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ebugging research
seems to focus almost exclusively on the
debugging of concurrent programs and
on graphical interfaces for debuggers.
While those areas are very important, the
emphasis on them tacitly assumes that the
problems of debugging sequential pro-
grams have been solved. We disagree. We
find state-of-the-art sequental debuggers
to be lacking, so we have developed our
own sequential debugger to demonstrate
that significant further progress can be
achieved.

A trend over the years has been for se-
quential debuggers to provide mecha-
nisms that let users interact with their pro-
grams at higher levels of abstraction,
closer to the abstractions in their pro-
grams. Debugging tools have evolved
from programs that let you examine con-
tents of memory locations to modern,
source-level debuggers that let you inter-

act with your program at the source-code
level, since they understand abstractions
like variables, procedures, and statements.
Fundamental to such debuggers is the
concept of a breakpoint, a programmer-
defined location in the code at which exe-
cution is to be suspended so you can ex-
amine variables or so the debugger can
execute some debugging code.

Some source-level debuggers, like Sun
Microsystems’ DBX Tool and the Saber
C and Turbo debuggers, provide graphi-
cal interfaces to simplify how you interact
with the debugger and to help you visual-
ize program behavior. Unfortunately,
these widely used debuggers do not go far
enough: They still require you to interact
at a very detailed level. These debuggers
typically have two significant inadequa-
cies:

¢ They provide only very limited con-
trol over the actions taken when a break-
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# Dalek procedure to print out value
#field of nodes in a circularly linked list
# (in the program being debugged)
#starting at $head. Assumes $head is a
# dummy node whose next field
# prints to itself if the list is empty.
function $print_list($head)

{

rence of several logically related break-
points into a single, more abstract occur-
rence. This capability is desirable because
abstractions in a program often require a
series of procedure calls. You can easily be
overwhelmed by all the information out-
put by a debugger and might fail to realize

local $p

set $p = $head—>next

while ($p != Shead)
printf "%d\n", $p->value
set $p = $p—>next

endwhile the significance, when taken together, of
}d I two pieces of information that a debugger
en

prints at different times.

inadequacies. (The name comes from the
semimechanical alien life form in the Brit-
ish television series Doctor Who that tried
to exterminate everything in sight.)
Dalek’s language provides conditional and
looping statements, blocks, local variables,
procedures, and functions. (The box

Figure 1. A Dalek procedure to print a linked list.

point occurs. Often, they provide only
conditional execution of the entire block
of commands associated with a break-
point. More powerful and discriminating
means of control are desirable, like a loop
to print out the contents of a linked list or

this article.) This approach is similar to
that taken by Mark Johnson,! except
a loop to single-step the code being de-  Dalek includes these mechanisms as part of
bugged untl one variable is greater than | a conventional (and modern) debugger
another. (The Digital Equipment Corp. ' rather than inan interpretive environment.
VAX/VMS Debug and the Saber C de- Dalek also provides support for events
buggers do provide some such features.) — occurrences of interesting activities in

¢ They provide no way of conve- | the code execution — as a way to form
niently or safely correlating the occur-

FDAI.EK COMMANDS
Most Dalek commands and predefined functions have obvious meanings. Buta few
may not:

Special characters

# introduces a comment, which continues until the end of the line.

$ indicates the start of a name of a convenience variable or a predefined or a user-
defined function.

“ indicates the start of an event or attribute name.

Commands

Break sets a breakpoint at a specified line, address, or function entry.
Proc-break sets (broadcasts) a breakpoint at entries of a group of procedures.
Silent suppresses the default announcement that a breakpoint has occurred.
Backtrace prints a backtrace of stack frames.

Predefined funcions

$value accesses an attribute of a token on a specified event queue.

$quiet_finish lets the executing function in the program being debugged return natu-
rally. This function returns as its own value the value that was returned by the procedure.

$top_frame returns the number of frames where the top-level frame is executing ‘
above the current frame. |

Our debugger, Dalek, remedies both '

below defines some Dalek tokens used in

higher level abstractions during execution. '

Dalek uses a novel, coarse-grained
dataflow approach for combining events

I in which the dataflow graph’s nodes con-

tain fragments of code written in the
Dalek language.

OVERVIEW

Dalek is similar to many other modern
debuggers in its overall operation. Dalek
and the code being debugged execute as
separate processes, with Dalek control-
ling, observing, and altering the code’s ex-
ecution according to code written in the
Dalek language. You can specify Dalek
code dynamically during a debugging ses-
sion, so you can specify what is of interest
as you glean information during execu-
tion. Also, such code can be read from a
file. Dalek code can be executed from the
debugger’s command level or automati-
cally at a breakpoint or when an event is
triggered. Dalek operates on compiled C
programs; the source code is not modified,
recompiled, or relinked as a result of de-
bugging.

Dalek is based on GDB, the Free Soft-
ware Foundation’s Gnu Project’s debug-
ger. It enhances GDB’s functionality in
two significant ways.

First, Dalek extends the original GDB
language with mechanisms that make it
more like a general-purpose language. Be-
cause the new mechanisms are completely
integrated with the standard debugging
features, the Dalek language is fully pro-
grammable. The new mechanisms sup-
ported by Dalek include

¢ a conditional statement,

+ alooping construct,

¢ blocks with local convenience vari-
ables (a convenience variable is a variable
that the user defines and manipulates
within the debugger; GDB provides only
global convenience variables), and

¢ procedures and functions.

Second, Dalek provides ways to define,
raise, recognize, and combine events.

To illustrate the Dalek language, con-
sider the Dalek code in Figure 1. The code
defines a $print_list( ) procedure, which
can be invoked interactively from Dalek’s
command level or from any point during
code execution by simply setting a break-
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point whose commands include a call to !

the procedure. As a simple example,
$print_list( } can be invoked from a break-
point at line 27 of the file Goo.c by the
commands

break goo.c: 27

commands

silent
call $print_list(symtab_head)
cont

end
Silent suppresses the default announce-
ments of encountering a breakpoint, the
Call statement calls the $print_list proce-
dure, passing Symtab_head as an argu-
ment, and Cont continues execution of the
program being debugged.

We could have written the body of
$print_list( ) in-line as commands, but we
wrote it as a function so it can be invoked
directly from the command level or from
another breakpoint, if desired.

Similar to the $print_list( ) example, you
can write Dalek code to ensure that the code
being debugged maintains certain invariants
about its data structures. For example, you
could invoke code to check thata circularly
linked list is indeed circular on entry to and
exit from each procedure that manipulates
the list, or even atevery step of the code. This
approach is more flexible than using com-
piled-in asserdon checks (like the Assert
macro in C), since you can decide what in-
variants to check and where to check themas
vou find it necessary during actual debug-
ging. You can save the invariant-checking
code for use in later debugging sessions.

To see further how you can use Dalek
to attack a debugging problem, consider a
program containing a module that main-
tains a sorted linked list. This sorted list is
kept local to the module and cannot be
accessed directly anywhere outside this
module’s scope. All operations on the list
are performed through a few explicitly ex-
ported functions. When this module is
combined with other parts of the program
and the program is executed, the contents
of thislist are somehow corrupted. Careful
examination of the listmodule leads you to
believe that it is not the source of the cor-
ruption. Therefore, some other part of the
program must contain erroneous code
that has overwritten this linked list.

- set §p - $p—>;ext :

el
while($p 1= 0)

set $previous_value = $p->value
set $p = $p->next

endwhile

func-return 1

}

end

break initialize_sorted_list
commands
silent

while ($list_sorted ($head_ptr))
step
endwhile
printf "list has been corrupted\n”
backtrace
end

-

if ($previous_value > $p—~>valﬂe)——~———’7rmmre odjacent elements’ values. |

set $Shead_ptr = list_head =————

non decreasing order (e by <)

| Assumes Shead is o dummy node, whose Next
field is 0 if the list is empty.

Sprevious_value holds the value of the
previous element.

Set breakpoint in the program being debugged. ‘

Shead_ptr, a pointer to list_head, is used
instead of variable list_head because list_head
is a static variable (local to one source file) and
therefore not known in all parts of the source
code.

Figure 2. Dalek code to uncover a list-corvuption bug.

grams written in languages like C that
allow the use of pointers. Most likely, it is
caused by a pointer incorrectly referenc-
ing a memory locaton occupied by the
linked list.

The debugging problem is to locate
the erroneous code, since it could be in any
part of the program. To narrow the bug’s
possible location, you can trace, step by
step, the program’s execution.

Figure 2 shows Dalek code that auto-
mates the program tracing. The function
$list_sorted( ) verifies the validity of the
sorted list and returns 0 when the listis no
longer sorted. A breakpoint is set in the
function Initialize_sorted_list( ), where
the sorted list is first used. The command
block associated with this breakpoint be-
gins with aloop thatsingle-steps execution
of the program, stopping when the list is

"This kind of bug is common in pro- | first found to be corrupted. It then prints a

trace of the current call stack. (We con-
sider this kind of debugging to be the last
resort — you use this technique after fail-
ing with the more standard ones.)

"The key to success here is that Dalek
allows single-stepping within While loops.
You could also use hardware data
watchpoints, available in some architectures,
to help solve this kind of debugging prob-
lem. They let specified memory cells be
monitored, generating an interrupt when
such a cell is read or written. However, some
way of filtering through the enormous num-
ber of generated interrupts is needed.

EVENTS

You can define an event in Dalek to
capture the occurrence of any interesting
activity in the code execution. To define
an event, you declare names for it and
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Primitive events

Breakpaints in process '
(or free-floating events) A

| Process in program

being debugged

Figure 3. Dataflow graph for cvent recognition.

foritsattributesand writeablock of Dalek
code. How does Dalekknowwhen to exe-
cute an event’s code? The simplest way is
to explicitly raise thatevent by name. We
call events activated this way primitive
events, and they are typically raised by
an event-raise command executed at a
breakpoint. The code associated with an
event will then try to recognize a valid
occurrence of that event. The attributes
associated with an event contain infor-
mation meant to characterize a particu-
lar occurrence of the event. The Dalek
code you write for an event’s definition
can assign values to its attributes from
variables in the original code, debugger-
convenience variables, or computation
based on those variables.

Dalek also supports high-level events.
When defining a high-level event, you
must specify the names of other events on
which it depends. A high-level event is not

explicitly raised; instead, Dalek can auto-
matically execute a high-level event’s code
whenever an occurrence of a primitive
event on which it depends is successfully
recognized.

Dalek provides a coarse-grained
dataflow view of events. In most models
of dataflow, tokens flow between the
nodes of a directed graph. In Dalek, the
leaves of this graph represent primitive
events (independent sources of tokens),
and the interior nodes represent higher
level events whose activation and subse-
quent behavior depend on those primi-
tive events. Thus, the structure of the
dataflow graph is implicit in the events

i you define. Dalek derives it automati-
i cally from the dependencies you explic-

itly specify between primitive and
higher level events.

Activity in the code being debugged —
like reaching a breakpoint — can raise a

| primitive event, which if recognized will

generate a token. "This token carries copies
of the attributes characterizing that in-
stance of the primitive event, letting that
occurrence be distinguished from other
occurrences of the same primitive event.
The tokens generated by recognizing a
valid instance of a primitive event flow to
any high-level events that depend on the
primitive event. The arrival of such a
token at a high-level event can trigger that
high-level event, which in turn can gener-
ate tokens that tigger yet higher level
events. Figure 3 shows a dataflow graph
that summarizes Dalek’s approach to
event recognition.

When a high-level node in Dalek’s
event-dataflow graph is wiggered, it ex-
ecutes its own Dalek code to decide
whether to recognize a valid instance of
that high-level event. In making that de-
cision, the code associated with a high-
level event has access to the tokens (and
their attribute values) from all occur-
rences of the lower level constituent
events on which the high-level event de-
pends. The tokens from a high-level
event’s lower level constituents are stored
on its own private queues and are accessed
with predefined Dalek functions.

If the Dalck code associated with an
event decides that it should recognize an
instance of that event, it assigns values to
its own attributes, as we described earlier.
A high-level event then generally removes
from its incoming queues the tokens on
which the event’s code based its decision
to avoid repeated recognition of the same
tokens whenitis triggered later. When the
high-level event’s code finishes execution,
tokens embodying the new event instance
propagate to all higher level events that
depend on it, and the recognition phase
begins anew.

If the high-level event’s code decides that
an appropriate combination of tokens from
constituent events does not exist on its in-
coming queues or that their attributes fail to
satisfy the desired relationships, the code can
execute Dalek’s Dont-propagate command.
This suppresses the normal generation of
tokens representing this event and the sub-
sequent passing of those tokens to any
higher level events that depend oniit.
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An event history records all recognized
event occurrences and their attributes. It
may be browsed selectively by the user in
interactive mode or accessed program-
matically via predefined functions in the
Dalek language.

To demonstrate events concretely, Fig-
ure 4 shows a spreadsheet program and
Dalek debugging code. It has two bound
primitive events (raised at breakpoints)
that are combined into a higher level
event. Figure 5 shows another example of
how you can use events. In this example,

the primitive events are free-floating —
unlike the primitive events in Figure 4, the
primitive events in Figure 5 are raised dur-
ing execution of Dalek code that is not
bound to any particular breakpoint.

EXAMPLE APPLICATIONS

Dalek’s debugging language makes it
suitable for many applicadons, three of
which we present here: an alternative to
code patching, procedure tracing, and
performance measurement and code pro-

filing. These applications further show the
versatility and power provided by Dalek’s
full programmability and its event mecha-
nisms. Although some people might not
consider these applications to fall in the
realm of traditional debugging, we have
found that the interpretive-like environ-
ment Dalek provides for compiled pro-
grams encourages the integration of pre-
viously separate activities (program testing is
another example).

Alternative fo code putching. You can use

void RowChanged (int row) {
int column;

column++)
UpdateCell (row, column);
i

int row;

UpdateCell (row, column);
} [

- break®
point ) void UpdateCell (x,y) {...}

# Define a breakpomt at procedure entry and
i # associate a primitive event with that breakpoint.

~“i-s~break RowChanged

for (column=0; column < LastColumn;

void ColumnChanged (int column) {

for (row = 0; row < LastRow; row++)

commands
silent
event raise "RowChanged (row) e—__
cont ™.
end
event define "RowChanged( row)
end AN

# associate a primitive event with that breakpoint.

i break UpdateCell

commands
silent

+ means trigger on this event.

— means don't trigger on this event.

Salen{) returns the length of the queve
ances {tokens) of an event

Svalue() is used o examine the atiributes
of a token from a lower level event
Evenl remove removes a particular

1 instance of an event from its queve. |

Figure 4. Spreadsheet example: (A) Excerpt from a spreadsheet program and (B) Dalek mmmand.v and definitions. In the

event raise "UpdateCell (x, y)o—-—_
ont

event define>
end

# Define a higher level event.
# the primitive events defined above:

if (0 ==$qlen( RowChanged))

els

event set-attribute “x $value( UpdateCell, 1, "x)
event set-attribute 'y $value(UpdateCell, 1, °y)
if (LastColumn =z $value( UpdateCell,1, ‘y)

event remove RowChanged

printf "Row caused Cell to be modified\n"
endif
event remove 'UpdateCell 1

# Define a breakpoint at procedure entry and \

event define "RowThenCell(x,y) — RowChanged + UpdateCell

€vent dont-propagate # Do not record in event history.

endif #Maintain invariant that $qlen( RowChanged) <= 1

le, both RowCh

d() and

Y

ColumnChanged() call UpdateCell( ). Suppose you are intevested only in execution paths that run through RowChanged() and then UpdateCell( ). You would use
Dalek’s dataflow mechanism to filter out all UpdateCell() invocations that do not first invoke RowChanged( ).
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#a succes:

lelete G

" event define 'insert (value)
ot iel ey .

event define 'delete (‘value)
end

#We assus?ﬁ%m ) successfully recognized primitive event was

e list's length

| Suppose there are not separate
Insert and Delete routines but that
those actions are implemented by
macros in the program being

# Assumes program being debugged
# has one pointer (listptr) and
# that both inserts-and deletes
# occur only at this pointer.

set $last = listptr

| while ($running)
i step

debugged. Because it is not practical | |
1o search for every line contuining !
those macros and set breakpoints at | |
every occurrence, we instead
caplure insert/delete behavior with
free-floating events.

Step the program by one
instruction. Each step may change
some variables in the program
being debugged.

if ($last != listptr)
if ($last == 0 & & listptr)

! Insert info empty list ]

event raise 'insert (listptr—>value) =...

else if ($last & & listptr == 0) <--—‘—-I Delete, making empty list l

event raise 'delete ($last—>value) =

else if ($last && listptr—>next != $last) ‘7*1 Delete from existing fist

event raise 'delete ($last—>value) =
endif
set $last = listptr
endif
endwhile

else if ($last && listptr->next == $last) <—-——| Insert into existing lst ]
event raise 'insert (listptr—>value) =-.._

-

It is safe to access its value field below, because this
structure cannot have been freed yet.

Figure 5. Free-floating events.

Dalek 1o effectively replace code in the

program being debugged with code writ-

ten in Dalek. This alternative to patching
machine code has a temporary effect, af-
fecting only how the code being debugged
executes while under control of the de-
bugger; it does not modify the program’s
executable file or the source code. We
have used this kind of patching to find and
fix multiple errors without exiting the de-
bugger and recompiling the source code.
Although you can use this technique
with many other debuggers, it is easier to
use it in Dalek because Dalek’s language
provides conditional and looping state-
ments and functions. These let you easily
replace groups of statements or entire
functions, or add new code to, for exam-

ple, initialize variables.

The basic technique is to set a break-
point at the start of the faulty code. The
Dalek code associated with the breakpoint
can then perform the desired action, and,

. 1f necessary, can execute a special jump

command to skip over code thatshould no
longer be executed.

Procedure tracing. Dalek does not provide
a separate trace command; instead, it pro-
vides a more general mechanism —
broadcast breakpoints — that, with its full
programmability, makes getting a trace of
selected procedure calls simple as a special
case. Broadcasting lets you give a single
command to establish an ordinary break-
point at the entry to every procedure

whose name matches a regular expression,
and broadcasting lets you associate a com-
mon block of debugging commands with
those breakpoints. Without a broadcast-
breakpoint facility, you would have to in-
dividually establish a breakpoint and give
the associated breakpoint code at each
procedure — a tedious activity.

Thus, to have Dalek print out the
names of all procedures entered during
program execution, you just specify a sin-
gle broadcast-breakpoint command with
the wild card * as its regular expression and
the following code as its command block:

silent

printf "%s\n", $func(0)

cont
The predefined Dalek function $func(z) re-
turns the name of the function in the code
being debugged that is associated with the
nth frame of the procedure-call stack. When
n equals 0, as in this case, it returns the name
of the procedure in which the code being
debugged is executing.

More selective tracing is also possible
by specifying a more restrictive regular ex-
pression or by refining the code in the
broadcast breakpoint’s command block.
Two examples of the latter include

¢ printing only when a certain proce-
dure appears somewhere on the call stack
(the call stack can be searched with a
While loop) and

¢ printing only when the value of some
convenience variable satisfies an arbitrary
Boolean expression (the value of this vari-
able might be condidonally modified by
the code associated with events or other
breakpoints).

We have used broadcast breakpoints to
getinformation used in correlating the ac-
tivities by which programs access their
runtime (procedure) stacks. This informa-

tion is important in assessing the utility of |

© certain architectural features. The condi-

tional probabilities we nceded to measure
were a push of a stack frame followed by
the push of another stack frame, a push
followed by a pop, a pop followed by a
push, and a pop followed by another pop.
Figure 6 shows how we programmed
Dalek to gather and compute such infor-
mation.

We have also used broadcast break-
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points to solve debugging problems like
the one in Figure 2. Broadcast breakpoints
are faster than the single-stepping used in
Figure 2, but their granularity is coarse,
since they occur only when a procedure is
entered: Using them will give you only the
name of the routine invoked after the rou-
tine in which the contents of the list were
corrupted, rather than the source state-
ment actually causing the corruption.
Thus, the fastest way to zero in on such a
bug is for the broadcast-breakpoint com-
mands to increment a counter to deter-
mine how many times procedures are in-
voked, rerun the code until one procedure
call before that state, and only then inidate
the While loop that single-steps.

Performance measurement and code profiling.
You can use Dalek to time parts of a pro-
gram and to profile sections of code. A
considerable advantage in using Dalek for
these tasksis that you can interactively and
dynamically specify the part of the pro-
gram for which information is to be gath-
ered, as well as the precise information to
be gathered — without modifying, re-
compiling, and relinking the source code.

Dalek provides three predefined func-
tions that return the CPU time used by the
process in the code being debugged, cor-
responding to how Unix reports CPU
times. The Dalek function $utime() re-
turns the user time, $stime() returns the
system time, and $ttime( ) returns the total
time. User time is the time the CPU
spends executing the instructions in the
process’s address space, while system time
is the ime the CPU spends executing sys-
tem calls invoked by the code.

Unfortunately, only $utime( ) is accu-
rate. $stime( ), and therefore $ttime(), is
not accurate because some of the cost of
the debugger controlling the process
being debugged is charged as system time
to the debugger. And even $utime( ) is not
always accurate on all machines. For ex-
ample, on machines that use instruction
pipelining, $utime() can be affected by
what instructions are in the pipeline; the
pipeline is flushed when the operating sys-
tem switches contexts, which occurs in al-
ternating execution between the process
being debugged and the debugger.

Stll, you can use these timing func-
tions in the debugger code thatis executed
as part of a breakpoint or event, and there-
fore interactively change what parts of the
code being debugged are monitored.

One use of Dalek’s iming functions is
to tune a program’s performance. For ex-
ample, suppose you want to determine the
times for both successful searches and un-

successful searches of a symbol table. This
information can give you feedback on the
appropriateness of your data-structure
representation, perhaps suggesting that a
hash table would perform better than a
linked list.

To get these times, you can set one
breakpoint on entry to the search function
and another breakpoint right before the

set $last="none"
set $running = 1

proc-break *
silent
# Execute for every procedure entry
if ($13.St == "push")
set $push_push++
else if ($last == "pop")
set $pop_push++

endif

set $last = "push”

if (“Zexit" == $func(0) )
set Srunning =0

b

# Broadcast breakpoints. The commands compute conditional probabilities.
# Initialize some Dalek variables. Theses variables are global in scope.

set $push._push=$push_pop=$pop_pop=$p0p_push=0 ~\

These counters record occurrences of pushes and
pops. To calculate the probability of a pop
occurring after a push, P[pop | push}, use the
formula Spush_pop/{Spush_pop+Spush_push).

Broadeast breakpaints to all procedures. On each
procedure entry, Dalek executes this breakpoint-
command block.

Exit the outer While loop, since _exit neither calls
nor refurns.

else if (0 == $top_frame() )*——X

You are already at the top frame, so there is no
caller.

| Squiet_finish.

Certain procedures run on an empty stack (like
Start, Start_Float, Finitfp_, Main, Exit). Because
Dalek implements Squiet_finish() by setting an
up-level breakpoint in the calling frame of the
current procedure, you must confinue in such
procedures instead of quietly finishing them with

You eventually stop when control reaches _exit.

Figure 6. Computing conditional probabilities for stack usage.

Force the program fo finish executing the current
procedure. Along the way, if it calls another
procedure, it will hit the breakpoint broadcast there,
causing Dalek to begin recursively executing this
Proc-break's command block. After the program
finishes executing its current procedure, Dalek
proceeds where it left off: after this Squiet_finish.
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*

printf"%d\n", $max_length()
(A} 1

# of the program and
# letting you-calculate

function. $max_length ()

set $len = $max_len =0

set $len++

set $ins_q_index++
else

set $len--

set $del_q_index++
endif
if ($len > max_len)

set $max_len = $len
endif

endwhile

if ($len > $max_len)
set $max_len = $len

endif

func-return $max_len

end
(B)

Figure 7. (4)Using the event-history list to examine program bebavior. The Sree-floating events for ‘insert

# Corisult Dalelc's history List of interesting events : i
- #and caleulate maximum length of thg Tist. i

# Using Dalek's history mechanism, you walk through the execution history
# examine the occurrences of two important events -- “insert and delete, thus

# the maximum length of the linked list.

local $len, $max _len, $ins_q_index, $del_q_index
set $ins_q_index = $del_q_index = 1

while ($ins_q_index <= $hlen (insert) && $del_q_index <= $hlen (delete))
if ($htime(insert, $ins_q_index) < $htime(delete, $del_q_index) )

# There may have been a tail of inserts with no more deletes, so:
set $len += $hlen (insert) — $ins_q_index + 1

Shlen() returns the fength
of the history list ossociated
with an event.

Shiime() returns the time at
which that event occurrence
was recorded.

i
—

and ‘delete are defined and the attributes set as in Figure 5. (B) The definition of the Smuax_length function

used by the event-history examination routine.

search function returns. The first break-
point records the starting user time; the
second adds the difference between the
current user time and the starting user

time to the running sum for either suc- |

cessful searches or unsuccessful searches,
according to the value the search function
is returning.

Alternatively, the breakpoints could
raise events that include the ime informa-
tion as attributes. That would allow a

" more detailed analysis, for example, to |

compute averages and variances, since
each instance of an event is recorded on

. the event history.

Gathering timing information with
Dalek — instead of using standard profiling
tools like Unix’s Gprof tool — or including
timing code in the source program gives you
more control over what is being measured,
plus itis not intrusive. Profilers do not pro-
vide control as fine-grained as Dalek’s tim-

ing functions. While including timing
code in the source program is viable, doing
so requires recompiladon and can affect
overall user-time measurements. The
number and kinds of changes to the source
code required by that approach can also
become unwieldy.

For example, suppose you want to find
the cumulative time spent executing in
procedure P but only when it is invoked
directly or indirectly from procedure Q.
To do such measurements by modifying
the source code would require either an
additonal parameter in P’s interface ora
global variable; either of these changes
would be cumbersome in a program of any
size. By contrast, Dalek code to do such
measurements simply uses the $func pre-
defined function described earlier to de-
termine if Q is on the procedure-call
stack.

You can also use Dalek as a simple code
profiler and to gather other useful statistics
about program behavior. For example, we
have used Dalek to count how often a pro-

| cedure or statement is executed, to find the

maximum length a linked list reaches dur-
ing execution, and to measure runtime-
stack frame behavior. This kind of infor-
mation is easily obtained by setting
breakpoints at appropriate points in the
code and specifying breakpoint com-
mands to maintain convenience variables;
you would use control statements and
functions for the more complicated mea-
surerments.

You can analyze more complicated
program behavior by using the event his-
tory. Figure 7 shows how you can use the
event history to determine the maximum
length a linked list reached during execu-
tion, without having to rerun the code
being debugged.

DEBUGGING STYLE

Dalek encourages a very interactive,
dynamic style of debugging, as the exam-
ples in this article show. Dalek’s full pro-
grammability provides the benefits of a
debugger fully integrated with an inter-
pretive environment, despite the fact that
it operates on a compiled source program.

]
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You can write Dalek code when you find it
necessary, like when execution of the code
being debugged is suspended at a break-
point in the source code or even when
suspended at a breakpoint somewhere in
the Dalek code.

"This approach lets you explore a pro-
gram during its execution, adding debug-
ging code as desired by defining a new
high-level event or a new debugging
function, like $list_sorted( ) in Figure 2.

Often in debugging, you have ardu-
ously brought the code being debugged
to a critical point in its execution under
the debugger’s control before you dis-
cover the need for such debugging code.
Without full programmability like
Dalek’s, you would need to limp along
without these capabilities or to inject
debugging statements (like Assert state-
ments) into the source code, perhaps
with conditional compilation. Not only
would this require you to terminate the
debugging session, modify the source
code, and recompile and relink the exe-
cutable file, but making such seemingly
minor modifications to the source code
could substantially alter the symptoms
exhibited by bugs, especially if pointers
are involved.

One drawback of the kind of high-level
debugging encouraged by Dalek is that it
requires a fair amount of interaction be-
tween the debugger process and the pro-
cess being debugged. Unfortunately, that
kind of interaction is generally expensive
because it requires system calls and their
concomitant context switches. But al-
though such high-level debugging might
require a few minutes of computer time, it
can save you hours of your time.

Another potential drawback of any ap-
proach to debugging is that the debugger
code may itself contain bugs. Dalek code is
as susceptible to bugs as any other debug-
ging code, perhaps more so since it sup-
ports and encourages the use of more
complex features. To aid the debugging of
the debugging code, Dalek provides a ver-
bose mode in which Dalek displays each
command as it is interpreted. Dalek also
provides several ways to pause its execu-
tion as it interprets the debugging code: It
lets you single-step through and set break-

points in your debugging code.

OTHER APPROACHES

Our approach to event recognition dif-
fers considerably from other approaches,
including those used by several debuggers
for concurrent programs that support var-
ious forms of events.” We use a dataflow
graph with programmable nodes to spec-
ify how lower level events should be com-
bined into higher level ones. Thus, event
recognition in Dalek is an active process.
Other event-based approaches typically
use a special notation (often based on pat-
tern matching) to specify event recogni-
tion. Dalek’s notion of persistent, user-de-
finable attributes to characterize each
occurrence of an event is also uncommon.

Our approach to event recognition is
intentionally low-level to provide maximum
flexibility. Unlike the other approaches, it
does not constrain event recognition by pre-
conceived notions of how higher level events
will be formed. But one drawback of our
approach is that even common patterns
must be explicitly programmed. We will
remedy that, after gaining further experi-
ence with Dalek, perhaps by extending the
Dalek language to include higher level
mechanisms or by providing a macro fa-
cility or event libraries. We anticipate the
resulting language will retain most of its
current low-level mechanisms.

A few sequential debuggers have used
the event-based model or a similar one.
For example, the notion of event associ-
ations in Snobol-4* lets event recogni-
tion be an active process, but it is not
possible to define high-level events or to
maintain an event history. Another ap-
proach using generalized path expres-

sions' lets you define a variant of Dalek’s
high-level events, but its event recogni-
tion is not active and it does not provide
any feature like Dalek’s noton of persis-
tent attributes. Also, that approach is not
fully programmable. Being effectively
limited to global integer convenience
variables, this deficiency limits the type of
information that can be communicated
between path expressions. By limiting the
event history to storing only counts of
event occurrences (in contrast to record-
ing the time stamp as well as the attributes
for each occurrence), the practcal value
of that database is severely constrained.

igher level debugging mechanisms,

like those Dalek provides, consider-
ably simplify the debugging of sequential
programs. We have found Dalek’s re-
sponse time for high-level debugging to
be reasonable, and — critically important
— certainly much less than would be re-
quired for a user to do the same work with
an existing sequential debugger: minutes
rather than hours. Despite good software-
development and software-engineering
practices, lengthy debugging sessions un-
fortunately do occur in practice.

Dalek is not just a prototype: All the
features described here (as well as other
features) have been implemented.>$ And
the Free Software Foundation is consider-
ing incorporating Dalek’s features into a
future release of GDB.

Our research on debugging will in-
clude refining Dalek’s language and im-
plementation and generalizing our ap-
proach to allow the debugging of
concurrent programs. It would also be
nice to incorporate a graphical interface
into Dalek. .
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