

Automatically Exploring Hypotheses about Fault
Prediction: a Comparative Study of Inductive Logic

Programming Methods

William W. Cohen
AT&T Labs–Research

Florham Park, NJ 07932
wcohen@research.att.com

Premkumar T. Devanbu
Dept. of Computer Science,

University of California, Davis
devanbu@cs.ucdavis.edu

January 26, 1999

Abstract

We evaluate a class of learning algorithms known as inductive logic programming
(ILP) methods on the task of predicting fault occurrence in C++ classes. Using these
methods, a large space of possible hypotheses is searched in an automated fashion;
further, the hypotheses are based directly on an abstract logical representation of the
software, rather than on manually proposed numerical metrics that predict fault den-
sity. We compare two ILP systems, FOIL and FLIPPER, and conclude that FLIPPER
generally outperforms FOIL on this problem. We analyze the reasons for the differing
performance of these two systems, and based on the analysis, propose two extensions
to FLIPPER: a user-directed bias towards easy-to-evaluate clauses, and an extension
that allows FLIPPER to learn “counting clauses”. Counting clauses augment logic
programs with a variation of the “number restrictions” used in description logics, and
significantly improve performance on this problem when prior knowledge is used. We
also evaluate the use of ILP techniques for automatic generation of boolean indicators
and numeric metrics from the calling tree representation.

0

1 Introduction

In this paper, we will investigate the utility of inductive logic programming (ILP) methods for
the problem of classifying programs. In particular, we will explore the problem of predicting
fault density in C++ classes, a problem that has received much attention in the software
engineering community [Basili et al., 1996; Chidamber and Kemerer, 1994]. In this problem,
each training example is a C++ class definition, labeled as “positive” or “negative” according
to whether faults (i.e., errors) were discovered in its implementation.

The goal of most previous research in this area has been to conjecture and then test
hypotheses about which properties of software reliably predict faults; reliable predictors of
fault occurrence are valuable during software development, since they can be used to improve
resource allocation and process management.

The process of empirically testing hypotheses is fairly well understood. Given a specific
a hypothesis, such as “high values of a measure α indicates fault likelihood”, one can use a
representative sample of data to test the hypothesis statistically; in this case, one might look
for a statistically significant correlation between α and the occurrence of faults. The process
of generating hypotheses is much less well understood. In previous work, hypotheses have
been manually generated, based on researchers’ intuitions; thus, many of the hypotheses
considered in studies on fault-density prediction have been based on classical measures such
as coupling and cohesion [Briand et al., 1993; 1997]. Manual hypothesis generation is a well-
established and valuable practice. However, advances in machine learning and hardware
speed have raised another possibility.

We suggest a complementary approach, in which a large space of possible hypotheses is
searched in an automated fashion, using inductive logic programming (ILP) techniques. In
our approach, one first specifies a space of hypotheses; this space is defined syntactically, in
terms of predicates that can derived from the source code. Next, a sample of representative
data is given to the ILP algorithm, which attempts to build find a hypothesis which fits
the data well. This hypothesis is then tested statistically in the usual way, using a second
representative sample that was not seen by the ILP system; alternatively, methods such as
cross-validation [Weiss and Kulkowski, 1990] can be used to estimate the accuracy of the
hypothesis.

This approach reduces the degree of human involvement in generating hypotheses. In
our experiments, no set of numerical measures is manually generated; instead, the ILP
system is provided with a representation of the source code from which such measures could
be derived. In particular, we use a representation of coupling relationships among C++
classes (see Table 2.1) which can be used to derive the measures of Briand et al. [1997] and
others. The learning system then searches for logical conditions, expressed in terms of this
representation, that reliably predict fault likelihood. If desired, constraints can be imposed
on the sorts of logical conditions considered by the ILP system.

For several reasons, ILP systems are more suitable for this sort of task than traditional
propositional learning systems. First, ILP systems do not require that examples are expressed
as vectors of numbers; therefore it is possible to apply them directly to, say, a calling-tree
representation of a function.

Second, ILP systems typically allow greater deal of control over the space of hypotheses

1

searched by the learning system than propositional systems [Adé et al., 1995; Cohen, 1994a;
Kietz and Wrobel, 1992]. In fault prediction, training examples are difficult to obtain,
and there are many prior intuitions about domain that can plausibly be used to restrict
the hypothesis space. Appropriately restricting the hypothesis space has led to improved
generalization accuracy in other, similar problems, in which examples are scarce and some
prior information is available [Cohen, 1994a; Pazzani and Kibler, 1992].

Third, while models that simply predict the likelihood of a fault are useful (as they can
be used to focus testing) simple, comprehensible hypotheses are especially desirable, since
such models could potentially be used prescriptively to avoid faulty software. In our case, the
properties that we are using to predict software faults are all available at design time, and the
models generated by ILP systems are compact logic programs that involve these properties. It
would not be unreasonable to use broadly-validated, simple, and comprehensible hypotheses
prescriptively to modify the design of the system to reduce the likelihood of faults.

Fourth, while ILP systems tend to be less efficient than propositional learning systems,
this is not a substantial disadvantage in this setting, since the cost of applying even a very
expensive learning method would still be dominated by the cost of data collection.

It is important to note that while ILP methods are well suited for this problem, the
problem is quite different along certain technical dimensions than previously investigated
benchmark problems for ILP. In particular, the data we are using contains many predicates
that are highly “non-determinate” when used in the modes suggested by domain experts.1

As we will see, these differences cause problems for some standard approaches to ILP, and
also suggest some interesting extensions.

After presenting some background material, we begin by comparing the behavior of two
off-the-shelf ILP systems: FOIL [Quinlan, 1990; Quinlan and Cameron-Jones, 1993] and
FLIPPER [Cohen, 1995b]. We observe that FLIPPER is generally faster and achieves better
results; also, surprisely, both systems produce less accurate theories when the hypothesis
space is restricted according to expert intuitions about the problem.

Based on these experiments, we next explore the reasons for the performance differences
between FOIL and FLIPPER. We propose and test a conjecture that the differences are
partly due to a low-level FOIL performance optimization, and then propose an alternative
strategy for improving performance on non-determinate problems. We also consider apply-
ing ILP methods in an indirect way—by first propositionalizing the data, and then using
propositional methods on the converted dataset. Although this indirect method is suggested
by formal results, it has been used to date on in only a small number of systems. We show
that this method is useful even for this highly non-determinate problem.

Finally we consider extending the underlying hypothesis language with a variation of
the number restrictions that are allowed in description logics, another class of learnable
first-order logics [Cohen and Hirsh, 1994b; Frazier and Pitt, 1994]. This extension allows
the degree of non-determinacy of a clause to be used to discriminate between positive and
negative examples. It improves performance significantly in certain settings, most notably
when the hypothesis space is restricted.

1Informally, a clause is “determinate” if every clause can be evaluated in a left-to-right order without
setting any backtracking points. A predicate is determinate (with respect to an input/output mode) if
clauses containing that predicate (used in that mode) will always be determinate.

2

2 Background

2.1 The Prediction Problem

Predicate & Modes Description

frd(+C1,+C2) (Friendship) Class C1 is a “friend” of class C2.

isa(+C1,+C2) (Inheritance) Class C1 is derived from C2.

cmp(+C,?M,−P) (Class member protection) Member function M of class
C has protection P, where P∈ { public, private,
protected, extern }.

cap(+C,?A,−P) (Class attribute protection) Member attribute A of
class C has protection P.

cmt(−C,−M,+T)
cmt(+C,−M,−T)

(Class member type) Member function M of class C
uses type T. The type T may be a primitive type (e.g.,
integer) or another class. The member function “uses”
type T if it takes an argument of that type, returns that
type, or contains a variable of that type.

mc(+C1,−M1,−C2,−M2)
mc(−C1,−M1,+C2,−M2)

(Member calls member) Member function M1 of class
C1 calls member function M2 of class C2.

mp(+C1,−M1,−C2,−M2)
mp(−C1,−M1,+C2,−M2)

(Member is passed member) Member function M2 of
class C2 if passed as an argument to member function
M1 of class C1.

arf(−C1,?C2,−A2) (Attribute reference) Attribute A2 in class C2 has type
C1, and C1#=C2.

mrf(+C1,−M1,?C2,−A2) (Member reference) Attribute A2 in class C2 is used by
member function M1 of class C1, and C1 #=C2.

Table 1: Relations available for training

The data used in this paper was collected in an empirical study conducted at the University
of Maryland [Basili et al., 1996]. In the study, students were required to develop a medium-
sized information management system. The final projects were then tested by an independent
group of software professionals, and (among other things) the components that contained
faults were recorded.

The implementations were written in C++, a widely-used object-oriented extension of
C. Software in C++ is organized into classes , each of which implements a different abstract

3

datatype. Classes are organized into an inheritance hierarchy. The attributes (i.e., data
fields) and functions associated with a class are called members . The members of a class can
be either private, public, or protected . The private members of class C are accessible only
from other members of C. Protected members are accessible only from members of C or its
descendants. Public members can be accessed from anywhere. Additionally another class C ′

can be declared to be the friend of C, which allows the members of C ′ to access the private
members of C.

In the study, faults were assigned to classes; thus every class became an example in our
dataset. Classes were marked positive if they had any faults, and negative otherwise. There
were 122 classes, 58 of which had faults. The development and validation of metrics for fault
prediction is an active area of investigation in the software engineering community [Basili et
al., 1996; Fenton, 1992; Chidamber and Kemerer, 1994] Recently a set of metrics have been
proposed [Briand et al., 1997] that are based on “coupling” between classes; informally, class
C1 and C2 are “coupled” if C1 uses C2 in some way, or if C2 uses C1. The computation of
these metrics is based on a set of relations that encode various types of coupling relationships
between classes, as well as certain other possibly useful information, such as the inheritance
hierarchy. These relations, described in Table 1, were extracted from the source code using
the program analysis tool GEN++ [Devanbu and Eaves, 1994]. In all, 20,929 ground facts
concerning these relations and the 122 examples were extracted; henceforth these will be
called the background facts .

The background facts describe various sorts of inter-class coupling relationships, and can
be used to derive values for coupling metrics. However, they also may potentially support
hypotheses unrelated to coupling. For instance, the rule “faulty(C) ← mc(C,M,C,M)” pre-
dicts that a class C is faulty if it has a member function M that calls itself recursively.
ILP algorithms produce hypotheses of this sort; each hypothesis is a set of Prolog-like rules,
using the relations defined by the background facts and the fault data. The possible set of
such rules is enormous, and testing all of them is infeasible, so the ILP systems constrain
the search for hypotheses in two ways. First, they search for a single good hypothesis in
a greedy manner; secondly, they allow search to be constrained by syntactic restrictions on
the types of clauses that appear in a hypothesis.

One common way that ILP systems restrict the space of possible clauses is by mode
restrictions . Every Prolog rule (more properly called a trmclause) consists of a trmhead or
conclusion, and body , which is a conjunction of goals. Thus, in a clause such as

p(X,Y,Z) ← q(X,Y), r(Y,Z)

“p(X,Y,Z)” is the head, and “q(X,Y)” and “r(Y,Z)” are literals in the body. Under the
assumptions made by the ILP systems used in this paper, every Prolog clause will be invoked
with all variables in the head bound to constant values, and each variable X in the body of
the clause will be bound at the first literal L in which it appears (reading left to right). We
say that X is an output variable of the literal L if it is bound by L, and an input otherwise.
In the list of suggested modes, “+” indicates a position must contain an input variable, “−”
indicates a position must contain an output, and “?” indicates either an input or output
position.

4

Table 1 gives for each coupling relation a set of suggested input/output modes. If predi-
cates are used in the suggested modes, then the resulting theories are more likely to contain
coupling relationships, some of which are (by hypothesis) meaningful predictors of faults.
Adopting these modes thus is one means of injecting prior knowledge into the learning pro-
cess.

2.2 ILP Systems

Our first experiments were carried out with two off-the-shelf ILP systems, FOIL6.4 [Quinlan,
1990; Quinlan and Cameron-Jones, 1993] and FLIPPER [Cohen, 1995b]. Later experiments
were carried out with modified versions of these systems. We will now briefly describe FOIL
and FLIPPER.

2.2.1 Background on ILP

The ILP systems used in this paper learn logic programs in certain constrained forms. The
input to an system consists of a set of predefined background predicates , such as the predicates
frd, mc, . . . described in the previous section, and a series of labeled positive and negative
examples of the form

±p(t1,1, . . . , t1,n1),±p(t2,1, . . . , t2,n2), . . .

where each ti,j is a ground term. In the fault prediction problem, for instance, the examples
are of the form +faulty(t) or −faulty(t), where t is a constant naming a C++ class.
The logic program learned by the ILP system is a set of clauses of the form

p(X1, . . . , Xn) ← body1

p(X1, . . . , Xn) ← body2
...
p(X1, . . . , Xn) ← bodyk

where each bodyi is a conjunction of literals; in this paper, these conjunctions refer only
to the background predicates, and are non-recursive. A new instance p(u1, . . . , un) will be
classified as positive by the learned program if it is proved true by the program, and classified
as negative otherwise.

In the ILP systems used in this paper, the literals in the body are always of the form of the
form q(Y1, . . . , Yk), or ¬q(Y1, . . . , Yk) where q is a background predicate. Negative literals in
the body i’s are interpreted using the Prolog rule of negation as failure, and each background
predicate is defined by a set of ground facts (such as frd(widgetClass,windowClass)).

This learning problem is a generalization to relational concepts of the learning problem
addressed by attribute-value learning systems that learn concepts in disjunctive normal form
[Michalski et al., 1986; Pagallo and Haussler, 1990; Cohen, 1995a].

2.2.2 The FOIL learning algorithm

FOIL learns function-free Prolog predicate definitions from examples and background knowl-
edge. Both examples and background knowledge are encoded as ground facts. Since FOIL’s

5

function FOIL(Data):
begin

PredDef := an empty predicate
while Data contains positive examples do

Clause := GrowClause(Data)
add Clause to PredDef
remove examples covered by

Clause from Data
endwhile
return PredDef

end

function GrowClause(Data):
begin

Clause := a clause with an empty body and
maximally general head: p(X1, . . . , Xk) ←true

while Clause covers some negative examples do
Body := the body of Clause
Head := the head of Clause
replace Clause with the new clause Head← Body,NewLit

that maximizes Information-Gain(Clause,NewClause,Data)
where NewLit is some new condition

endwhile
return Clause

end

function Information-Gain(Clausei,Clausei+1,Data):
begin

return T++ × − log2
T+
i

T+
i +T−

i
+ log2

T+
i+1

T+
i+1+T−

i+1

¶

where T+
j (respectively T−

j) is the number of positive
(respectively negative) examples covered by Clausej, and
T++ is the number of positive examples covered by Clausei+1

end

Figure 1: The basic FOIL algorithm

6

function IREP∗(Data)
begin

Data0 := copy(Data);
PredDef := an empty predicate
while Data contains positive examples do

/* grow and prune a new clause */
split Data into GrowData,PruneData
Clause := GrowClause(GrowData)
Clause := PruneClause(Clause,PruneData)
add Clause to PredDef
remove examples covered by

Clause from Data
/* check stopping condition */
if DL(PredDef)>DL(PredDefopt) + d

where PredDefopt has lowest DL
of any PredDef constructed so far

then
break out of the while loop

endif
endwhile
PredDef := Compress(PredDef,Data0)
return PredDef

end

function Optimize(PredDef,Data)
begin

for each clause c ∈ PredDef do
split Data into GrowData,PruneData
c′ := GrowClause(GrowData)
c′ := PruneClause(c′,Prunedata)

guided by error of PredDef-c+c′

ĉ := GrowClauseFrom(c,GrowData)
ĉ := PruneClause(ĉ,Prunedata);

guided by error of PredDef-c+ĉ
replace c in PredDef with best of c, c′, ĉ

guided by DL(Compress(PredDef-c+x))
endfor
return PredDef

end

function FLIPPER(Data)
begin

PredDef := Optimize(IREP∗(Data),Data)
UncovData := examples in Data not

covered by clauses in PredDef
return PredDef + IREP∗(UncovData)

end

Figure 2: The FLIPPER algorithm

learning algorithm is described elsewhere we will only summarize it briefly. The basic FOIL
algorithm is shown in Figure 1.

FOIL is a set-covering type algorithm—i.e., it starts with an empty predicate definition,
and then extends the definition by adding one clause at a time. After each clause is con-
structed, the examples covered by that clause are deleted, and this process continues until
no more positive examples remain.

Clauses are constructed using a greedy method. FOIL begins with a clause with an empty
body, and repeatly specializes the clause body by adding literals, guided by an information-
theoretic measure of clause quality called “information gain”. FOIL considers adding any
single literal NewLit to the body of a clause, as long as it satisfies the mode and typing
constraints given by the user, and as long as it shares at least one variable with the existing
clause. Algorithms like FOIL that combine set covering and greedy construction of clauses
are often called separate and conquer algorithms.

FOIL6.4 adds a number of refinements to the basic algorithm outlined above, including an
method for handling noisy data by stopping construction of a clause (or predicate definition)
before it is completely consistent with the data. This stopping criterion is guided by a
minimum description length (MDL) heuristic. Some sort of noise immunity is important on
a problem like fault density estimation, in which it is implausible to expect that concept
membership will be completely determined by the available background relations. A more
complete description of FOIL can be found elsewhere [Quinlan, 1990; Quinlan and Cameron-
Jones, 1993].

7

2.2.3 The FLIPPER learning algorithm

Like FOIL, FLIPPER learns function-free Prolog predicate definitions from examples and
ground background relations. Algorithmically, however, FLIPPER is quite different; it is
a first-order version of RIPPER [Cohen, 1995a], which in turn is based on the incremental
reduced error pruning (IREP) algorithm [Fürnkranz and Widmer, 1994].

The first stage of FLIPPER is a variant of IREP that we call IREP∗. (See Figure 2.)
IREP∗ is a set-covering algorithm: it constructs one clause of a predicate definition at a time,
and removes the examples covered by a new clause c as soon as c is added to the predicate
definition. To build a clause, IREP∗ uses the following strategy. First, the uncovered
examples are randomly partitioned into two subsets, a growing set containing 2/3 of the
examples and a pruning set containing the remaining 1/3. Next, a clause is “grown” by
repeatedly adding literals to an empty clause guided by information gain on the growing set.
Addition of new literals (growing) continues until the clause covers no negative examples in
the growing set. After growing a clause, the clause is immediately pruned (i.e., simplified).
Our implementation considers deleting any final sequence of conditions from the clause, and
chooses the deletion that maximizes the function p−n

p+n where p (respectively n) is the number
of positive (negative) examples in the pruning set covered by the new clause. After pruning,
the pruned clause is added to the predicate definition, and the examples covered by it are
removed.

After each clause is added, the total description length of the current predicate definition
and the examples is computed.2 FLIPPER stops adding clauses when this description length
is more than d bits larger than the smallest description length obtained so far, or when there
are no more positive examples.3 The predicate definition is then compressed by examining
each clause in turn, starting with the last clause added, and deleting clauses so as to minimize
description length.

This greedy process can lead to a suboptimal predicate definition, thus after FLIPPER
stops adding clauses, the predicate definition is “optimized”. Clauses are considered in turn,
in the order in which they were added, and for each clause ci, two alternative clauses are
constructed. The replacement for ci is formed by growing and then pruning a clause c′i, where
pruning is guided so as to minimize error of the entire predicate definition (with c′i replacing
ci) on the pruning data. The revision of ci is formed analogously, except that it is grown by
greedily adding literals to ci, instead of to an empty clause. Finally a decision is made as
to whether the final theory should include the revised clause, the replacement clause, or the
original clause. This decision is made using the description length heuristic—the definition
with the smallest description length after compression is preferred. After optimization, the
definition may cover fewer positive examples; thus IREP∗ is called again on the uncovered
positive examples, and any additional clauses that it generates are added.

Both FLIPPER and FOIL6.4 are both relatively complex learning algorithms, and both
are direct descendents of the basic FOIL algorithm presented in Figure 1. The experi-

2The description length of a clause is defined to be
P

i log2 ni where for ni is the number of possible
refinements that were considered in the i-th stage of constructing the clause, and the scheme for encoding
errors is the same as that used in the latest version of C4.5rules [Quinlan, 1995].

3By default d = 64.

8

mental support for the particular extensions embodied in FLIPPER is described elsewhere
[Fürnkranz and Widmer, 1994; Cohen, 1995a; 1995b]. FLIPPER, like FOIL, is implemented
in C, and uses indexed joins internally to speed up evaluation of the function-free Prolog
clauses that it hypothesizes. FLIPPER differs from FOIL in many other ways, most of which
are not important for this problem. One important difference is that unlike FOIL, FLIPPER
has a “declarative bias”—i.e., the user can define the space of clauses searched by FLIPPER
by writing expressions in a declarative language [Cohen, 1995b]. (In this paper, we will use
the term “bias” to refer to the hypothesis space searched by a learning program. A small
hypothesis space corresponds to a “strong bias” and a large hypothesis space corresponds to
a “weak bias”.)

To clarify this difference, note that the clauses constructed by FLIPPER and FOIL, as
described above, that are built by repeatedly adding a new literal to the end of a clause
body. In FOIL, almost any literal can be added; thus FOIL explores a very wide range
of possible clauses. The user can control the set of clauses generated using a few specific
techniques, notably by restricting the mode of predicates, and by command-line arguments
that suppress generation of negative literals or recursive literals.

In contrast, FLIPPER employs a declaratively specified refinement operator [Shapiro,
1982], which allows the user to specify exactly how a clause can be extended. (For details
of the refinement language, see [Cohen, 1995b].) The refinement operator gives the user fine
control over the space of hypotheses that is searched by the learning system. However, in
most of the experiments described below, this feature of FLIPPER was not used; instead we
wrote a script that converts a set of typed mode declarations, such as are accepted as input
by FOIL, to a FLIPPER refinement language definition for the corresponding search space.

3 Experimental Results with FOIL and FLIPPER

3.1 Initial experiments

Employing the experimental methodology used by Srinivasan et al. [1996] in a similar small-
sample situation, we estimated error rates with 10-fold cross-validation. The examples were
randomly divided into 10 disjoint “folds” of approximately equal size. We then trained each
learner on nine of the ten folds, and tested on the remaining fold.

Following this methodology, all 122 examples are used (at some point) as test cases. The
predictions made by each learner on the test cases were recorded, and McNemar’s test was
used to compare accuracy of different learners. To compare learners L1 and L2 with this
test, one determines if the probability P (L1 is correct | L1 and L2 disagree) is significantly
different from 0.5, as estimated by a 2-tailed test with the binomial distribution. If it is, then
one can with high confidence reject the null hypothesis that L1 and L2 perform comparably
on the test cases.

As a special case, one can use McNemar’s test to compare a learner’s performance with
the performance of the default hypothesis. (On this problem, the default hypothesis always
predicts a class to be fault-free). This comparison indicates if a learner’s hypothesis is
significantly better than just guessing the most likely class. This methodology is discussed
and evaluated more fully in Appendix B.

9

Learning system Errors vs. default Time (sec)
(options) # % W-L p avg max

FOIL6.4 55 30.9 18-15 0.51 6,838 10,672
(monotone) 50 28.1 20-12 0.86 11,540 16,636
(monotone,modes) 53 29.8 8-3 0.89 35,451 63,185√

F1 FLIPPER 42 23.6 28-12 0.99 495 1,317√
F2 (monotone) 40 22.5 29-11 0.99 1,773 7,714

(monotone,modes) 49 27.5 22-12 0.87 3,944 24,439
F3 (strong bias) 62 34.8 25-29 0.41 18 23

Table 2: Comparison of off-the-shelf learning systems on fault prediction

Table 2 summarizes our first results on the fault density problem. We give for each
learning system the error rate as estimated by the cross-validation, both as the number of
errors and as a percentage; the result of comparing the classifier with the default classifier
using McNemar’s test; and the average and maximum run time of the ten learning trials.4

For McNemar’s test, we give the won-loss record of the learning system versus the default
classifier on those test cases for which they disagree, and the confidence p with which one
can reject the null hypothesis that the learner’s performance is mere random deviation from
the default hypothesis.

We began by comparing FOIL with its default settings to FLIPPER with the nearest
possible approximation to this bias. Since we wished to explore the effect of prior knowledge
on learning, we also ran FOIL and FLIPPER with some more restrictive biases, making
use command-line arguments for FOIL, and FLIPPER’s refinement language. First, we
suppressed use of “negative” literals, of the form ¬L; the rationale for this is that the coupling
relationships describable by the background predicates should make faults more likely, rather
than less likely. These results appear in table as “monotone” FOIL and FLIPPER. Secondly,
we ran the monotone versions of FOIL and FLIPPER with the mode restrictions given in
Table 1.

With the standard settings, and with the monotone bias, FLIPPER’s average runtime
was about 5-10 times faster than FOIL’s. FLIPPER also gives better results with respect
to error rate; for these biases, FLIPPER’s results are statistically significantly better than
FOIL’s.5 Further, only FLIPPER performs statistically significantly better than the default
classifier (indicated with a checkmark

√
in the table).

The monotone bias appears to decrease the error rate somewhat for both systems, al-
though the decrease is not significant in either case. However, injecting knowledge in the
form of mode restrictions gives disappointing results, raising the error rate for both FOIL
and FLIPPER (although not significantly). Somewhat surprisingly, the run time for both
FOIL and FLIPPER is also dramatically worse with the more restricted bias induced by the

4On a 250MHz MIPS Irix computer.
5Using McNemar’s test, FLIPPER is better with probability p > 0.98 on a two-tailed test in the monotone

case and p > 0.988 in the non-monotone case.

10

mode declarations, with both learners occasionally suffering enormously long run-times.
Line F3 represents another attempt to inject prior knowledge into the learning process.

It indicates FLIPPER’s performance given a highly restricted bias suggested by the metrics
proposed by Briand et al. [1997]; this hand-coded bias also increases the error rate. These
restrictions allow only 110 distinct clauses, each consisting of one literal with one of the
predicates mp, mc, cmt, arf, or mrf, used on one of the suggested modes; followed optionally
by either a single frd or isa literal, possibly negated, or a conjunction of negated frd and
isa literals that collectively ensure that the two classes mentioned in the first literal are not
related in any way by either inheritance (isa) or friendship (frd).

The increase in error rate with prior knowledge is disappointing for several reasons—not
the least of which is that generalizing and validating the Briand et al. metrics was the
original motivation for this work. More generally, one usually prefers hypotheses that are
comprehensible to domain experts, since this increases one’s confidence in the correctness
and robustness of these hypotheses. This is especially true in a situation like this one, in
which little data is available to validate a hypothesis.

In the remainder of the paper we will investigate the reasons why this apparently plausible
prior knowledge degrades performance, and propose some extensions to FLIPPER which
enable it to make more effective use of the prior knowledge. We will also investigate further
the reasons for the differences in run-time and generalization error between FLIPPER and
FOIL.

3.2 Runtime Differences

We conjecture that the increase in runtime when modes are used is in part a consequence
of the highly non-determinate nature of this dataset. Recall that a predicate is determi-
nate for a particular mode if there will always be at most one way of binding the output
variables given the input variables. For example, if the predicate child(X,Y) is true when
Y is a child of node X, then child will be determinate for the mode child(-,+) in a tree
data structure, but non-determinate for the mode child(+,-). Determinate predicates are
especially easy to evaluate, since no backtracking points need to be set, and in ILP systems,
determinate predicates are often treated specially; for example, FOIL6.4 has special mecha-
nisms for handling determinate predicates, and GOLEM [Muggleton and Feng, 1992] allows
only determinate predicates. Formal results also suggest that clauses containing determinate
predicates are especially easy to learn [Dz̆eroski et al., 1992; Cohen, 1995c].

Unfortunately, many of the predicates used in this problem are highly non-determinate;
in particular, the predicates mc, mp, mrf, and arf can be instantiated many different ways
for some examples, when used in their suggested modes. For instance, given a binding for
C1, there are many ways the literal mc(C1,M1,C2,M2) can be instantiated—in fact, almost
every function call in a method of C1 leads to a distinct binding for M1, C2, and M2. A long
clause containing many of these non-determinate predicates can be extremely expensive to
evaluate.

While the mode declarations reduce the search space, they do not exclude these expensive
clauses. Thus if the learning system is unlucky enough to construct expensive clauses while
searching for a hypothesis, learning will be slow. It appears that on this dataset, expensive

11

clauses are more likely to be constructed when mode restrictions are used. Presumably this
is because absent the mode restrictions, there are some compact, inexpensive clauses that
are highly predictive.

To test this conjecture, we extended FLIPPER to accept an additional parameter M
which limits the number of distinct proofs that any individual example may have. Here a
proof for an example is defined to be a binding for the variables of the clause body that makes
the clause body true, assuming that the head of the clause is unified with the example. When
M is given, then any candidate clause that can be proved to be true more than M distinct
ways for any uncovered example is discarded. In other words, a clause will be discarded if,
given bindings for variables in the head, it can be made true by using more than M distinct
combinations of assignments to the variables in the body of the clause. Specializations of
such a clause will probably require a large amount of backtracking to evaluate, and hence
will be expensive to evaluate. By appropriately restricting M , a user can avoid expensive
clauses, without having to commit to any particular syntactic restriction on clauses such as
determinacy [Muggleton and Feng, 1992] or locality [Cohen, 1994b].

Learning system Errors vs. default Time (sec)
(options) # % W-L p avg max

√
F1 FLIPPER 42 23.6 28-12 0.99 495 1,317√
F2 (monotone) 40 22.5 29-11 0.99 1,773 7,714

(monotone,modes) 49 27.5 22-12 0.87 3,944 24,439
M1 (M=100,monotone,modes) 63 35.4 21-26 0.46 384 2,454
M2 (M=500,monotone,modes) 52 29.2 31-25 0.57 989 3,470

Table 3: Effect of limiting non-determinacy

Lines M1-M2 of Table 3 show the performance of FLIPPER with modes and with M set
to 100 and 500. Even M = 500 gives a dramatic improvement in run-time, supporting the
conjecture. This was true even though implementing this extension required us to disable
one optimization made by FLIPPER.6

Unfortunately, the restriction also adversely affects accuracy. The increase in error for
M = 100 versus no restriction is statistically significant (p > 0.95), leading to the surprising
conclusion that it is helpful to include these extremely non-deterministic clauses in the search
space.

3.3 Error Rate Differences

As a further test, we constructed an artificial dataset that is similar to our fault density
dataset, except that the degree of non-determinacy and the amount of noise can be varied.

6Specifically, FLIPPER’s inner loop evaluates a clause A ← B1, . . . , Bk, L on a set of examples S. This
clause is always a refinement of a previous clause A ← B1, . . . , Bk which is known to cover all the examples in
S. Thus FLIPPER normally performs a dependency analysis to determine which of the literals B1, . . . , Bk

are necessary in binding the variables in L, and then evaluates a simplified clause in which unnecessary
literals are deleted. Unfortunately deleting such literals changes the number of distinct proofs of a clause.

12

Learning system Errors vs. default Time (sec)
(options) # % W-L p avg max

FOIL6.4 55 30.9 18-15 0.51 6,838 10,672√
F1 FLIPPER 42 23.6 28-12 0.99 495 1,317
P1 FLIPPER/gain on proofs 58 32.6 0-0 0.00 91 100

Table 4: Comparison of learning systems on fault prediction

We now turn to the differences in error rate between FLIPPER and FOIL. FLIPPER has
been previously shown to obtain lower error rates than FOIL on some learning problems with
a high level of noise, but little non-determinacy [Cohen, 1995b]; thus one likely explanation
for the difference in generalization performance is simply the differences in pruning strategies
used by the two systems. However, the non-determinacy of the dataset suggests an additional
explanation for why FLIPPER’s generalization error is less than FOIL’s.
For efficiency reasons, when computing information gain, FOIL does not compute the number
of positive and negative examples covered by a candidate clause, as shown in Figure 1.
Instead, FOIL counts the number of distinct proofs of all positive (respectively negative)
examples.7 In highly non-determinate domains, these counts can be quite different from the
number of examples covered by a clause—and intuitively it is number of examples, not proofs,
that is important in learning. Thus one would expect some degradation in performance
due to counting proofs, rather than examples. Further, one would expect this effect to
be most serious domains that are both highly indeterminate and noisy; when domains are
indeterminate, then proof counts and example counts will differ most; and when domains
are noisy, it is most difficult to choose the best clause refinement.
To test this, we modified FLIPPER so that information gain is computed á la FOIL—from
the number of proofs, rather than the number of examples. We conjectured that this would
increase the generalization error. Line P1 of Table 4 shows the results for this variant of
FLIPPER, using a monotone bias; it has a significantly higher error rate than standard
FLIPPER (p > 0.99), supporting the conjecture.

time(FOIL)-time(FLIPPER) error(FOIL)-error(FLIPPER)
k β=0.0 0.1 0.2 0.25 0.3 β=0.0 0.1 0.2 0.25 0.3
1 −27.6 −244.7 −212.9 −225.6 −262.1 0.0 17.2 19.6 −3.3 40.4
2 −71.2 −680.4 −993.0 −983.2 −720.4 0.0 13.8 23.8 28.1 36.1
5 −148.7 −2327.2 729.7 >6588.9 >4465.8 0.0 5.9 14.0 *** ***
10 −271.9 −4608.4 −889.2 >4922.1 >5930.5 0.0 7.9 17.3 *** ***
20 −686.3 1518.5 >6463.3 >5130.2 >4439.9 0.0 9.3 *** *** ***

Table 5: Comparison of FOIL and FLIPPER on artificial data

13

(See Appendix A for details.) We varied the maximum amount of non-determinacy from
k = 1 to k = 20, where k = 1 corresponds to a determinate dataset, and varied noise from
β = 0 to β = 0.3, where β = 0 corresponds to a noise-free dataset. We then compared
FOIL and FLIPPER as these parameters were varied. Both the systems were run with
a time bound of 10,000 CPU seconds, and FLIPPER was run with M = 100. Table 5
summarizes the results of this experiment, showing the differences in run-time (or a bound
on this difference, if one system did not complete in 10,000 seconds) and also the differences
in error rate (for those cases where both systems completed in 10,000 seconds).

FLIPPER nearly always achieves lower error rates when there is noise in the data. This
difference is significant,8 and appears to hold regardless of the amount of non-determinacy.
With respect to run-time, FOIL is generally much faster—except when there is both a large
amount of noise and a noticeable degree of non-determinacy. These, of course, are the
conditions that prevail in the natural fault density dataset. FOIL seems to be slow on these
problems because it often “overfits” noisy data, and constructs hypotheses containing many
long clauses; in non-determinate domains these are very expensive.

We also compared the error rates of standard FLIPPER with the proof-counting variant
on the same artificial datasets. Of nine non-zero differences, standard FLIPPER has a
lower error rate eight times, a statistically significant difference.9 This again supports the
hypothesis that counting proofs rather than examples is inadvisable in non-determinate noisy
domains.

4 Experiments with other learning methods

4.1 ILP With Number Restrictions

So far, we have considered only off-the-shelf learning methods, and some minor variants of
these methods. We will now consider some more novel learning algorithms that are suggested
by the analysis.

ILP methods represent hypotheses as logic programs. Another class of first-order lan-
guages are description logics , sometimes also called terminological logics or KL-ONE-type
languages [MacGregor, 1991; Woods and Schmolze, 1992]. Several experimental systems
learn description logics [Cohen and Hirsh, 1994b; Kietz and Morik, 1991], and formal results
show that some fairly expressive description logics are pac-learnable [Cohen and Hirsh, 1994a;
Frazier and Pitt, 1994].

One intriguing property of description logics is that they make it possible to succinctly
write some concepts that are quite cumbersome to express in Prolog. For instance, given
the predicate child, the set of people with at least three different children would be written
(AND PERSON (AT-LEAST 4 CHILD)) in the description logic Classic, whereas in Prolog it
would be written as the possible substitutions for X for the query

← person(X), child(X,Y1), child(X,Y2), child(X,Y3),child(X,Y4),
Y1#=Y2, Y1#=Y3, Y1#=Y4, Y2#=Y3, Y2#=Y4, Y3#=Y4

8With p > 0.99 on a two-tailed sign test.
9With p > 0.99 on a two-tailed sign test.

14

It is plausible that such number restrictions could be useful in a problem such as fault density
prediction, in which there are many relations that vary widely in non-determinacy.

We thus extended FLIPPER to learn a class of logic programs with number restrictions—
specifically logic programs containing what we will call counting clauses . A counting clause
is an ordinary Prolog clause that has an associated threshold k. An example e is classified
as positive by the clause only if the clause has at least k proofs—i.e., if given the bindings
imposed by unifying the head of the clause with e, there are at least k ways to bind the
non-head variables in the clause that make the clause true.

Informally, to cover an example e, a counting clause not only must be true (given the
bindings imposed by unifying with e); it must be true for at least k different reasons, where
k is the associated threshold. If k = 1 then the clause is an ordinary non-counting clause.
As an example, the following clause with threshold k = 4 covers an example p(e) iff e has at
least 4 children: p(X) ← person(X), child(X,Y).

It should be emphasized that counting clauses are number restrictions on conjunctions of
predicates, thus allowing one to also easily express concepts like “people with at least three
female children”, “people with at least three children enrolled in an Ivy-league college”, as
well as “people with at least three children”. In particular, augmenting the background
knowledge with ordinary arithmetic tests and a small number of additional predicates would
not provide the expressive power of counting clauses—for instance, introducing the predicate
“number of children” allows one to succinctly express only the simplest of the examples
above.

In contrast to the previous extension we described, which seeks to limit the cost of non-
determinism, counting clauses are a means of exploiting non-determinism, by allowing the
degree of non-determinism to be used in prediction. In fault density prediction, counting
clauses allow a hypothesis to classify based on the degree of some type of coupling, rather
than whether that type of coupling exists.

The changes to the algorithm required to implement this extension were minor, and
affected only the procedures GrowClause and GrowClauseFrom. Whenever a new literal L
is added to a clause c, the clause is tested against each example e, and the largest threshold
k such that e is covered is computed. Based on this information, the threshold k that
optimizes information gain for the extended clause is determined, and associated with the
refined clause. In pruning the clause, these refinements are simply “undone”—in other words,
when a final sequence of literals in a clause is deleted, the threshold k is restored to whatever
threshold was adopted before those literals were added. We applied this extension to two
biases: the monotone bias with modes, and the hand-coded bias suggested by the metrics of
Briand et al. [Briand et al., 1997]. Counting clauses increase the search space somewhat, and
also require one of the optimizations made by FLIPPER to be disabled;10 perhaps because of
this, learning counting clauses can be relatively expensive. We thus limited non-determinism
to M = 100 and M = 500 with the mode declarations. (The hand-coded bias is so restricted
that run-time performance is not an issue.)

The results are shown in Lines C1-C3 of Table 6. There is an improvement over standard
FLIPPER in each case. This improvement is statistically significant for the two more highly
restricted biases—the hand-coded bias (p > 0.999) and mode restrictions with M = 500

10The dependence analysis optimization was disabled, for the reasons described in Section 3.2.

15

Learning system Errors vs. default Time (sec)
(options) # % W-L p avg max

FOIL6.4 55 30.9 18-15 0.51 6,838 10,672
(monotone) 50 28.1 20-12 0.86 11,540 16,636
(monotone,modes) 53 29.8 8-3 0.89 35,451 63,185√

F1 FLIPPER 42 23.6 28-12 0.99 495 1,317√
F2 (monotone) 40 22.5 29-11 0.99 1,773 7,714

(monotone,modes) 49 27.5 22-12 0.87 3,944 24,439
F3 (strong bias) 62 34.8 25-29 0.41 18 23

M1 (M=100,monotone,modes) 63 35.4 21-26 0.46 384 2,454
M2 (M=500,monotone,modes) 52 29.2 31-25 0.57 989 3,470

FLIPPER/counting clauses
C1 (M=100,monotone,modes) 48 27.0 32-22 0.82 1,386 4,369√
C2 (M=500,monotone,modes) 41 23.0 37-20 0.97 4,737 9,917√
C3 (strong bias) 39 21.9 34-15 0.99 29 42√
C4 (biased,optimize 2x) 35 19.7 39-16 0.99 28 32

Table 6: Comparison of learning systems on fault prediction

(p > 0.95).
One final experiment was performed using FLIPPER. As noted in Section 2.2, FLIPPER

“optimizes” its clauses after it learns them. In RIPPER, the propositional version of FLIP-
PER, this optimization step is repeated twice by default; the second iteration tends to give
a slight additional improvement, and is omitted in FLIPPER only because of the greater
expense of first-order learning. Since learning with the hand-coded bias is relatively inex-
pensive, however, we tried FLIPPER with counting clauses and two rounds of optimization.
As shown in line C4, this offers an additional improvement in error rate, giving the lowest
error rate we have achieved this problem.

4.2 Indirect ILP methods

Another experiment was motivated by the observation that the hand-coded bias generates
a small finite set of clauses. This bias can be encoded propositionally by introducing one
attribute ai for each possible clause ci. We considered two variants of this encoding. In the
first, ai is boolean, indicating whether ci covers an example e. In the second, ai is numeric,
indicating the number of distinct proofs that ci covers e. We then ran two propositional
learners, C4.5 [Quinlan, 1994] and RIPPER [Cohen, 1995a], on the constructed dataset.
The results are again shown in Table 2; lines I1-I2 summarize the results for the boolean
encoding, and lines J1-J2 summarize the results for the numeric encoding.

In both cases, the numeric encoding improves performance over the boolean encoding—
significantly for RIPPER (p > 0.99).11 This result can be viewed as a propositional analog

11The differences between C4.5 and RIPPER on the same datasets are not statistically significant.

16

Learner Options k Errors vs. default # Features
% W-L p

I1 RIPPER biased 59 33.1 20-21 0.20 111b
I2 C4.5 biased 52 29.2 25-19 0.64 111b
I3 RIPPER monotone 1 47 26.4 25-14 0.93 35b√
I4 RIPPER monotone 2 42 23.6 37-21 0.96 4100b
I5 RIPPER monotone,modes 1 59 33.2 19-20 0.11 19b
I6 RIPPER monotone,modes 2 50 28.1 35-25 0.70 490b

√
J1 RIPPER biased 37 20.8 40-19 0.99 111n
J2 C4.5 biased 44 24.7 37-23 0.93 111n
J3 RIPPER monotone 1 45 25.3 37-24 0.91 35n√
J4 RIPPER monotone 2 36 20.2 41-19 0.99 4100n√
J5 RIPPER monotone,modes 1 37 20.8 40-19 0.99 19n√
J6 RIPPER monotone,modes 2 44 24.7 32-18 0.95 490n

Table 7: Results with indirect ILP

to the improvement gained by extending FLIPPER with counting clauses.
These experiments also suggest using an alternative type of ILP. Both FOIL and FLIP-

PER learn directly from examples and background facts. An alternative approach to ILP
is to first generate logic program clauses, and then use these clauses convert the examples
and background knowledge into a propositional form. One can then apply conventional
propositional learning methods to the constructed dataset. A number of theoretically pro-
posed learning methods [Lavrac̆ and Dz̆eroski, 1992; Dz̆eroski et al., 1992; Cohen, 1994b]
and at least one practical learning system (LINUS [Lavrac̆ and Dz̆eroski, 1994]) rely on this
technique.

We evaluated the following simple indirect learning system. Given a dataset, a set of
background relations, and a set of suggested modes, we enumerated all possible clauses with
at most k body literals. Each of these clause c corresponds to a boolean feature ac, which is
true for an example x iff c covers x.

The approach is suggested by formal results concerning the language of k-local clauses .
Define X to touche Y if X and Y are two variables appearing in a clause, and define
influences to be the transitive closure of touches . A k-local clause is one in which every
variable appearing in the body but not the head of the clause influences variables appearing
in at most k different literals.

It has been shown that the language of k-local clauses is the most expressive that can
be efficiently learned in certain formal models [Cohen, 1994b]. Any monotone DNF formu-
lae over the constructed features can be converted to a k-local Prolog predicate definition.
Hence applying a learning system like RIPPER to the propositionalized ruleset is a plausible
approach to learning k-local clauses.

The results of using RIPPER in this way (for some of the more promising biases) are
shown in lines I3-I6 of Table 7. With k = 1, the indirect approach is significantly worse

17

(p > 0.99) than the comparable direct algorithm, monotone FLIPPER (lines I3,I5); however
it is statistically indistinguishable from FLIPPER with k = 2 (lines I4,I6). Like the direct
approach, the indirect approach fairs poorly with restricted biases (lines I5-I6).

More interestingly, a corresponding set of numeric features can be constructed using the
same method used in constructing lines J1-J2 of the table; specifically, for each length-k
clause c and each example e one can construct a numeric feature indicating the number of
distinct proofs that c covers e. To our knowledge, this approach has not been used before
real-world problems. RIPPER performs rather well using these feature sets—in all cases but
one significantly outperforming the default classifier (lines J3-J6).

In general, learning time on the converted datasets is much faster than with the indirect
methods, ranging from well under a second for the smaller feature sets to around 30 seconds
for the k = 2 bias. However, the cost of propositionalizing can be high.12

5 Summary of all experiments

As a final summary, Table 8 lists all the experimental results obtained on this fault prediction
problem. All the labels are as given above in the text.

Notice that given appropriate features, the propositional systems perform well on this
problem—in particular, their error rates are not statistically significantly worse than even
the best of the ILP systems.13 Similar results have been found elsewhere [Srinivasan et al.,
1996].

The benefit of general-purpose ILP methods is illustrated by lines F1-F2 and C2-C4,
in which very good generalization performance is obtained, without any numerical metrics
being explicitly defined. In spite of the larger search space considered by the ILP methods,
these results are not significantly worse than the best results obtained using numeric metrics
designed by experts (lines J1-J2). ILP methods that incorporate declarative bias have the
additional advantage that one can systematically and gradually restrict these general biases
to incorporate domain knowledge.

Tables 9, 10, and 11 show some of the hypotheses generated by these learning systems on
our dataset. Each hypothesis is labeled with the line number of the corresponding experiment
from Table 8.14 Notice that all these hypotheses are very simple; this is probably appropriate,
given the small amount of data available in training.

Table 9 shows the three strictly logical hypotheses (based on ordinary Prolog, or boolean
variables) that were determined to be significantly better than guessing, based on the cross-
validation experiments. The simplest of these, for line F2, predicts faults whenever a derived

12The process for k = 2 took three days of compute time. However, timing comparisons are difficult since
this was on a much slower machine (a 60 Mhz Sun 20) and in a different language (Prolog).

13The best ILP system (line C4) is statistically significantly better than either C4.5 or RIPPER with a
boolean encoding, and better than C4.5 with the numeric encoding with confidence p > 0.90. However it is
indistinguishable from RIPPER with the numeric encoding.

14Note that many hypotheses were generated in the course of these experiments; in the cross-validation
experiments, each learning algorithm was run 10 times on different subsets of the data, yielding ten hypothe-
ses, and we also ran each learner on the entire data, generating an eleventh variant hypothesis. We present
the hypothesis resulting from running the learner on all of the data, unless otherwise noted; in general we
have tried to give some feel for the actual range of hypotheses generated in the experiments.

18

Learning system Errors vs. default Time (sec)
(options) # % W-L p avg max

FOIL6.4 55 30.9 18-15 0.51 6,838 10,672
(monotone) 50 28.1 20-12 0.86 11,540 16,636
(monotone,modes) 53 29.8 8-3 0.89 35,451 63,185√

F1 FLIPPER 42 23.6 28-12 0.99 495 1,317√
F2 (monotone) 40 22.5 29-11 0.99 1,773 7,714

(monotone,modes) 49 27.5 22-12 0.87 3,944 24,439
F3 (strong bias) 62 34.8 25-29 0.41 18 23

M1 (M=100,monotone,modes) 63 35.4 21-26 0.46 384 2,454
M2 (M=500,monotone,modes) 52 29.2 31-25 0.57 989 3,470

P1 FLIPPER/gain on proofs 58 32.6 0-0 0.00 91 100

FLIPPER/counting clauses
C1 (M=100,monotone,modes) 48 27.0 32-22 0.82 1,386 4,369√
C2 (M=500,monotone,modes) 41 23.0 37-20 0.97 4,737 9,917√
C3 (strong bias) 39 21.9 34-15 0.99 29 42√
C4 (biased,optimize 2x) 35 19.7 39-16 0.99 28 32

hand-coded boolean
I1 RIPPER 59 33.1 20-21 0.20
I2 C4.5 52 29.2 25-19 0.64

hand-coded numeric√
J1 RIPPER 37 20.8 40-19 0.99
J2 C4.5 44 24.7 37-23 0.93

generated boolean (RIPPER)
I3 monotone, k = 1 47 26.4 25-14 0.93√
I4 monotone,k = 2 42 23.6 37-21 0.96
I5 monotone,modes,k = 1 59 33.2 19-20 0.11
I6 monotone,modes,k = 2 50 28.1 35-25 0.70

generated numeric (RIPPER)
J3 monotone, k = 1 45 25.3 37-24 0.91√
J4 monotone, k = 2 36 20.2 41-19 0.99√
J5 monotone,modes,k = 1 37 20.8 40-19 0.99√
J6 monotone,modes,k = 2 44 24.7 32-18 0.95

Table 8: Comparison of all learning systems on fault prediction

19

F1: FLIPPER with default op-
tions

faulty(C1)← mc(C1,M1,C2,M2), isa(C1,C3), ¬eq(M1,M2).

F2: FLIPPER with monotonicity
constraint

faulty(C1)← mc(C1,M1,C2,M2), isa(C1,C3)

I4: RIPPER with boolean fea-
tures generated from all monotone
clauses of length k ≤ 2

faulty ⇔ (a1390 ∧ a1435 ∧ a1153) ∨ (a1355 ∧ a1628)

c1390: faulty(C1) ← mc(C1,M1,C2,M2),isa(C2,C3).
c1435: faulty(C1) ← mc(C2,M2,C1,M1),cmt(C2,M2,C1).
c1153: faulty(C1) ← mc(C1,M1,C1,M2),isa(C1,C3).
c1355: faulty(C1) ← mc(C1,M1,C2,M2),arf(C2,C1,G).
c1628: faulty(C1) ← mc(C2,M2,C1,M1),mrf(C3,3,C2,A2).

Table 9: Useful models: ordinary logic programs or boolean features

class calls another class; the others are variations of this. The second disjunct shown on for
I4 in Table 9 is somewhat different; this disjunct has two conjunct clauses, which emphasize
different types of coupling [Briand et al., 1997].

Table 10 shows the hypotheses based on “counting clauses” or numerical variables that
were determined to be significantly better than guessing. Most of these hypotheses predict
faults based on the number of function calls (sometimes with additional constraints). Typ-
ically a class with more than 15 or so method calls is predicted to be fault prone. This
is closely related to the OMMIC measure in [Briand et al., 1997] which was found to be a
significant fault predictor.

The hypotheses shown in Tables 9 and 10 were generated by FLIPPER or its proposi-
tional cousin, FLIPPER. Table 11 shows two hypotheses generated by FOIL and C4.5.

6 Related work

The problem finding fault-prone elements in software systems[Basili et al., 1996; Chidamber
and Kemerer, 1994; Briand et al., 1997] has received much attention. The main contribu-
tion of this paper has been the use of ILP techniques to automatically explore a large space
of possible hypotheses. This approach allows predictive models of fault density to be ob-
tained without manually defining any numerical metrics; instead the ILP system is supplied
with a high-level representation of the sample programs, expressed as a set of ground facts
concerning inter-class coupling.

We have presented two novel machine learning algorithms: FLIPPER with counting
clauses, and the indirect ILP approach in which numeric features were constructed based
on length-k clauses. To our knowledge, no previous ILP system learns counting clauses—in
fact, no previous ILP system directly measures the number of distinct proofs a clause may
have, except for the special purpose of detecting determinacy. However, description logic

20

C2-C3: FLIPPER with mono-
tonicity constraint, mode con-
straints, counting clauses, and
M = 500, or FLIPPER with
strong bias and counting clauses,
optimizing once

faulty(C) ← mc(C,Min1,Cout1,Mout1) > m
(m ranges from 14 to 17 in different CV runs)

C4: FLIPPER with strong bias
and counting clauses, optimizing
twice (typical CV run)

faulty(C) ← mc(C,Min1,Cout1,Mout1) > 16
faulty(C) ← mc(C,Min1,Cout1,Mout1),

¬isa(C,Cout1) > 32.

J1: RIPPER with hand-coded nu-
meric features

faulty ⇔ a20 ≥ 15

c20: faulty(A) ← mc(A,D,E,F),¬frd(A,E).

J4: RIPPER with numeric fea-
tures generated from all monotone
clauses of length k ≤ 2

faulty ⇔ (a1325 ≥ 30)

c1325: faulty(A) ← mc(A,D,E,F),mc(G,F,H,I).

J5: RIPPER with numeric fea-
tures generated from all monotone
clauses obeying mode constraints
of length k ≤ 1

faulty ⇔ (a7 ≥ 17)

c7: faulty(A) ← mc(A,D,E,F).

J6: RIPPER with numeric fea-
tures generated from all monotone
clauses obeying mode constraints
of length k ≤ 2

faulty ⇔
(a8 ≥ 115 ∧ a342 ≤ 0) ∨
(a365 ≥ 20 ∧ a87 ≥ 60 ∧ a71 ≤ 497) ∨
(a94 ≤ 370)

c8: faulty(C1) ← mc(C1,M1,C2,M2).
c71: faulty(C1) ← mc(C1,M1,C2,M2),mc(C3,M2,C4,M4).
c87: faulty(C1) ← mc(C1,M1,C2,M2),mrf(C3,M3,C2,A2).
c94: faulty(C1) ← mc(C1,M1,C2,M2),cmp(C1,M3,P).
c342: faulty(C1) ← arf(C1,C2,A2),cmt(C2,M2,C3).
c365: faulty(C1) ← arf(C1,C2,A2),cap(C1,A3,P).

Table 10: Useful models: counting clauses or numeric features

21

FOIL with monotonicity constraints faulty(C1) ← mrf(C2,M2,C1,A1).
faulty(C1) ← mc(C1,M1,C2,M2), cap(C1,A1,P).
faulty(C1) ← mp(C2,M2,C1,M1).

C4.5 with hand-coded numeric features

c20: faulty(C1) ←
mc(C1,M1,C2,M2),¬frd(C1,C2).
c29: faulty(C1) ← cmt(C1,M1,C2),¬isa(C1,C2).
c32: faulty(C1) ← cmt(C1,M1,C2),¬frd(C1,C1).
c57: faulty(C1) ← cmt(C2,M2,C1).
c76: faulty(C1) ← arf(C2,C1,A1),¬frd(C2,C1).
c79: faulty(C1) ← mrf(C1,M1,C2,A2).
c98: faulty(C1) ← arf(C1,C2,A2),¬frd(C1,C2).

a20 <= 14 :
| a57 <= 68 :
| | a51 <= 15 :
| | | a29 <= 5 : NOTFAULTY
| | | a29 > 5 :
| | | | a32 <= 8 : FAULTY
| | | | a32 > 8 : NOTFAULTY
| | a51 > 15 :
| | | a79 > 11 : NOTFAULTY
| | | a79 <= 11 :
| | | | a98 <= 2 : FAULTY
| | | | a98 > 2 : NOTFAULTY
| a57 > 68 :
| | a57 <= 75 : FAULTY
| | a57 > 75 : NOTFAULTY
a20 > 14 :
| a98 > 5 : NOTFAULTY
| a98 <= 5 :
| | a51 > 17 : FAULTY
| | a51 <= 17 :
| | | a79 <= 7 :
| | | | a76 <= 3 : FAULTY
| | | | a76 > 3 : NOTFAULTY
| | | a79 > 7 :
| | | | a32 <= 16 : NOTFAULTY
| | | | a32 > 16 : FAULTY

Table 11: Models produced by FOIL and C4.5

22

learning systems have been developed that learn concepts involving number restrictions, a
closely related concept [Frazier and Pitt, 1994; Cohen and Hirsh, 1994b]. A boolean version
of the indirect ILP approach has been described [Cohen, 1996], but numeric features have
not been previously investigated in this context.

Morasca and Ruhe [1997] have explored the use of logistic regression and rough sets
to discover correlations between reliability data and a set of different possibly pertitent
measures. Their approach is more aligned with our interest in hypothesis discovery, since
they are not testing a specific hypothesis as embodied in a particular metric. However, ILP
approaches begin with base ground atomic facts, and synthesize logic programs, whereas
their techniques begin with actual numeric measures such as lines of code, rate of change
etc. The precise applicability of each of these different techniques needs to be studied further;
however, it seems likely that ILP methods are likely to find relevant hypotheses whenever
a) the phenomena leading to faults in software elements depend on the relationships within
and between the elements and b) these relationships can be derived, and encoded as ground
atomic facts, by source code analysis. Our work provides an illustration of this.

7 Conclusions

In this paper, we used inductive logic programming (ILP) methods to derive hypotheses
about fault density in C++ classes. These methods build hypotheses from raw relations
derived from source code, and software fault data; the relations are such that various coupling
metrics can be derived from them. In our experiments, a large space of possible hypotheses
is searched automatically. This approach is complementary to the more typical empirical
approach, in which a small number of manually derived hypotheses are tested.

Using ILP methods in this manner makes it possible to discover novel hypotheses—
hypotheses that, while predictive, might not be considered by experts. In spite of the large
search space considered, it is often the case that the ILP methods produce strongly predictive
models.

Our experiments with the task of predicting software faults led us to uncover and cor-
rect several important deficiencies in the existing ILP learning algorithms. In particular,
software fault prediction offers two significant technical challenges not present other ILP
benchmark problems: there is a high level of noise, and the underlying relationships are
highly non-determinate. We compared two off-the-shelf ILP systems, FLIPPER and FOIL.
We discovered that FLIPPER gives significantly more accurate results than FOIL, and is
also generally faster on the natural data. Experiments with synthetic data showed that
FLIPPER is usually more accurate when there is noise, and faster when there is both noise
and a substantial amount of indeterminacy.

Based on these experiments, we then proposed two extensions to FLIPPER. The first is
an additional bias away from clauses that are empirically observed to be expensive to evaluate
on the training data. This bias appears to improve run-time, at some cost in accuracy. The
second extension is allows FLIPPER to learn logic programs containing counting clauses , a
special case of the number restrictions frequently used in description logics. Such counting
clauses exploit non-determinacy by using the degree of non-determinacy of a clause as an
additional property upon which predictions can be based. Use of counting clauses greatly

23

improves FLIPPER’s performance when restricted biases suggested by domain experts are
used.

We also evaluated the use of ILP techniques for automatic generation of boolean and
numeric metrics from the calling tree representation, the numeric features being generated
using a novel variant of a process suggested by theoretical results. These features also led to
accurate predictors of fault density.

Acknowledgments

The authors are grateful to Waćelio Melo for generously providing his data on fault density.
We are also grateful to Philip Fong for suggesting this approach.

A The Artificial Dataset

Each dataset contains 200 training examples and 1000 test examples. The background
knowledge contains 25 binary relationships, intended to model coupling relationships, named
r1, . . . , r25. The parameter k determines the amount of non-determinacy, and β determines
the noise rate.

To generate the background knowledge, for each instance e and each relation ri, pick
an integer ki uniformly at random in {0, . . . , k}. Then repeat the following ki times: pick a
second instance e′ uniformly at random, and assert ri(e, e′). This models random coupling
relationships that have a maximal non-determinacy of k.

To assign labels to the instances, for each instance e, flip two biased coins that yield
“heads” with probability 1/

√
3. If coin 1 yields heads, then assert r1(e, e); otherwise, retract

r1(e, e) (if it is true). If coin 2 yields heads, then assert r2(e, e′) for some e′ picked uniformly
at random; otherwise, retract all facts r2(e, x) for any x. The result of this is that the
condition ∃x : r1(e, e) ∧ r2(e, x) is now true with probability 1/3. This target concept is
similar to one of the more compact and accurate hypotheses discovered by the learner. The
instance e is labeled positive if this condition is true, and negative otherwise. Finally, noise is
added to the training data (but not the test data) by inverting the label of e with probability
β.

B The Statistical Test

In many of the experiments discussed above, we compared two learning systems by using
McNemar’s test on the holdout data from a cross-validation experiment. This test is strictly
speaking non-standard, as McNemar’s test assumes that each trial is independent, which
is not the case in this setting. While there is no dependence among the test instances, the
predictions are dependent, because each prediction is a function of both the test instance and
the hypothesis, and the hypotheses are obtained from overlapping (and hence dependent)
sets of training examples. Following recent practise in experimental machine learning (e.g.,
[Dietterich, 1998]), we experimentally evaluated the effect of these dependencies on quality
of the statistical test. In particular, we measured the rate of Type I errors. A Type I error

24

is when the null hypothesis is incorrectly rejected; in our paper, a Type I error would lead
to an incorrect claim that two learning algorithms performed differently on the fault density
prediction problem.

We also used the artificial data to evaluate the accuracy of the test. Using k = 1, we
ran FLIPPER 21 times each with β = 0.2, 0.25, and 0.3, and compared the result to the
default hypothesis. The average value of the z statistic15 of the cross-validated version of
the McNemar’s test is slightly less than the average value of the z statistic for McNemar’s
test on the first 200 of the 1000 independent test cases; also the cross-validated version of
McNemar’s test made only two Type I errors at the 95% confidence level.16. Both of these
observations suggest that cross-validated version of McNemar’s test has an acceptable rate
of Type I error on data of this sort.

References

[Adé et al., 1995] Hilda Adé, Luc de Raedt, and Maurice Bruynooghe. Declarative bias for
general-to-specific ILP systems. Machine Learning, 20(1/2):119–154, 1995.

[Basili et al., 1996] V. Basili, L. Briand, and W. Melo. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering, 1996. To
appear. Also available as TR, UMD-CSD, number CS-TR-3443.

[Briand et al., 1993] L. Briand, S. Morasca, V. Basili, Measuring and Assessing Maintain-
ability at the End of High Level Design, In Proc. Conference on Software Maintenance.
Montreal, Canada: IEEE, 1993.

[Briand et al., 1997] L. Briand, P. Devanbu, and W. Melo. Defining and validating coupling
measures in object-oriented systems. In Proc. of International Conference on Software
Engineering, Boston, MA, 1997. To appear.

[Chidamber and Kemerer, 1994] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions on Software Engineering, 20(6):476—493, 1994.

[Cohen and Hirsh, 1994a] William W. Cohen and Haym Hirsh. The learnability of descrip-
tion logics with equality constraints. Machine Learning, 17(2/3), 1994.

[Cohen and Hirsh, 1994b] William W. Cohen and Haym Hirsh. Learning the CLASSIC
description logic: Theoretical and experimental results. In Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Fourth International Conference (KR94).
Morgan Kaufmann, 1994.

[Cohen, 1994a] William W. Cohen. Grammatically biased learning: learning logic programs
using an explicit antecedent description language. Artificial Intelligence, 68:303–366, 1994.

15The z statistic is used in the normal approximation to the binomial test.
16At the 95% confidence level, one would expect about three of these in 63 trials.

25

[Cohen, 1994b] William W. Cohen. Pac-learning nondeterminate clauses. In Proceedings of
the Eleventh National Conference on Artificial Intelligence, Seattle, WA, 1994.

[Cohen, 1995a] William W. Cohen. Fast effective rule induction. In Machine Learning:
Proceedings of the Twelfth International Conference, Lake Tahoe, California, 1995. Morgan
Kaufmann.

[Cohen, 1995b] William W. Cohen. Learning to classify English text with ILP methods. In
Luc De Raedt, editor, Advances in ILP. IOS Press, 1995.

[Cohen, 1995c] William W. Cohen. Pac-learning recursive logic programs: efficient algo-
rithms. Journal of AI Research, 2:501–539, May 1995.

[Cohen, 1996] William W. Cohen. Learning with set-valued features. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, Portland, Oregon, 1996.

[Devanbu and Eaves, 1994] P. Devanbu and L. Eaves. Gen++ software (See
http://seclab.cs.ucdavis.edu/~devanbu/genp for more information).

[Dietterich, 1998] Thomas G. Dietterich. Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation, 10(7), 1998.

[Dz̆eroski et al., 1992] Sas̆o Dz̆eroski, Stephen Muggleton, and Stuart Russell. Pac-
learnability of determinate logic programs. In Proceedings of the 1992 Workshop on Com-
putational Learning Theory, Pittsburgh, Pennsylvania, 1992.

[Fenton, 1992] N. Fenton. Software Metrics. Chapman and Hall, 1992.

[Frazier and Pitt, 1994] M. Frazier and L. Pitt. Classic learning. In Proceedings of the
Seventh Annual ACM Conference on Computational Learning Theory, New Brunswick,
NJ, 1994. ACM Press.

[Fürnkranz and Widmer, 1994] Johannes Fürnkranz and Gerhard Widmer. Incremental re-
duced error pruning. In Machine Learning: Proceedings of the Eleventh Annual Confer-
ence, New Brunswick, New Jersey, 1994. Morgan Kaufmann.

[Kietz and Morik, 1991] Jörg-Uwe Kietz and Katharina Morik. Constructive induction of
background knowledge. In Proceedings of the Workshop on Evaluating and Changing Rep-
resentation in Machine Learning (at the 12th International Joint Conference on Artificial
Intelligence), Sydney, Australia, 1991. Morgan Kaufmann.

[Kietz and Wrobel, 1992] Jorg-Uwe Kietz and Stephan Wrobel. Controlling the complex-
ity of learning in logic through syntactic and task-oriented models. In Inductive Logic
Programming. Academic Press, 1992.

[Lavrac̆ and Dz̆eroski, 1992] Nada Lavrac̆ and Sas̆o Dz̆eroski. Background knowledge and
declarative bias in inductive concept learning. In K. P. Jantke, editor, Analogical and
Inductive Inference: International Workshop AII’92. Springer Verlag, Daghstuhl Castle,
Germany, 1992. Lectures in Artificial Intelligence Series #642.

26

[Lavrac̆ and Dz̆eroski, 1994] Nada Lavrac̆ and Sas̆o Dz̆eroski. Inductive Logic Programming:
Techniques and Applications. Ellis Horwood, Chichester, England, 1994.

[MacGregor, 1991] R. M. MacGregor. The evolving technology of classification-based knowl-
edge representation systems. In John Sowa, editor, Principles of semantic networks: ex-
plorations in the representation of knowledge. Morgan Kaufmann, 1991.

[Michalski et al., 1986] R.S. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multipur-
pose incremental learning system AQ15 and its application to three medical domains.
In Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia,
Pennsylvania, 1986. Morgan Kaufmann.

[Morasca and Ruhe, 1997] Sandro Morasca and Günther Ruhe Knowledge Discovery from
Software Engineering Measurement Data: A comparative Study for of Analysis techniques.
In Proc SEKE 97, 1997.

[Muggleton and Feng, 1992] Stephen Muggleton and Cao Feng. Efficient induction of logic
programs. In Inductive Logic Programming. Academic Press, 1992.

[Pagallo and Haussler, 1990] Giulia Pagallo and David Haussler. Boolean feature discovery
in empirical learning. Machine Learning, 5(1), 1990.

[Pazzani and Kibler, 1992] Michael Pazzani and Dennis Kibler. The utility of knowledge in
inductive learning. Machine Learning, 9(1), 1992.

[Quinlan and Cameron-Jones, 1993] J. Ross Quinlan and R. M. Cameron-Jones. FOIL: A
midterm report. In Pavel B. Brazdil, editor, Machine Learning: ECML-93, Vienna, Aus-
tria, 1993. Springer-Verlag. Lecture notes in Computer Science # 667.

[Quinlan, 1990] J. Ross Quinlan. Learning logical definitions from relations. Machine Learn-
ing, 5(3), 1990.

[Quinlan, 1994] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann,
1994.

[Quinlan, 1995] J. Ross Quinlan. MDL and categorical theories (continued). In Machine
Learning: Proceedings of the Twelfth International Conference, Lake Taho, California,
1995. Morgan Kaufmann.

[Shapiro, 1982] Ehud Shapiro. Algorithmic Program Debugging. MIT Press, 1982.

[Srinivasan et al., 1996] A. Srinivasan, S. H. Muggleton, R. D King, and M. J. E. Sternberg.
Theories for mutagenicity: a study of first-order and feature based induction. Artificial
Intelligence Journal, 85(1,2):277–299, 1996.

[Weiss and Kulkowski, 1990] Sholom Weiss and Casmir Kulkowski. Computer Systems that
Learn. Morgan Kaufmann, 1990.

[Woods and Schmolze, 1992] W. A. Woods and J. G. Schmolze. The KL-ONE family. Com-
puters And Mathematics With Applications, 23(2-5), March 1992.

27

