Parallelism, Distribution, and Synchronization in SR

Ronald A. Olsson

Division of Computer Science
University of California, Davis
Davis, CA 95616 U.S.A.

olsson@ucdavis.edu

Abstract

This paper introduces the newest version of the SR con-
current programming language, and illustrates how it
provides support for different execution environments,
ranging from shared-memory multiprocessors to distri-
buted systems. SR uses a few well-integrated mechanisms
for concurrency to provide flexible, yet efficient, support
for concurrent programming.

1. Introduction

The SR concurrent programming language has been
around, in one form or another, for over ten years. The
earliest version, now called SRO, contained mechanisms
for asynchronous message passing and rendezvous [1, 2].
Its form of rendezvous, unique at the time, provided a
means by which the process servicing a rendezvous could
choose which invocation to service based on the values of
invocation parameters. Experience using SR, substan-
tiated the general appropriateness of the language, but
also pointed out several deficiencies. That experience
lead us to redesign the language [3]. The result (SR ver-
sion 1) [4, 5] provided additional mechanisms for remote
procedure call, dynamic process creation, and sema-
phores, as well as a means for specifying distribution of
program modules.

Experience using version 1 has lead to further evo-
lution of the language. Version 2 of SR retains much of
version 1’s structure. However, it also enhances the
mechanisms that support sharing of objects. This sharing
is especially important in shared-memory environments,
for which earlier versions of SR were not not really
intended. (It is also important for supporting libraries,
e.g., mathematical and windowing libraries.)

SR supports many ‘features’ useful for concurrent
programming. However, our goals have always been to
keep the language simple and easy to use, while at the
same time to provide an efficient implementation. We
achieve these goals by integrating common notions, both
sequential and concurrent, into a few powerful mechan-
isms. We implement these mechanisms as part of a

CH2961-1/91/0000/0407$01.00 © 1991 IEEE

complete language to determine their feasibility and cost,
to gain hands-on experience, and to provide a tool that
can be used for research and teaching.

This paper introduces version 2 of SR, henceforth
referred to as simply SR. It illustrates how a single
language can provide support for different execution
environments, ranging from shared-memory multiproces-
sors to distributed systems. This paper focuses on the
highlights of the language; details can be found in [6].

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of the SR model of computation.
Section 3 shows—in part by means of examples—how
synchronization, parallelism, and distribution are sup-
ported in SR. Finally, Section 4 contains some conclud-
ing remarks, including a brief discussion of some current
research related to SR.

2. SR Model of Computation

An SR program can execute within multiple address
spaces, which can be located on multiple physical
machines. Processes within a single address space can
also share objects. Thus, SR supports programming in
distributed environments as well as in shared-memory
environments.

The SR model of computation allows a program to
be split into one or more address spaces called virtual
machines. Each virtual machine defines an address space
on one physical machine. Virtual machines are created
dynamically; they are referenced indirectly through capa-
bility variables. Virtual machines contain instances of
two related kinds of modular components: globals and
resources.

Each of these components contains two parts: a
specification (aka a spec) and an implementation (aka a
body). An import mechanism is used to make available in
one component objects declared in the spec of another. In
these two ways, globals and resources are similar to
modules in Modula-2 [7] but they are created differently.
Instances of resources are created dynamically, by an

explicit create statement. These instances, and the ser-
vices they provide, are referenced indirectly through
resource capability variables. Instances of globals are
also created dynamically. However, they are created
implicitly as needed—specifically, when an instance of an
importing resource or global is itself created and an
instance of that global does not already exist on the same
virtual machine. Furthermore, each virtual machine can
contain only a single instance of a global. Globals, and
the services they provide, can be referenced directly
through their names.

The spec of a global or resource can contain
declarations of types, constants, and operations; a global’s
spec can additionally contain declarations of variables.
An operation defines a service that must be provided
somewhere in the program. It can be considered a gen-
eralization of a procedure: it has a name, and can take
parameters and return a result. An operation declared in a
resource’s spec must be serviced in that resource’s body.
Similarly, an operation declared in a global’s spec can be
serviced in the global’s body; it can also be serviced
within an importing resource or global.

The body of a global or a resource can contain
declarations of additional objects; these objects are visible
only within the body, not to any importer. Bodies also
contain code that, among other things, services opera-
tions. The code is split into units called processes and
procs. Processes are created implicitly when the enclos-
ing global or resource is created. Instances of procs are
created when they are invoked; they too execute as
independent processes. All processes created within a
global or a resource execute on the same virtual machine
on which the enclosing global or resource was created.
Processes and procs can declare additional variables and
operations; they must contain the code that services invo-
cations of any locally declared operations.

Figure 1 summarizes SR’s model of computation.
The ellipses indicate that repetition is allowed. In its sim-
plest form, a program consists of a single virtual machine
executing on one physical machine, possibly a shared-
memory multiprocessor. A program can also consist of
multiple virtual machines executing on multiple physical
machines. In this paper, how data and processor(s) are
shared within a virtual machine is called parallelism; how
virtual machines are placed on physical machines is
called distribution.

Processes on the same or different virtual machines
can communicate through operation invocation. Opera-
tions may be invoked: directly through the operation’s
declared name; through a resource capability variable; or
indirectly through an operation capability variable.
These capability variables are strongly typed and may
point to operations with structurally equivalent signatures.
They may also be passed as parameters to operations

Physical Machine

Figure 1. SR model of computation

during invocation or to resources during resource crea-
tion, allowing processes in different resource instances,
on possibly different virtual machines, to communicate.

Communication between processes is independent
of their virtual machine locations. For example, message
passing between processes in the same resource instance
has the same syntax and semantics as message passing
between processes on different virtual machines.

3. Language Support

This section describes how synchronization, parallelism,
and distribution are supported in SR. Examples are used
to illustrate the key points.

3.1. Support for Synchronization

SR is rich in the functionality it provides for concurrent
programming: dynamic process creation, semaphores,
message passing, remote procedure call, and rendezvous.
However, these are all provided through a single mechan-
ism: the operation.

Operations can be invoked in two ways, synchro-
nously (call) or asynchronously (send), and can be
serviced in one of two ways, by procs or by input state-
ments (in). This yields the following four combinations:

Invoke | Service | Effect

call | proc (possibly remote) procedure call
call | in rendezvous

send | proc dynamic process creation

send | in asynchronous message passing

One virtue of this approach is that it allows the

declaration of an operation to be separated from the code
that services it (i.e., proc or input statements). This
allows resource and global specifications to be written
and used without concern as to how an operation is ser-
viced.

SR provides abbreviations of the above basic
mechanisms to simplify the most common usages such as
background process creation, semaphores, and simple
asynchronous message passing. Briefly: a process is
an abbreviation for a proc and an implicit send to it when
the enclosing resource or global is created; a sem
declaration is an abbreviation for an operation declara-
tion, a P is an abbreviation for an input statement, and a vV
is an abbreviation for a send; and a receive statcment
is an abbreviation for a simple form of input statement.

SR also provides three statements—forward, return,
and reply—that provide additional flexibility in servicing
invocations. Only reply is used in an example later in this
paper. A process executing a reply statement causes the
invocation being serviced to complete; result parameters
and return values are immediately passed back to the
caller. The process that executes a reply statement then
continues execution with the statement following the
reply.

To illustrate operations, consider the following
scenario. A collection of printers is managed by a
manager process. User processes make requests to output
to particular printers. The manager assigns requests for
service for each printer in ‘a shortest-job-next (SIN)
fashion according to the number of lines to be printed.
The program in Figure 2 outlines this scenario. When
mult_print is created, N instances of the background
process user and one instance of manager are created.
Users request printing using a synchronous call; when
done printing, they release the printer using an asynchro-
nous send. The manager services one invocation of
request or release on each iteration of its loop. The
st (such-that) clause on the operation guard specifies that
a request by a user for printer id can be accepted only if
the printer is free; the by specifies that if multiple invoca-
tions are pending for a particular printer, the invocation
with the minimum number of lines should be serviced
first. Note how the such-that and by clauses reference the
invocation parameters, id and 1ines.

3.2. Support for Parallelism

SR provides support for parallelism on several levels.
First, processes within a resource instance can share vari-
ables. They can coordinate access to shared variables
through shared semaphores or other operations declared
within the resource. Second, processes that execute in
possibly different resource instances but on the same vir-
tual machine can share variables and operations declared
in the spec of globals.

resource mult_print ()
op request (id, lines: int)
op release (id)
const N := ... # number of users
const P := ... # number of printers
process user(i := 1 to N)
do true ->

call request(id, lines)
use printer number id
send release(id)

od
end
process manager
var free[l:P]
do true ->
in request(id,lines) st free[id]
by lines ->

([P]) true)

free[id] := false
{1 release(id) ->
free[id] := true
ni
od
end

end
Figure 2. Multiple printer manager and users

Consider, for example, a program that is to be writ-
ten for execution on a shared-memory multiprocessor. It
might be written as a single resource program, with
processes sharing variables and operations declared at the
resource level. For a program of any complexity, though,
splitting the program into multiple resources is desirable.
This kind of structure is possible, too. Resources can be
created on a single virtual machine, with shared variables
and operations declared in one or more globals.

As a concrete example, consider barrier synchroni-
zation, a common pattern of synchronization used in
parallel numerical algorithms. It is typically used in itera-
tive algorithms, such as techniques for solving partial dif-
ferential equations, that require all tasks to complete one
iteration before they can begin the next iteration. A sim-
ple way to code such algorithms is to employ worker
processes and one coordinator process. The workers and
coordinator communicate to ensure the necessary barrier
synchronization.

If the workers and coordinator are in the same
resource, a barrier can be written as shown in Figure 3.
Each worker first performs some action—typically the
action involves accessing part of an array determined by
the process’s subscript 1. Then, each worker signals the

resource barrier()
const N := 20 # number of processes
sem continue[N] ([N] 0)
sem start := 0
typically, declare data array too.
process worker(i := 1 to N)
do true ->
code to implement task i
i.e., perform one iteration.

V(start)
P(continuel[i])
od
end
process coordinator
do true ->

fa w :=1 to N -> P(start) af
fa w :=1 to N -> V(continue[w])
af
od
end
end

Figure 3. Barrier synchronization within one resource

coordinator that it has finished its iteration and waits for
the coordinator to inform it that all its siblings have also
completed their iterations. The coordinator consists of
two for-all loops. The first loop waits for completion sig-
nals from each worker. The second loop signals each
worker that it can continue.

If the workers and coordinator are in different
resources, they can be coded as shown in Figure 4. As
shown, the shared variables and semaphores are declared
in a global. Three kinds of resources are employed: one
for workers, one for the coordinator, and one for the main
resource. Each imports the global. The main resource
simply creates N instances of the worker resource and an
instance of the coordinator resource. Processes in those
instances interact via semaphores declared in the global;
they do so directly by name. Likewise, they can access
shared variables (e.g., the data array) declared in the glo-
bal.

As the example in Figure 4 illustrates, a global
allows objects to be shared by all processes executing in
the same address space. The same technique can be used
to code a work queue shared among many processes in
different resource instances. Specifically, the work queue
can be declared as an operation in a global’s spec. A pro-
cess adds an item to the queue by sending to that opera-
tion; a process removes an item from the queue by receiv-
ing from that operation. This kind of work queue is use-
ful in a number of applications, e.g., an adaptive

410

global barrier

const N := 20 # number of processes
sem continue[N] := ([N] 0)
sem start := 0

typically, declare data array too.
end
resource worker(i: int)
import barrier
process w
do true ->
code to implement task i
i.e., perform one iteration.
V(start)
P (continue[i])
od
end
end
resource coordinator()
import barrier

process c
do true ->
faw :=1 to N -> P(start) af
faw :=1 to N => V(continue[w])
af
od
end
end

resource main ()
import barrier, worker, coordinator
fa i := 1 to N -> create worker(i)
af
create coordinator()

end

Figure 4. Barrier synchronization with a global

quadrature algorithm. (See [6] for details.)

33. Support for Distribution

As suggested in Section 2, virtual machines are the unit
for program distribution. Virtual machines can be created
(or destroyed) dynamically as needed in response to pro-
gram execution. Instances of resources and globals can
then be created on virtual machines. Processes in dif-
ferent virtual machines communicate with other processes
by invoking operations.

To illustrate, consider the problem of conversa-
tional continuity. A client process interacts with a server
process and wishes to carry out a private conversation
with it, i.e., send further requests for work to it. As a
specific instance of this kind of problem, consider another
line printer server, different from the one in Figure 2.

Here, a client connects to the server and then sends it
lines to be output. The code outline in Figure 5 illustrates
this technique. The main resource creates an instance of
the server resource and N instances of client resources. It
passes to each client instance a capability for the server so
that the client can invoke the server’s print operation.

This kind of interaction can be accomplished in
general by having the server process reply to client

resource main ()
import client, server
var s: cap server
s := create server()
create N clients
fa i 1l to N ->
create client (s)
af
end
resource client
import server
body client(s: cap server)
process (i 1 to ...)
var x[20]: string[10]

var c: cap(x: string[10])
c := s.print (20)

fa i :=1 to 20 -> send c(x[i]) af
end
end
resource server
op print(n: int)
returns c: cap(x:string[10])
body server()
process printer
do true ->
in print(n) returns c ->
op put (x:string(10])
c := put
pass back capability for put
reply
fai:=1¢ton —>

var x: string(10]
receive put (x)
output x on the printer

af
ni
od
end
end

Figure 5. Conversational continuity

411

invocations, passing back capabilities for its local opera-
tions. Here, a client process invokes the server’s print
operation, passing it n, the number of lines that the client
will later send it. In response to that invocation, the
server assigns a capability for its local operation, put,
and returns that to its client by executing a reply. The
reply allows both the client and server to continue execu-
tion. The client sends n messages to its server; the server
receives n messages from its client and outputs the infor-
mation contained in each message. The use of a local
operation here ensures that only the client that initiated
printing can send messages to the server.

A communication structure similar to the one
described above is found in several other concurrent algo-
rithms, e.g., sorting using a pipeline of processes and
finding primes using a sieve of processes.

The program shown in Figure S executes on only a
single virtual machine, and therefore also on a single phy-
sical machine. However, it can be easily modified so that,
for example, each client executes on a different virtual
machine. Only main’s loop needs to be changed; the
new loop is:

create N clients
fai:=1toN ->

var vmcap: cap vm

vmcap := create vm()

create client(s) on vmcap
af

Each iteration of the above loop creates a new virtual
machine (by creating a new instance of vm) and then
creates a client on that virtual machine. The above loop
can be further modified so that each virtual machine is on
a different physical machine. For example, the assign-
ment statement that creates virtual machines can be
changed to the following:

vmcap :

The value of i is taken to be a physical machine number;
its use is installation dependent but can be made to be
relatively portable.

Two kinds of transparency with respect o opera-
tion invocations are illustrated by the above example.
First, an operation is invoked in the same way regardless
of how a program is distributed. The invocations by the
client of the operations in the server remain the same
regardless of whether the client and server are located on
the same virtual or physical machine. Second, an opera-
tion is invoked in the same way regardless of how the
operation is serviced. For example, the body of the server
resource could be changed so that invocations of print
were serviced by a proc, thus creating a new process to
service each invocation. Only the body would change;
the spec and the way print is invoked would remain the
same.

create vm() on i

4. Concluding Remarks

In many ways, the mechanisms that SR provides for
parallelism, distribution, and synchronization are a super-
set of those found in other languages, such as Ada [8],
Concurrent C [9], Argus [10], and occam [11]. SR
achieves this flexibility by having just a few well-
integrated mechanisms, which can be used alone or freely
in combination with others.

One interesting question is whether such generali-
zation is inherently more costly. For example, since SR
operations subsume rendezvous, local procedure call,
remote procedure call, process creation, semaphores, ec.,
are they therefore expensive to use? Our implementation
currently recognizes some commonly occurring patterns
and generates lower-cost code than would be required in
the worst, most general case. The version 1 SR compiler,
for example, optimizes certain message passing scenarios
to use low-cost semaphores, and certain remote procedure
call scenarios to use conventional procedure call. The
results are that the cost of synchronization in SR is com-
petitive with those reported for other languages [12].

One current effort involves identifying further
optimization of synchronization mechanisms, including
those that cross resource boundaries. Our overall
approach applies source-level transformations to con-
current programs, replacing costly synchronization
mechanisms with less costly ones [13]. The techniques
involve the application of dataflow analysis and an exten-
sion of interprocedural analysis and inter-module analysis
to concurrent programs. An interesting aspect of this
work is the use of attribute grammars to perform such
analysis [14]. These techniques are also applicable to
other concurrent programming languages, e.g., Ada, Con-
current C, Argus, and occam.

Our current implementation of SR (version 1.1)
works on a variety of UNIX-based systems and is in the
public domain. We expect the implementation of version
2 to be completed by Fall 1991. For information on how
to obtain SR, contact the author or the SR project (by
electronic mail to sr-project@cs.arizona.edu).

Acknowledgements

Greg Andrews created SR, and has been the driving force
behind SR’s evolution. gR version 2 has come about
through the ideas and efforts of many people, most not-
ably Greg Andrews, Dave Bakken, Mike Coffin, Gregg
Townsend, and the author. Carole McNamee and Caren
Asimow provided very useful comments on earlier drafts

of this paper.

412

References

[11 G.R. Andrews, Synchronizing resources. ACM
Trans. on Prog. Languages and Systems 3, 4 (Oct.
1981), 405-430.

[21 GR. Andrews, The distributed programming
language SR—mechanisms, design and implementa-
tion, Software—Practice and Experience, 12 (8)
(Aug. 1982), 719-754.

[3] G.R. Andrews and R.A. Olsson, The evolution of the
SR language. Distributed Computing 1, 3 (July
1986), 133-149.

[4) R.A. Olsson, Issues in Distributed Programming
Languages: The Evolution of SR. TR 86-21 (Ph.D.
Dissertation), Dept. of Computer Science, The
University of Arizona, August 1986.

[5] G.R. Andrews, R.A. Olsson, M. Coffin, .J.P. Elsh-
off, K. Nilsen, T. Purdin, and G. Townsend, An
overview of the SR language and implementation.
ACM Trans. on Prog. Lang. and Systems, 10 (1)
(Jan. 1988), 51-86.

[6] G.R. Andrews and R.A. Olsson, Concurrent Pro-
gramming in SR. Benjamin/Cummings Publishing
Company, to appear 1991.

{7} N. Wirth, Programming in Modula-2. Springer-
Verlag, New York, 1982.

[8] U.S. Department of Defense, Reference Manual for
the Ada Programming Language. ANSI/MIL-STD-
1815A, 1983.

[9)N. Gehani, The Concurrent C Programming
Language. Silicon Press, Summit, New Jersey,
1989.

[10] B. Liskov and R. Scheifler, Guardians and actions:
linguistic support for robust, distributed programs.
ACM Trans. on Prog. Lang. and Systems 5, 3 (July
1983), 381-404,

[11] A. Bums, Programming in occam 2. Addison-
Wesley, 1988.

[12] M.S. Atkins and R.A. Olsson, Performance of multi-
tasking and synchronization mechanisms in the pro-
gramming language SR. SOFTWARE—Practice and
Experience, 18 (9) (Sept. 1988), 879-895.

(13] C.M. McNamee and R.A. Olsson. Transformations
for optimizing interprocess communication and syn-
chronization mechanisms. submitted for publication.

[14] CM. McNamee and R.A. Olsson. An atiribute
grammar approach to compiler optimization of
intra-module interprocess communication. submit-
ted for publication.

