event.) The preselection mask of a process can

be modi�ed by any root process using system call auditon. The superuser can change what

to audit for a process by changing the preselection mask of the process.

A.2.1 Static and Dynamic Con�guration

The set of con�guration �les speci�es the static con�guration of the audit system. The kernel

internally stores the audit con�guration, referred to as the dynamic con�guration. At system

startup, the kernel initializes itself from the con�guration �les. Changes to the con�guration

�le require changing the dynamic con�guration.

For example, if an administrator wants to audit every action by a user A who is not

audited initially, he has to change the audit ags of user A as well as the audit preselection

masks of all A's existing processes explicitly. Since the audit preselection mask of a process

is initialized at login time, changes of the audit ags will a�ect the audit preselection mask

of a user process that will be created at the next login.

A.2.2 Auditing Daemons

By default, system daemons (e.g., inetd, rcpbind, nfsd) are not audited because they are not

associated with any user. These daemons are started by Init, and are usually run with audit

A.2. Internal Components of the Audit Subsystem 108

ID -2. In addition, they are normally started up before the audit daemon starts.

System daemons cannot be audited just changing the static audit con�guration �les.

However, the actions of these daemons can be audited by explicitly changing the preselection

masks of the daemon processes using system call auditon.

Appendix B

Audit Events Used by the Prototype

The following table describes the audit events used by the prototype execution monitoring

described in Chapter 6. There are 250 audit events de�ned in Sun Solaris BSM Audit

Subsystem, and 36 of them are used by the prototype.

AUDIT EVENTS

AUE EXECVE AUE EXIT AUE KILL

AUE VFORK AUE FORK AUE FORK1

AUE FCHOWN AUE CHOWN AUE SETREUID

AUE FCNTL AUE IOCTL AUE SETREGID

AUE FCHMOD AUE CHMOD AUE RENAME

AUE STAT AUE LSTAT AUE FSTAT

AUE OPEN R AUE OPEN RC AUE OPEN RT

AUE OPEN RTC AUE OPEN W AUE OPEN WC

AUE OPEN WT AUE OPEN WTC AUE OPEN RW

AUE OPEN RWC AUE OPEN RWT AUE OPEN RWTC

AUE CREAT AUE CLOSE AUE MKNOD

AUE LINK AUE UNLINK AUE SYMLINK

109

Appendix C

Attributes of Operations

This appendix lists the attributes associated with the system operations in Unix in our

design. For convenience, the attributes are grouped into 5 structures: A, S, F, P, and M.

The attribute A denotes some general characteristics of the event.

� time : time of the operations

� event : event Id

� rval : return value

The attribute S denotes attributes of the subject involved in the event.

� prog : the program associated with the process

� ruid : the real user Id of the process

� pid : the process Id

� euid : the e�ective user Id of the process

� gid : the real group user Id of the process

The attribute F denotes attributes of the �le involved in the event.

� ouid : the user Id of the owner of the �le

� ogid : the group Id of the owner of the �le

� pmode : the permission mode of the �le

� nodeid: the inode number of the �le

110

Appendix C. Attributes of Operations 111

� fsid : the Id of the �le system in which the �le is situated

The attribute M denotes miscellaneous attributes of the operation.

� newowner : the new owner (for chown or fchown)

� newmode : the new permission mode (for chmod or fchmod)

� newpath : the newpath (for rename, link, or symlink)

� chpid : the child process Id (for fork)

