CTPLAN: A planning-based approach to automatically
detecting flaws in concurrent algorithms

Deborah A. Frincke

Myla Archer

Karl Levitt

University of California, Davis

Abstract

Development of correct algorithms for the synchronization of
concurrently executing processes can be a difficult task. Most
concurrent program debuggers have been developed in order to
assist the programmer once an error has appeared. This pa-
per takes an alternate approach of attempting to discover the
presence of possibly undetected flaws. This approach is em-
bodied in a prototype system (CTPLAN) that may be used to
develop tests for common flaws in concurrent programs. To il-
lustrate our methodology, CTPLAN has been used to detect
errors in several algorithms, most notably the incorrect simpli-
fication of Dekker’s algorithm described in [Hym66]. CTPLAN
can in principle be used to detect indeterminacy, deadlock, live-
lock, violation of mutual exclusion, unfairness, and starvation.

1 Introduction

Development of correct algorithms for the synchro-
nization of concurrently executing processes can be
a difficult task. Potentially, one must consider all
possible interleavings of process execution before the
algorithm may be said to be correct. Most concur-
rent program debuggers have been developed in or-
der to assist the programmer once an error has ap-
peared. Some concurrent program debuggers exhibit
the ‘probe effect’; i.e., the debugger actually masks
flaws in the program due to its insertion of print or
debugging statements. These statements can alter the
timing (and thus the interleaving) of process execu-
tion, and therefore fail to expose certain faults [MH89).
There are debuggers that can detect potential race
conditions that may occur during execution; unfor-
tunately, these ‘intelligent’ debuggers frequently lead
to so many false positives that their value is greatly
reduced[HKMC90]. Verification techniques for con-
current programs have been extensively studied, the
goal being to avoid the exploration of all execution
interleavings[Bar85][FS81].

This paper describes an alternate approach to de-
bugging and verification, namely, attempting to pro-
duce process execution sequences that lead to errors.
In terms of cost and coverage, our approach to test-
ing lies between conventional debugging and verifica-

0-8186-2605-4/91 $1.00 © 1991 IEEE

tion. It is more systematic than debugging, but can-
not explore all of the cases possible with verification.
However, our approach gives a counter example illus-
trating a detected flaw, something that it is difficult
for a verification system to produce. Our approach
is embodied in a prototype system, CTPLAN, that
may be used to develop tests for common flaws in
concurrent programs. We see CTPLAN as an inter-
mediate step in the development process, performed
after simple testing and before verification. The kinds
of errors that CTPLAN can detect are more subtle
than those that can be quickly found by conventional
testing; however, these errors should be removed be-
fore beginning the expensive process of formal verifi-
cation. CTPLAN, written in Prolog, is based upon
the methodology used in TPLAN [FLA90] to detect
security flaws in operating system specifications. CT-
PLAN operates on the transformed code of concur-
rent algorithms, and uses classical Artificial Intelli-
gence planning techniques [Nil80] to develop tests to
detect laws. CTPLAN attempts to find a sequence
of operations (a plan) that produces the specified flaw,
as contrained by time and memory limitations.

CTPLAN can detect a variety of flaws, including
deadlock and violation of mutual exclusion. Algo-
rithms from [PS87] and [Ray86] were used as exam-
ples. A number of concurrent algorithms containing
flaws have actually been published, e.g. in [Hym66),
[VA86], and others. It is of particular interest that
CTPLAN can be used to detect these flaws. In this
paper, it is shown how CTPLAN detects the error in
the incorrect simplification of Dekker’s algorithm de-
scribed in [Hym66].

Use of a system such as CTPLAN is of the most
benefit when the programmer is faced with the task of
determining whether or not a program contains a spe-
cific behavioral flaw. When dealing with synchroniza-
tion of processes, it is often easier for the programmer
to state what should not happen, rather than what
should happen. This specification is the goal which
CTPLAN uses to construct a plan. For example, per-

mitting two processes to modify the value of a global
variable at the same time is usually undesirable. This
flaw, a violation of mutual exclusion, may be described
easily:

—((Process 1 executes statement P
modifying variable X at time t) N
(Process 2 executes statement P
modifying variable X at time t })

However, the algorithm that actually prevents this
from happening is much more difficult to state. Fur-
ther, the granularity of the algorithm’s encoding may
also affect the presence of a flaw, as well as CTPLAN’s
ability to detect it.

A major contribution of this work includes the rep-
resentation of characteristic properties such as dead-
lock, livelock, and indeterminacy as predicates that
become the goal for a planner. Additionally, certain
heuristics that reduce the search space, such as loop
detection, are identified.

In Section 3, we discuss in greater detail ways that
‘CTPLAN can be applied to classical algorithms to de-
tect flaws. In Section 4 we discuss ways in which var-
ious algorithms are actually encoded for CTPLAN’s
use, including the effect of the granularity of the
statement translation. In Section 5, we give a brief
overview of CTPLAN’s Prolog implementation. In
Section 6, we describe our ongoing work in applying
CTPLAN to additional classes of flaws (such as lack
of fairness), and improvements in CTPLAN’s imple-
mentation. -

2 Related Work

Other authors have studied methods for exposing flaws
in software. Typically, as in [OFT81], dataflow anal-
ysis techniques have been used to study sequential
programs. Taylor[Tay83] has extended existing tech-
niques to concurrent programs, emphasizing detection
of parallelizable code segments with special attention
to Ada. Such segments would be candidates for inter-
leaving and would have to be so explored in a testing
system. Knowledge-based techniques have also been
applied to the problem of debugging. [Sev87] identi-
fies kinds of knowledge that a debugger could use—for
example, knowledge about what a program should do
and should not do, likely flaws (especially in concur-
rent programs), and the granularity of testing. The
tools surveyed do not attempt to automatically gen-
erate test cases. A more recent knowledge-based de-
bugging system is described in [TFC89], which uses a

152

knowledge base to reduce the data from a debugging
session to allow for more easily understood replays.

3 Applying CTPLAN to spe-

cific algorithms

The most common flaws in algorithms involving con-
currently executing processes are: violation of mutual
exclusion, deadlock, livelock, indeterminacy, fairness
violations, and starvation. In this section, CTPLAN
will be applied to some specific algorithms to exhibit
how three of these flaws (mutual exclusion, deadlock,
starvation) can be detected.

The algorithms within this section have certain
common characteristics. The most important is that
processes following the algorithm each contain a erst-
scal section of code. The purpose of mutual exclusion
is to prohibit more than one process from executing
its critical section at a time. Processes may manipu-
late their own local variables, or shared variables; in
general, the critical section of code is used to read
or modify a shared variable. Some of the algorithms
shown include semapkores. Semaphores may be con-
sidered special variables that are manipulated by the
atomic instructions P(sem) and V(sem). The instruc-
tion P(sem) will block further execution by the pro-
cess until the value associated with sem is nonzero,
and will then decrement this value and permit execu-
tion to continue. The instruction V(sem) never blocks,
and increments the value associated with sem; its usual
purpose is to unblock a process waiting on sem.

In [Dij65b], the following constraints were given for
any algorithm correctly solving the mutual exclusion
problem:

1. No assumption is made concerning the instruc-
tions or number of processes supported by the
machine, except that reading, writing, or testing
is considered to be atomic.

2. Execution speed of competing processes is as-
sumed to be non-zero.

3. Processes in non-critical section cannot prevent
another process from entering the critical section.

4. A process requiring access to a critical section
cannot be delayed indefinitely.

3.1 Exclusive access to critical sections
3.1.1 Readers/Writers

The classical readers/writers problem involves a data
item that is shared by competing concurrent process,
some reading from the data object, others modifying
the data object. In a correct solution to this problem,
areader and a writer process may not both manipulate
the shared data object simultaneously, though multi-
ple reading of the object is allowed [CHP71]. There are
many variations to this problem, for example blocking
reader processes when writer processes are waiting.
Alternately, one may grant priority to processes based
on order of arrival, but still permitting multiple read-
ers to share the object. The simplest version of read-
ers/writers, implemented using semaphores, is shown
in Figure 1. CTPLAN easily detects the flaw in the
writer process shown in Figure 1 (a writer process is
never blocked, and thus may interfere with a reader
process), and can handle versions containing multiple
reader processes and writer processes as well single
instances of the reader process and writer process.

3.1.2 Hyman’s Simplification of Dekker’s al-
gorithm

As mentioned earlier, producing a correct algorithm
for mutual exclusion is nontrivial. This is best exhib-
ited by Hyman’s ‘simplified’ version of Dekker’s Algo-
rithm for mutual exclusion involving two processes,
published in Communications of the ACM in 1966
[Hym66]. This algorithm, shown in Figure 2, does
not in fact prohibit the two processes from entering
their critical sections at the same time. Dekker’s Al-
gorithm, which correctly enforces mutual exclusion, is
shown in the same figure.

Raynal describes the flaw in Hyman’s algorithm
thus: turn is initially 0, and Process 1 sets flag[1]
true, and then finds flag[0] false. Process 0 will
then set flag[0] to true, find turn is 0, and enter
its critical section. Process 1 then assigns turn the
value 1 and also enters its critical section. Figure 3
describes a session with CTPLAN that uncovers this
flaw. Figure 2 gives the CTPLAN encoding of Hy-
man’s algorithm when the process id is 1 (transformed
incorrectP1). Note that In describes the initial state,
Out describes the flaw (inCS1, inCS2) are simulta-
neously true), Result describes the entire state when
the test plan terminates, and Plan describes the se-
quence of process interleavings that result in the flaw
(Section 5 describes state specification in more detail).
incorrectPcl, incorrectPc2 refer to the program
counters belonging to Process 1 and Process 2; simi-

153

larly, inCS1, inCS2 are boolean variables that corre-
spond to Process 1, Process 2 executing within their
critical sections.

3.2 Deadlock and Starvation: Dining
Philosophers

The Dining Philosophers problem, proposed and
solved by Dijkstra[Dij65a], is another classic synchro-
nization problem. In its simplest form, one considers
2N + 1 philosophers seated around a circular table,
with 2N + 1 forks between them. In the middle of the
table there is a bowl of food. Each philosopher alter-
nately eats and thinks. In order to eat, the philosopher
must pick up the two forks on either side (clearly, not
all philosophers can eat at once). When a philosopher
is done eating, the forks are replaced.

The non-solutions to this problem are interesting,
in that they may exhibit both deadlock and starvation.
Deadlock may occur if the algorithm permits hungry
philosophers to hold forks that they are not using;
for example, all the philosophers might decide to pick
up their left forks at the same time. On the other
hand, starvation may occur if the algorithm can in
certain situations prevent a hungry philosopher from
ever holding a fork; if philosophers K +1 and K -1
exhibit the following pattern, then philosopher K will
starve: philosopher K + 1 becomes hungry and eats,
philosopher K — 1 becomes hungry and eats, philoso-
pher K + 1 stops eating, philosopher K +1 eats again,
philosopher K — 1 stops eating, etc.

CTPLAN’s current support for deadlock and live-
lock detection is limited. Given a state, CTPLAN
can determine whether or not that state is in fact
deadlocked (or livelocked). Additionally, CTPLAN
can develop a test plan that will achieve the dead-
locked state, if such a plan exists. Work is in progress
to improve CTPLAN’s support for detection of these
flaws; in particular, it is expected that CTPLAN will
be able to detect deadlock in many cases without re-
quiring the programmer to give specifics about the ac-
tual locked state. CTPLAN’s support for starvation
detection is based on its ability to show livelock and
lack of progress. By instrumenting the transformed al-
gorithm with dummy variables, the programmer can
use CTPLAN to generate a sequence of instructions
that show that particular processes are prevented from
making progress. If these instructions form a cycle, it
indicates that the algorithm may permit starvation.

P(mutex) ; P(wrt) ; <critical section: writing>
readcount := readcount + 1 ; <critical section: writing>

if readcount = 1 then P(wrt) ; V(wrt) ;

V(mutex) ;

<critical section: reading>

P(mutex) ;

readcount = readcount - 1 ;
if readcount = 0 then V(wrt) ;
V(mutex) ;

Figure 1: A correct solution to readers/writers.

1:flagfi] = true ; 1::flagfi] = true ; 1::flagl = true
2:: while flag{j] do 2:: while turn <> i do 2::if turn /= 1 then goto 3
3:: ifturn =) then 3: while flagfj] do 2::if turn == 1 then goto 10
4:: begin 4:: skip ; 3::<label>
5: flagfi] = false ; 5:: enddo ; 4::if flag0 == true then 5
6:: while turn = j 6: turn=1i; 4::if flag0 /= true then goto 7
T do skip 7:: enddo; 5::<label>
8:: enddo ; 8::<critical section> 6::goto 4
9: flagfi] = true ; 9::flag[i] = false ; 7::<label>
10:: end 8:turn = 1
11:: endif 9::goto 2
12:: enddo 10::<label>
13:: <critical section> 11::inCS2 = true
14:: turn = j ; 12::flagl =false, inCS2 = false
15:: flagfi] = false ;
Figure 2: Dekker’s (correct) and Hyman’s (incorrect) Algorithm; CTPLAN translation of Hyman’s algorithm for
Process 1.

: findPlan(6, In, Out, Plan), updateState(In, Result, Plan)?

In = state(symtab({]),
symtab(|[turn, 0], [inC8S1, false], [inCS2, false],
[flago, false], [fiagl, truel]),
symtab([[[incorrectPc0, 1}, 0], [[incorrectPc1, 1], 0]]))

Out = state(symtab([]),
symtab([[turn, dontcare], [inC81, true], [inCS2, true],
[flag0, dontcare], [flagl, dontcare]]),
symtab([[[incorrectPc0, 1], dontcare], [[incorrectPcl, 1], dontcare]]))

Plan = [[[incorrectPcl, 1], 1],
[[incorrectPcl, 1], 2],
{lincorrectPcl, 1}, 4],
{[incorrectPc0, 1], 1],
[[incorrectPc0, 1}, 2],
[[incorrectPc0, 1}, 11],
[[incorrectPcl, 1}, 8],
[[incorrectPcl, 1}, 9],
[[incorrectPcl, 1], 2],
[[incorrectPc1l, 1], 11]]

Result = state(symtab({]),
symtab({{turn, 1], [inCS1, true], [inCS2, true],
[flag0, true], [flagl, true]}),
symtab([[[incorrectPc0, 1], 11], [[incorrectPcl, 1}, 11]}})

Figure 3: CTPLAN’s version of the flaw in Hyman’s Algorithm.

154

4 Encoding the algorithms

The way in which algorithms are encoded for CT-
PLAN has an enormous effect on the type of flaw
that may be detected. In particular, certain flaws
will only be detected if the statements are translated
with a fine-grained level of atomicity, and others will
be more easily detected with a large-grained level of
atomicity, due to reduced search time. This section
first discusses the language features currently imple-
mented by CTPLAN, then describes how granular-
ity affects the flaws CTPLAN can detect, and finally
describes how scheduling of statements of competing
processes is implemented.

4.1 The Language

At present, CTPLAN uses a Pascal-like minilanguage
language to describe algorithms (see Figure 4). The
only specialized software support for synchronization
is the semaphore. This structure was included so that
algorithms that use such structures could be easily
implemented and processed; in addition, other spe-
cialized language structures used for synchronizition
(such as monitors and conditional critical regions) may
be readily implemented using semaphores. Test-and-
Set and Swap are included because these instructions
are fairly typical of the type of hardware level support
provided for synchronization; they are defined to be
atomic [PS87]. Once an algorithm has been described
in this fashion, it is translated into Prolog statements
such as the one in Figure 7!, which corresponds to the
first line in Hyman’s Algorithm (Figure 2).

This language subset is sufficient to describe a wide
range of algorithms. For example, Figure 5 shows the
translation of a while-loop into CTPLAN’s minilan-
guage. However, it is often necessary to implement
certain language features in terms of these atomic
statements, which may affect the flaws that can be
detected.

4.2 Granularity

As mentioned earlier, the granularity of the algo-
rithm translation affects the flaws that may be dis-
covered. For example, consider Figure 6, which shows
two translations of a simple conditional statement into
CTPLAN, where B is a global variable initialized to
0 and Cond is a local variable (note that only one of
the statements Atomic::la, Atomic::lb will execute;
similarly, only one of the statements NonAtomic::2a,
NonAtomic::2b will execute).

1Section 5.1 defines the variables used in the Figure.

155

If two processes are permitted to execute this state-
ment simultaneously, then the first translation will ter-
minate with B = 1, while the second will terminate
with either B=1 or B=2 (assuming B is initially 0).
If the variable B is supposed to take on values 0 or 1
only, then CTPLAN will produce the plan:

[[NonAtomic, Processl, 1],
[NonAtomic, Processl, 2a),

[NonAtomic, Process2, 1],
[NonAtomic, Process2, 2a]]

If the first translation is used, CTPLAN will not un-
cover the flaw. In fact, this flaw will not exist if the
underlying architecture of the machine atomically ex-
ecutes conditional statements. Since the second trans-
lation involves more statements, flaw detection in this
environment will take longer. It is therefore more ef-
ficient to begin examining algorithms at the coarsest
granularity, and then increasing the level of granular-
ity to match that of the underlying machine architec-
ture or software support. However, examining context
dependent algorithms beginning with the finest possi-
ble granularity can be used in determining the charac-
teristics of architectures under which they will execute
correctly.

5 Implementation

As mentioned earlier, CTPLAN is based upon
TPLAN. Throughout this section, major differences
between the execution methodology used for the two
systems are noted. CTPLAN, like TPLAN, has been
implemented in Prolog. There are four types of rules:

¢ Algorithm: These rules embody the CTPLAN
translation of the algorithm to be examined.

¢ Input: These rules define the flaw to be exam-
ined, and the initial state of the system (including
the number of processes executing).

¢ Architecture: These rules define the CTPLAN
state; for example, the variable symbol table.

¢ Planning: These rules are used to examine the
algorithm and plan to reach the goal state con-
taining the desired flaw.

In addition to producing test plans, CTPLAN may
be used to simulate the execution of a series of state-
ments and to test the validity of a sequence of state-
ments. When provided with an initial state and a test
sequence of statements, CTPLAN will produce the
state that will result if they are executed, provided
that the test sequence is valid.

if Cond then goto label

if Cond then Statement

goto label

variable = exzpression

label

P(semaphore)

V(semaphore)

func Test-and-Set(var flag): bool
Swap (4, B)

Figure 4: CTPLAN Language

<while Cond do Si od; Sj>

becomes:
¥ ::if Cond then goto Si?’
W ::if not Cond then goto Sj’
Si?:: <label>

Si :: ...
Sit:: goto W
§j?:: <label>
Sj ::

Figure 5: Encoding While-loops

if B==0then B = B + 1 else skip fi

Atomic Non-Atomic

Atomic::la:: if B==0then B = B + 1 | NonAtomic:1::Cond = (B==0) ;

Atomic::1b:: if B/=0 then skip NonAtomic::2a::if Cond then B =B + 1;
NonAtomic::2b::if not Cond then skip ;

Figure 6: Two translations of a conditional statement

changes(incorrectPcl, 1, variable, flagl)
changes(incorrectPci, 1, pc, 1)
prestatement (incorrectPcl, 1, 0)

statement (incorrectPcl, Id, 1, state(Semaphores, Progvars, Progcounters),
state(Semaphores, NewProgvars, NewProgcounters)) :-~
lookupSymtab(Progcounters, [incorrectPci, Id], 0),
updateSymtab{(Progvars, [flagl, true], NewProgvars),
updateSymtab(Progcounters, [[incorrectPc1, Id], 1], KewProgcounters)

Figure 7: Statement in process IncorrectP1::1:: flagl = true

156

Find a statement that el lmlnates
4 a difference

e

Determine whether the
resultant new state repeats an
earlier state

R
See If the statement can be g

Find a possrble ‘next’
statement
G

See i aplan lncludmg this

L8

Figure 8: Finding a plan step

5.1 Algorithm Rules and Input Rules

CTPLAN’s Algorithm Rules are used to encode the
algorithms to be tested. Figure 7 gives an example
of the rules that must be defined for each algorithm
statement. The rules have the form shown in Figure 9.

Input Rules define the initial and final state of the
system. Each state describes the following: the state
of the system variables and semaphores, the processes
that will exit, and the code each process executes.
CTPLAN’s purpose is to determine the sequence of
statements that will transform the initial state into
the final state. Figure 10 describes an initial and a
final state that CTPLAN will use to expose a flaw in
an incorrect version of readers/writers (the 12 shown
in both plans is the test case number of the input).
The two semaphores, mutex and wrt, are shown to
have the initial value of 1; global variable readcount
has value 0. There are three processes: [writePe, 1],
[readPc, 1], [readPc, 2]. In the initial state, the pro-
gram counter for each of these processes is set to 0.
In the final state, all values are set to dontcare, with
the exception of the program counters. If a variable
has value dontcare, then CTPLAN will modify it as
needed.

157

5.2 Architecture Rules

CTPLAN algorithms are made up of ordered state-
ments rather than TPLAN’s operation specifications.
TPLAN’s architecture rules are more complex than
CTPLAN’s rules, since TPLAN’s architecture de-
scribes a machine architecture consisting of heteroge-
nous components, and CTPLAN’s architecture de-
scribes a runtime state consisting of a collection of
homogeneous symbol tables.

The current implementation of CTPLAN does not
explicitly encode a scheduler, and does not embody
more complex structures such as monitors.

CTPLAN maintains a state having four compo-
nents: a symbol table of semaphores, a symbol table of
variables (local and global), a table of program coun-
ters for the various processes that will be executing
the algorithms, and a history of all past states.

Note that Pc points to the statement just executed
rather than the next statement to be executed. This
is advantageous when jumping to a loop, or executing
semaphores or other potentially blocking statements,
since it is clear whether or not an attempt has been
made to execute the statement. Particularly for block-
ing statements, it will permit CTPLAN to first select
statements that have not yet been attempted, rather
than those which have been tried, since these are most

changes(Algorithm-name, Process-identifier, Type-of-state-object, Name-of-state-object)

prestatement(Algorithm-name, Current-statement-number, Previous-statement-number)

statement(Algorithm-name, Process-identifier, Curreni-statement-number,
Incoming-state, Outgoing-state)

Algorithm-name
Current-statement-number
Type-of-state-object
Name-of-state-object
Previous-statement-number
Process-identifier
Incoming-state
Outgoing-state

where

the name of the algorithm

the step in the algorithm

statement changes this object type: variable, semaphore, pc
the actual name of the object changed

possible preceeding statements

actual process executing the statement

state before execution

state after execution

Figure 9: Form of algorithm rules

initState(12, state(symtab([[mmtex, 1], [wrt, 111),
symtab([[readcount, 0], [inCS1, false], [inCS2, falsell),
symtab([[[readPc, 1], 0], [[writePc, 1], 0],

[[xeadPc, 2], 011))) .

finalState(12, state(symtab([[mutex, dontcare], [wrt, dontcarell),

symtab([[readcount, dontcare],

[inCS1, dontcare], [inCS2, dontcarel]),
symtab([[[readPc, 11, 9], [[sritePc, 11, 31,

[[readPc, 2], 911))) .

Figure 10: Input for multiple readers/writers

158

likely to succeed.

5.3 Planning Rules

CTPLAN’s planning rules govern the way in which
tests that expose algorithm flaws are found. Figure 8
shows how each new plan step is chosen:

1. CTPLAN searches the Algorithm Rules to find
a statement within a process that can either im-
mediately eliminate a difference, or, if it cannot,
can potentially lead to a statement that can elimi-
nate a difference (these are found by backtracking
through the algorithm execution steps).

2. CTPLAN next checks to see if the statement can
be executed through to completion (recall that
certain statements, such as P(semaphore) may

block).

3. CTPLAN then looks to see if execution of the
statement would duplicate a previous system
state exactly. Since CTPLAN permits looping,
this is necessary to eliminate infinite attempts to
execute the same series of statements. It will also
produce shorter test plans than if states are per-
mitted to repeat. This step is also necessary to
detect the possiblity of livelock and starvation.

4. Steps 1-3 are then repeated, until all differences
have been eliminated.

CTPLAN searches for ‘forward differences’ rather
than ‘backward differences’, as is the case in TPLAN.
In general, one has more information about the start-
ing state of an algorithm than about the final state of
an algorithm. Most concurrent algorithms have defi-
nite specifications about the starting state of the vari-
ables. For example, the values of the semaphores in
the readers/writers solution are specified (Figure 1).
This information is not readily available for the fi-
nal state, since it is often the incorrect usage of these
semaphores and global variables that result in the flaw
that is to be detected.

6 Ongoing Work

One important collection of improvements to CT-
PLAN involves modifying the criteria that determine
when a particular statement is considered for inclusion
in a plan. In CTPLAN’s first planning step, preference
is given to selection of a statement that can immedi-
ately eliminate a difference between the current state
and the goal state. In effect, a metric exists by which

159

preference is given based on reduction of distance from
the goal state. More refined metrics might give prefer-
ence to one statement over another by other criteria.
For example, it might be advantageous to give prefer-
ence to potentially blocking operations when they can
be executed, since the operations might not be eligible
for execution at a later stage. The search for refined
metrics is one type of improvement in the heuristics
of CTPLAN being attempted. In conjunction with
this goal, new versions of CTPLAN will support ex-
perimentation to improve search performance by per-
mitting on-the-fly modification of metrics, and will
explore the use of combined forward and backward
searches to determine plan steps.

A second impreovement to the heuristics of CT-
PLAN would allow one to search for shorter plans first
by temporarily suspending the search from an initial
plan segment when it becomes ‘long,” in favor of ex-
ploring other initial plan segments. This is motivated
by the conjecture that an execution sequence corre-
sponding to a shorter plan has a higher probability of
actually occurring, thus permitting the developer to
concentrate on removing the most probably execution
errors first.

Another important collection of improvements to
CTPLAN involves examining intermediate members
of the sequence of states defined by the steps in the test
plans CTPLAN generates. This would permit easy
identification of loop sequences that have undesirable
characteristics besides exact repetition of a previous
state; for example, one might observe that a particu-
lar process is not executed, even though other changes
have been made in the system state. This technique
may be used to restrict search, and will help in detec-
tion of unfairness. It would also permit the user to
specify that CTPLAN achieve its- goal plan without
passing through a state satisfying some intermediate
specification. For livelock detection it is necessary to
improve user control over what is considered progress,
rather than simply defining progress as ‘reduced dif-
ferences between states.’

There are several other improvements currently un-
der development. At present, the user must trans-
late algorithms by hand from their original language
into CTPLAN’s target language. This tedious pro-
cess will be replaced by automatic translation from
different high-level programming languages into CT-
PLAN’s language, and give the programmer control
over the granularity of the translation. In support of
this goal, CTPLAN will be augmented to handle ad-
ditional high-level programming language constructs,
such as monitors. Such structures will involve adding

scheduling rules to CTPLAN, and these rules would
help eliminate some plans. Deadlock detection will be
improved by augmenting CTPLAN so that it reports
to the user when it reaches an intermediate state such
that no further steps (or useful steps) can be taken.
The search for flaws can be improved by omitting
blocks of code that are shown by syntactic analysis
to be noninterfering. Semantic analysis is required to
show that other blocks are noninterfering; CTPLAN
can be used to show such noninterference.

CTPLAN currently requires the user to specify a
goal state for each program being analyzed. Generic
specifications that characterize flaws will be developed
to reduce the user’s effort.

References

{Bar85] H. Barringer. A Survey of Verifica-
tion Techniques for Perallel Programs.

Springer-Verlag, 1985.

[CHP71] P. J. Courtois, F. Heymans, and D. L.
Parnas. Concurrent control with Read-
ers and Writers. Communications of the
ACM, 14(10):667-668, October 1971.

[Dij65a] E. Dijkstra. Cooperating sequential pro-
cesses. Technical report, Technical Re-
port EWD-123, Technological University,

Eindhoven, The Netherlands, 1965.

[Dij65b] E. Dijkstra. Solution of a problem in con-
current programming control. Communi-

cations of the ACM, 8(9):569, 1965.

[FLA90] D. A. Frincke, K. Levitt, and M. Archer.
A planning system for the intelligent test-
ing of software. Fifth Annual Knowledge-
Based Software Assistant Conference,

Sept 24-28 1990.

[FS81] L. Flon and N. Suzuki. The total correct-
ness of parallel programs. SIAM J. Com-

puting, 10(2):227-246, May 1981.

[HKMC90] R. Hood, K. Kennedy, and J. Mellor-
Crummey. Parallel program debugging
with on-the-fly anomaly detection. Super-

computing, 1990.

[Hym66] H. Hyman. Comments on a problem in
concurrent programming control.. Com-
munscattons of the ACM, 9(1):45, January

1966.

160

[MHS89]

[Nil80]

[OETS1]

[PS87)

[Ray86]

[Sev87]

[Tay83]

[TFC89]

[VAS6]

C. E. McDowell and D. P. Helmbold.
Debugging concurrent programs. ACM
Computing Surveys, pages 593-623, De-
cember 1989.

N. J. Nilsson. Principles of Artificial In-
telligence. Tioga Publishing Company,
1980.

L. J. Osterweil, L. D. Fosdick, and R. N.
Taylor.. Error and anomaly diagnosis
through dataflow analysis. Proceedings
of Summer School on Computer Program
Testing, pages 35—63, 1981.

J. L. Peterson and I. Silberschatz. Oper-
aling systems concepts. Addison-Wesley
Publishing Company, 1987.

M. Raynal. Algorithms for Mutuel Exclu-
sion. MIT Press, 1986.

R. E. Seviora. Knowledge-based program
debugging systems. JEEE Software, pages
20-32, May 1987.

R. N. Taylor. A general purpose algo-
rithm for analyzing concurrent programs.
Communscations of the ACM, 26(5):362-
376, May 1983.

J. J. P. Tsai, K-Y Fang, and H-Y Chen.
Debugger for concurrent programs. Pro-
ceedings 13th Annual Internatione! Com-
puter Software and Applications Confer-
ence, September 1989. '

P. Vitanyi and B. Awerbuch. Atomic
shared register access by asynchronous
hardware. Proceedings 27th IEEE Sym-
posium on Foundalions of Compuler Sci-

ence, 27:233-243, 1986.

