A TEMPLATE FOR RAPID PROTOTYPING
OF OPERATING SYSTEMS!

Myla Archer Deborah Frincke Karl Levitt

Division of Computer Science, University of California, Davis

Abstract. We believe that rapid prototyping of many classes of systems can be facilitated by start-
ing from an executable template specification appropriate to that class. A system template serves several
useful purposes. It organizes ones thinking about the particular system to be specified, and speeds the
specification process by pre-specifying structures and operations common to all systems in a class. If exe-
cutable, it can be developed into a system prototype. Though beyond the scope of this paper, it can
organize proofs of properties of the specification and its implementations by making it possible to isolate
the relevant proof obligations. Our templates have an additional property: they classify sub-specifications
according to “kinds” that need to be completed differently. We illustrate rapid prototyping from a tem-
plate for operating systems, specifically showing how to obtain a rapid prototype of the MINIX system.
We believe that this approach may also be useful for other classes of systems, such as architectures.

1. A generic specification for an operating system

With the idea of providing a general tool for the rapid prototyping of operating systems, we
have developed an executable template operating system specification that can be specialised to
describe a large variety of systems. We see the template as serving several purposes. First, it
organises one’s thinking about the workings of an (almost) arbitrary system by factoring it into
its components playing conceptually different roles, and relieving one of having to specify cer-
tain high-level operations. Second, when completed (or even only partially completed) for a
specific application system, it can be used as a rapid prototype of that system {or part of it).
Finally, it can be used to organise proofs of properties of any application system, by helping to
isolate for each property just those aspects of the system that are relevant, and thus potentially
simplifying actual proof obligations. This paper is concerned with the first two purposes.

Ideally a “rapid prototype” can be used in place of a yet to be implemented “real” operating
system, the two systems behaving identically in all situations. The rapid prototypes obtained by
completing our template specification are intended to have functional behavior identical to a
fully implemented operating system, including system calls, signals and interrupts. Such a pro-
totype can be used to determine, among other things, whether the following are accurately
represented in the design:

) Is the system secure with respect to an external policy? Security flaws associated with

incorrect specification of the system calls can be detected.

. Do the system calls exhibit the functional behavior intended by the user?

. Based on assumptions on the time required for operating system to execute, is the
overhead associated with the operating system acceptable?
Consequently, the rapid prototype can be used to test out the functional behavior of the operat-
ing system and simulate high-level performance behavior.
Operating systems are ideal for the rapid prototyping approach we are taking: instantiation
of a template operating system specification.

! This work was partially supported by the Rome Air Development Center under Grant — from the Georgia In-
stitute of Technology.

TH0380-6/91/0000/0119%$01.00 © 1991 IEEE

119

I

. Operating systems are large programs and error-prone.
) Errors in operating éystems have serious consequences.

. There is significant commonality among different operating systems. Most operating
systems can be viewed at their interface as managing collections of resources. More-
over, such resource types as processes, files, memory segments, schedulers, messages
are common to almost all operating systems.

. The general view of an operating system as an interpreter of asynchronous requests
underlies all operating systems including multiprogramming systems, interrupt driven
systems, and distributed systems.

The principal parts of our template specification are abstract resources that are accessed by
requests from processes, the requests coordinated by a scheduler. An abstract access control
mechanism decides whether the requests are to be allowed. At the highest level of the template
specification is a data type which we call SRM (for Secure Resource Manager), whose members
are operating systems in particular states. An SRM is made up of a number of components: as
indicated, there will be a system State, but there will also be a set of (user and system) opera-
tions, a scheduler, an internal access policy (generally intended to implement some externally
described security policy, and hence called a SecPol), and a command interpreter for translating
high-level operations and their arguments, such as might be known to a user, into operations
and arguments meaningful on the system level. The existence of an interpreter component also
provides the possibility of increasingly finer-grained interpretation of operations into sequences
of other operations. The system State contains system configuration information: memory, pro-
cessors, I/O devices, and the states of these, as well as current processes, enqueued requests, and
a system history. We will say more about the significance of the components of an SRM when
we discuss how the template can be elaborated into many different systems.

The specification language we use, that of the final algebra method of [Kamin83, KJAS3],
makes it natural to think of the inhabitants of data types, for example, an element of sort SRM,
as consisting of a tuple of components; we begin by clarifying this with a brief review of the
method. We then give the details of our template specification, and illustrate the process of
specialising it, using MINIX [Tanen87| as our example. MINIX (Miniature UNIX™) has almost
all of the UNIX™ gystem calls, but a vastly simpler implementation. MINIX supports user and
system processes which communicate through message passing; in this sense, its model of imple-
mentation is more that of a distributed system that is used to realise a conventional multipro-
gramming system. Next, we will discuss how we believe the same process could be applied to
obtain specifications for systems of arbitrary complexity, including concurrent systems, and
describe how we expect particular specifications to be used as rapid prototypes. Finally, we will
look at future directions for our work.

2. Writing final algebra specifications: the methodology

Despite its name, the final algebra specification method is not what is generally considered to
be an algebraic method; rather, it is operational. It represents elements, essentially, by their
observable behavior. Thus, a set S of objects of sort Elt is represented by a map from the car-
rier of Elt to Bool; this map determines for each e of sort Elt whether it is a member of 8. If
the operation for observing membership is named isin, then the map corresponding to S is the
same as the map on elements e of Elt obtained by holding 8 constant in the expression isin(8, e).

In general, an element of an abstractly specified sort s will be represented by a tuple of maps
{some of which may be 0-ary, and hence “maps” only by courtesy). Each element of the tuple
will correspond to an operation on elements of sort s in analogy to the way a map from Elt to
Bool corresponds to isin: it is obtained by holding the element of sort s constant while letting
the other arguments of the operation vary. The operations corresponding to tuple components
of elements of sort s form the distinguishing sct for the sort s. Thus, the distinguishing set of
the sort SetofElt consists of the single operation isin.

To give a final algebra specification of an abstract data type, one must first determine the

120

operations in its distinguishing set. Any choice of distinguishing set operators leads to a
representation of elements of the specified sort as elements of a product space; this representa-
tion then permits one to define the value returned by an operation as a tuple whenever that
value is of the specified sort.

There is no fixed recipe for finding the distinguishing set, but there are some hueristics. In
some cases, what certain components of this product space must be is clear. For example, it
was clear to us in writing our generic specification that any SRM (secure resource manager)
must have, among other things, a State component, a Scheduler component, and a SecPol (secu-
rity policy) component. When this happens, it is clear that there will be corresponding distin-
guishing set operations that yield these components. In the case of an SRM, we have chosen to
call them stateofSRM, schedofSRM, and polofSRM. In other cases, one thinks in the other
direction, and starts from the operations to get the product space representation. A typical
example of this is an abstract sort StackofElt, in which one realises that two stacks behave the
same if one gets the same things by reading their top and by popping them. This leads to a
(recursive) representation of StackofElt as a product Elt X StackofElt.

As we have indicated, once one has determined the tuple representation of elements of the
sort being specified, one can then define certain of the operations that return values of this sort
~— the constructor operations — by giving their results as tuples. All other operations must be
defined in terms of these constructors, the distinguishing set operations, and the visible opera-
tions from-other data type specifications, using no tuples. As a corollary of this requirement,
tuples may be used to express elements of any sort only inside the specification of that sort.

We have found final algebra specifications relatively easy to write, more natural than initial
algebra specifications. One can often think of the distinguishing set operations as being neces-
sary and sufficient to characterise the state of any object being specified. Accordingly, the
specification of the constructors, the heart of the specification, is achieved by indicating the
effect of each constructor on each operation in the distinguishing set. Engineers familiar with
writing specifications for sequential circuits will note that, essentially, a circuit’s tuple represen-
tation is the set of state variables, and the specification, a collection of excitation equations
defining the next-state values for each state variable in terms of the current state and input.

In the next section, we will first describe the generic SRM specification in terms of the pro-
duct space representations of certain fixed sorts, and the sorts and operations that will always
be present. We will then describe in some detail how it specialises to describe and prototype
the MINIX system, and indicate how it could be specialised to describe other systems of almost
arbitrary complexity.

We finish this section with a brief description of the notation and conventions used in our
specifications; these are as in the FASE system as described in [KJAS3].

Each specification begins with the name of the sort being specified, followed by a declaration
of operations and arities; this is called the signature section. If there are any operations in the
AUXILIARY OPERATIONS section, these are available only inside the given specification; all
other operations are visible operations, and may be used by programs (including other
specifications). Following the signature section is the list of those declared operations that con-
stitute the distinguishing set.

Distinguishing set operations do not require explicit definitions. To compute the application
of such an operation to a list of arguments, one extracts the (unique) argument of the specified
sort, and applies the corresponding function in its tuple to the remaining arguments (a trivial
application if the tuple function is O-ary). All other operations, however, require definitions.
Tuples in these definitions are indicated by square brackets, their elements separated by com-
mas. O-ary functions inside tuples are simply given as expressions. For functions with argu-
ments, the notation “<a,b> |~> * <" can be read as “\a,b. *++ ",

With regard to error values, there is an error value of each sort, together with a hidden ele-
ment of the distinguishing set that detects it: thus, there is an errSRM and an iserrSRM, ete..
Function definitions are strict with respect to errors. Occasionally, the specifications will
include definitions of the form iserrType(opType(args)) => ' - °; these are translated as a
prefix to the definition of opType which, when satisfied, causes opType to return an error.

The following notation is used for Boolean operations: “&” is used for and, “|” for or, “*”

121

I

for not, and “=" for eqType for an appropriate choice of Type; these have the usual pre-
cedences. Note that in the case of =, except for a primitive sort Type, it is not required that
eqType be a true equality relation, but only that it be explicitly defined and have the appropri-
ate arity (except that the system forces eqType to correctly detect equality to errType).

3. The template specification

We initially envisioned that a template specification would consist of certain fixed, unchang-
ing data type specifications, defined down to the level of certain subsidiary sorts, with the subei-
diary sorts being allowed variable specifications whose details would depend on a given applica-
tion. However, it became clear to us in the specification process that the sorts specified in the
template would be of three kinds.

Having three kinds of specifications serves a number of important purposes. First, in com-
pleting the template specification, the designer would make few (if any) changes to the
specifications of the first kind, more to those of the second kind, and the most to those of the
third kind; thus the first kind can be considered the most generic of the specifications. Second,
the design decisions considered in each kind are in some sense more general than those con-
sidered in this successor. Third, there is a hierarchy among properties that can be verified for a
specification of each kind that will apply to to all specifications that complete it.

We call specifications of the first kind, “fixed”. From a design standpoint, the specifications
of the first kind declare the major objects of a generic operating system and basic operations on
these objects. For example, objects will have ids and an abstract state. Essentially, these
specifications do not change from one application to another. For convenience, we allow opera-
tors derived from those in the specification to be added; this can sometimes help abbreviate
definitions peculiar to a particular application. In fixed specifications, the reachable carrier of
the specified sort (that is, the set of elements of that sort that are values of terms) is fixed rela-
tive to those of the sorts in its representation. Hence, any properties proved from the general
specification about all reachable elements of the specified sort, say by structural induction, will
hold in any application.

We call specifications of the second kind “fixed representation” specifications. From a design
standpoint, the objects in this kind will have an abstract specification that can be viewed as a
model for more application-specific representations to follow in the third kind. For example,
the security policy is declared here to model the standard reference monitor [DENS2J: A request
is honored, denied, or transformed depending on the identity of the caller and the state of the
object. The template specification at this level contains just the bare-bones collection of opera-
tors. The designer is free to provide his own operations provided they can be specified accord-
ing to the representation in the template. These specifications will specify a sort of fixed name,
and will have & fixed List of distinguishing set operations of fixed arity. As a result, the
representation of the specified sort will be fixed relative to those of the sorts in its representa-
tion. Any properties of elements of such a sort that can be proved without structural induction
over the carrier of the sort will still hold in any application.

Specifications of the third kind are “fixed subsignature” specifications. These specifications
capture the application-specific decisions. The designer is free to change the representation of
the objects and to provide new operations. These specifications, at the very least, guarantee the
existence of a sort of the specified name. In general, certain operations of a certain arity must
be present. Other than arity, there is no restriction on how the operators are defined. These
specifications are similar to the parameter part of parameterised specifications which occur in
other specification languages (e.g., that of OBJ [GMP83]).

In Figure 1, we list the sorts present in our template, and indicate their specification kind
and (so far as is fixed) their representation in terms of other sorts. In Figure 2, we indicate the
names and arities of fixed operators in the specifications of kinds 2 and 3. The complete
specification can be found in [AFL90].

In any application, of course, there will be additional subsidiary dats type specifications that
are application specific. The sorts specified by these need not appear in all applications.

122

Normally, they are required in order to completely define the representation and operations of
sorts of the third kind, or of other application specific sorts.

We will discuss in section 8 exactly how we expect to use a specialisation of this template as
a rapid prototype. Here, it is worth pointing out the heart of the specification, namely the
definition of the operation stepState:

stepState : State X Scheduler X Interp X SecPol —+ State

stepState (S, SCH, I, P) =>

let R be getreqScheduler(SCH,S) in

let SS be updhistState(R,
[objsofState(S), procsofState(S), getreqlisScheduler(SCH,S),
histofState(S)]) in

let RR be getreqSecPol(SS,R,P) in

let RRI be getreqinterp(SS,RR,]) in

let f be opofRequest(RRI) and A be argsofRequest(RRI) in apSRMop(f,SS,A)

This definition shows how we expect the Scheduler, SecPol, and Interp components of an SRM
to interact during the operation of the system. The Scheduler examines the State, especially the
Requestlist, to choose the next Request to be handled. The RequestList component of the State
is simultaneously updated; it may be the original RequestList with the chosen Request removed,
or it may be something more complicated involving a recomputation of priorities, for example.
The History component of the State is also updated. The Request is then passed by the SecPol,
which may return it unchanged, or may alter it (s simple example being to replace it by a
nullRequest if the Request is disallowed). The resulting Request is then passed by the Interp,
which may perform such operations as translating “relative” arguments in a user’s request into
“absolute” arguments known to the system, or make other, more complex changes (e.g.,
refinement, as in [Win90]). Finally, the operation in the resulting Request is applied to its
ArgList, with the updated State as a hidden argument. We belicve that this operation, with
appropriate definitions of the Scheduler, SecPol, and Interp, is sufficient to describe those incre-
mental operations of s general system not involving the receipt of incoming new Requests. We
will discuse this in more detail in section 8.

SORT KIND REPRESENTATION

SRM 1 SRMopSet X State X Scheduler X Interp X SecPol
1 SRMop —+ Bool

State 1 ObjectSet X ProcessSet X RequestList X History

Scheduler 2 (8tate — Request) XX (State — RequestList)

Interp 2 Request —* Request

SecPol 2 (State X Request — Bool) X (State X Request — Roquest)

SRMop 2 Symbol X (State X ArgList — State)

ObjectSet 1 Object —+ Bool

ObjectPred 2 Object —+ Bool

Object 3 Objectld X *«°

ProcessSet 1 Process — Bool

ProcessPred 2 Process — Bool

Process 3 Processld X *°*

RequestList 1 Request 5 RequestList

Request 3 SRMop X Arglist XX Processld X ° - *

History 3 ces

Arglist 1 Arg X Arglist

Arg 3 Objectld X Procesald X * * * [really Objectld + Processld + * * * |

Objectld 3 see

Processld 3 s

Figure 1. Template sorts and their representations.

123

|

SORT KIND FIXED OPERATIONS AND THEIR ARITIES

Scheduler 2 getreq- (Scheduler X State — Request), getreqlis- (Scheduler X State — RequestList),
null- (— Scheduler), triv- (— Scheduler)

Interp H getreq- (State X Request X Interp — Request), triv- (—+ Interp)

SecPol 2 chikw- (State X Request X S8ecPol — Bool),

getreq- (State X Request X BecPol — Request),
n0- (— 8ecPol), recalcitrant- (— SecPol)

SRMop] name- (SRMop — Symbol), ap- (SRMop X Btate X ArgList — State),
o¢- (SRMop X SRMop — Bool), NO- (— SRMaop), okargs- (— SRMop)

ObjectPred 2 ap- (ObjectPred X Object —+ Bool), triv- (Bool — ObjectPred)
Object 3 idof- (Object —+ Objectld)
ProcessPred 2 sp- (ProcessPred X Process — Bool), triv- (Bool —* ProcessPred)
Process 3 idof- (Process — Procesald)
Request 3 opof- (Request — SRMop), argof- (Request —+ ArgList),
procidof- (Request — Procesld),
pull- (— Request)
History 3 init- (State — History), append- (Request X History —+ History)
Arg 3 objidof- (Arg —+ Objectld), procidof- (Arg —+ Processld),
objidto- (Objectld — Arg), procidto- (Processld — Arg)
Objectld 3 oq- (Objectld X Objectld — Bool), precedes- (Objectld X Objectld — Bool)
Procesald 3 eq- (Processld X Processld —+ Bool), precedes- (Procesald X Processld —+ Bool)

Figure 2. Prefixes of fixed operations for kind 2 and 3 sorts.

4. Elaboration of the template: MINIX

The following general procedure can be followed to yield a specification of almost any sys-
tem. Basically, one completes the kind 2 specifications by adding the appropriate constructor or
constructors; in the process, one finds out the structure of the sorts having kind 3 specifications,
and the operations needed in these specifications. In the process of elaborating the kind 3
specifications, one creates the needed kind 4 specifications.

More particularly, one starts by determining the user level SRMops — the operations pro-
vided in the system that one expects to be explicitly invokable by a user process. Any restric-
tions on the permissibility of these operations can be factored out and made part of the SecPol.
Which constructors to add to ObjectPred and ProcessPred depends mainly on the needs of the
SRMops, since these operations must be able to select Objects and Processes in order to change
(or, in our applicative system, replace) them. Particular ObjectPreds and ProcessPreds may
also be needed by the SBecPol. In dealing with these kind 2 specifications, decisions are being
made about details of kind 8 specifications. In defining the SRMops, it will become clear what
the elements of sort Arg, a large union type containing all necessary operator arguments, should
be. While a high-level description of the system gives some information about the kinds of
Processes and Objects that exist, the ObjectPreds and ProcessPreds clearly demand that also
certain Object and Process operations be available. The additional details of Object and Pro-
cess representations and operations are determined by what the various SRMops must do, and
the needs of the SecPol, the Interp, and the Scheduler. The components of the History are prin-
cipally determined by the needs of the S8ecPol; in principle, the History can be used in detecting
potential information flow and preventing it. The remaining kind 2 sorts are the Scheduler and
the Interp. The definition of the Scheduler may influence the internal structure of Requests.
The definition of the Interp, which will translate user level Requests into system Requests, will
usually lead to additional, system level SRMops.

We will trace the above process through a sketch of how our template can be elaborated for
MINIX.

We will take as example operations fork, kill, and interrupt. Fork has no arguments, kill
takes a ProcessId argument, and interrupt also takes a Processld argument. Fork requires that
there be a way to create a new process that inherits some characteristics of the process that
issued the request to fork. Thus, Process needs to acquire an operation

124

I

mkchildProcess: Process X State — Process

(where the State argument is needed in computing an unused Processld for the new process).
Kill and interrupt require that one be able to trace down all child Processes of a given Process;
one of the simplest ways to specify this is to include a Processld component in any Process,
referring to its parent, and corresponding to a distinguishing set operation

parentProcess: Process — Processld.
Since processes are allowed to turn off interrupts, we add a flag
interruptableProcess: Process — Bool

to the distinguishing set.
The file protection policy in MINIX would be handled in the SecPol. Because access to a file

by a process depends on a user name associated with the process and the file, both Objects, of
which files are an example, and Processes, need associated user names.

Further details of the Process and Object specifications will become clear when one defines
the appropriate SRMops to be issued by or deal with the various Processes, e.g.: user Processes,
I/O device processes, the system process; and Objects, e.g.: files, I/O buffers, pipes, memory
blocks, registers.

We model the issuing of an interrupt by the issuing of an interrupt Request which the
Scheduler will pick up immediately. Thus, Requests need some kind of Priority component;
Priority is a new kind 4 sort. We also see that we need to define a non-default Scheduler that
can take priorities into account.

We do not need any more than a trivial (one-element) History for a rapid prototype, since
MINIX does not have a history mechanism. However, as indicated earlier, we might wish to
include one in order to test certain information flow properties.

One obvious use for a request interpreter (Interp) in a MINIX prototype is to translate file
name Args of Requests issued by user Processes into absolute file addresses. Such a use of the
Interp also implies something more about the representation of user Processes, namely that they
have a component that, in effect, holds their working directory. Similar considerations show
that part of the representation of a Process is an environment (which may be used, for example,
in interpreting operator names).

5. Handling other features of a prototype

We will describe briefly here how we would expect our system to be able to handle a sam-
pling of other operating system features that may or may not appear in MINIX, and give an
example showing that the decomposition in our template can be helpful in other ways.

Multi-level queues for requests can be handled by an appropriate definition of a Priority data
type to be included as a component of a Request. The maintenance of data security in a system
can generally be modelled by including a SecLevel component in Objects, and a User com-
ponent in Processes, where elements of sort User have an associated SecLevel component; the
notion of SecLevel can be as complex as desired, and does not imply a linear order on security
levels. Shared memory between processes can be managed with an Accesslist component in
Objects, and a Bool (boolean) component that would act as a semaphore, and affect and be
affected by operations that Processes would perform on Objects (such as reading or writing to
memory).

The interpretation of a user operation into a sequence of system operations can be handled
by interpreting a user Request into a system Request whose operator causes a sequence of
Requests to be put in the RequestList. At some level, Requests will be interpreted simply as
themselves, and actually affect the State in ways other than adding new Requests; we will say
that these are trivially interpreted. Increasingly fine-grained interpretation can be modelled by
simply adding non-trivial translations of such Requests to the Interp. It is not necessary to
change any operator definitions, since these would no longer be used directly. Of course, it
would be necessary to add new operator definitions for the new finer-grained operations.

125

|

6. Running a prototype

Once a prototype has been defined in sufficient detail, it can be executed in the FASE (Final
Algebra Specification and Execution) system [KJA83}, in a manner which we will describe
below. We will first say a little about the FASE system.

We find the use of this system convenient for several reasons. Perhaps the most important
reason is that specifications are executable whenever they do not involve quantifiers. Even some
specifications with quantifiers are executable, and the system is able to identify a class of such
specifications which it guarantees it can execute (although, for efficiency reasons, it is best to
avoid quantification in a rapid prototype, and in fact, in practice, we replace the Set
specifications in our template with Set implementations based on ordered lists).

There are, of course, other systems for executing specifications, such as OBJ [GMP83] and
Afirm [GHM78]. These mostly involve algebraic (equational) specifications. While such
specifications are sometimes straightforward to write, knowing when one has enough equations
(or so many as to lead to inconsistency) can be a problem. By contrast, we find final algebra
specifications to be among the easiest specifications to write. One does not have the problem of
proving sufficient completeness and consistency of equations. Once one has determined the
abstract representations as tuples of elements of various sorts, the definitions of their associated
operations are usually straightforward to derive from verbal descriptions.

In addition, the FASE system is integrated with Lisp, so that one can easily write Lisp pro-
grams to help build an initial configuration of the system being prototyped, as well as Lisp
drivers to exercise, and hence test, one's specifications interactively. One can easily incorporate
into a driver print routines that call operations from the specification in order to display, for
example, a system state represented in some convenient fashion by its observable behavior.

Specification and testing are further much facilitated by a provision for almost arbitrary
user-defined syntax. With an appropriate grammar, one can easily handle the formation of sets
and sequences, as well as coercions, and avoid typing in lengthy (though poesibly, as in our
example, descriptive) function names. User expressions are delimited in Lisp by exclamation
points, and in specifications by underscores. Thus, in our MINIX example, we might say at the
Lisp level:

fuser 0 calls uKill on 2 in M!
to abbreviate

{(newreqSRM (mkRequest (uKill)
(appendArgList (inttoArg 2) (nilArgList))
(mkuserProcessld 0)
(lowPriority))
M)

(note that M in both the above can be a Lisp variable whose value is of sort SRM). While over-
loading of operators in the specifications per se is not allowed, it is feasible to a great extent in
the grammars, since the parser is able to do typechecking of all but variables.

We now look at what we mean by executing the prototype. The top level SRM data type is
provided with two operations, one that steps the State, and one that accepts a new Request into
the RequestList. Under the assumption that all events in the system are non-simultaneous, one
can use these two operations to hand simulate any sequence of events in the system. Of course,
an initial configuration of the system has to be created by using the mkSRM constructor in the
SRM data type. This configuration should conform to any expectations one has about invari-
ants of the system; e.g., that no two Processes shall have the same Processld. In addition, the
sequence of events must be “legal”: for example, in MINIX, an interrupted Process must not
issue any requests. The user of the prototype can either guarantee these things, or else tests
guaranteeing the invariants and the legality of requests can be included in the system builder
and driver.

126

7. Conclusions and future directions

Our work to date has been concerned with creating a template operating system
specification and determining its usability to capture the functional-level specifications of
specific operating systems. Besides treating a portion of MINIX, we have specialised the tem-
plate specification to capture the functional behavior of a simple secure operating system. We
believe that the operational nature of FASE specifications makes our methodology natural
enough to be accessible to other system developers.

We plan to use our prototypes to validate decisions relating to security, management of
resources (e.g., error conditions), and fairness of schedulers. To facilitate such testing, we are
developing a general driver to permit the system to execute program scripts. We also plan to
explore the use of time stamps on requests and expected execution times to enable us to simu-
late performance along with functional behavior.

To support general use of our methodology, we would like to develop a interface that would
make it easy to refine the sub-specifications in a template while staying within the restrictions
corresponding to their “kinds”.

Lastly, we hope to demonstrate the usefulness of the executable template method in other
areas as well, such as system architecture and hardware design.

8. References

|AFL} Myla Archer, Deborah Frincke, and Karl Levitt, Secere resource mansgement: specifying end fesling
secere opereting systems, Tech. Rept. ECS-90-10, Division of Computer Science, University of California,
Davis (1990}

[Denn82) Dorothy E. Denning, Cryptography and Data Security, Addision-Wesley (1982).

|GHMTS| John V. Guttag, Ellis Horowits, and David R. Musser, Absiract dets types and softwere velidalion,
Comm. ACM 21, No. 12 (December, 1978), 1048-1084.

[GMP83} Joseph Goguen, Jose Meseguer, and David Plaisted, Progremming with peremeterised absiract objecls in
OBJ, in: Theory and Practice of Software Technology (D. Ferrari, M. Bolognani sad J. Goguen, ods.)
(North-Holland, 1983).

[KJAS3] Samuel Kamin, Stanley Jeflerson, and Myla Archer, The role of teble specificetions: the FASE eys-
tem, Proc. IEEE Symposium on Application and Amessment of Automated Tools for Software Develop-
ment (November, 1983), 105-114.

{Kamin83] Samuel Kamin, Finel dete types end their specification, ACM Traasactions on Programming Languages
and Systems §, No. 1 (January, 1983), 97-123.

(Tanen87] Andrew 6. Tanenbaum, Operating Systems: Design and Implementation, Prentice-Hall (1987).

[Win90] Pl\llip(J. W‘)ndhy, Verification of Generic Interpreters, Doctoral Disertation, University of California,
Davis (1990

127

