Mechanizing Security in HOL

William L. Harrison
Karl N. Levitt
Department of Computer Science
University of California
Davis, CA, 95616

Abstract

Four definitions or “models” of security are de-
scribed formally and with examples. The formaliza-
tion tnto HOL of three of these models is demon-
strated. The relative strengths of these definitions is
discussed with respect to adequacy, mechanizability,
and provability.

1 Introduction

Security has been and continues to be a fertile area
for application of verification methods. There are so
many subtle ways in which a system can fail to be
secure that verification of system security is particu-
larly appropriate. Only the systematic approach of-
fered by verification seems likely, therefore, to inspire
confidence about the security of a complicated system.

Many definitions or “models” of security have been
proposed in the past. Generally, there are three cri-
teria with which to judge the value of security model.
They are :

¢ Adequacy - does the model admit insecure be-
havior or rule out secure behavior?

e Mechanizability - how easily can the model be
expressed in a formal language?

e Provability - how easily can a system be proven
to have the given security property?

The adequacy of a security model simply expresses
whether the model adequately captures the notion of
“secure”. There are well known examples of security
models which do allow insecure behavior. An example
of an inadequate model is given in the next section.

0-8186-2460-4/92 $03.00 ® 1992 IEEE

63

Mechanizability refers to how susceptible the model
is to formalization in a language like HOL or EHDM
[2]. Provability refers to the difficulty of verifying that
a particular system has a desired security property.
The “non-interference” and “restrictiveness” models
described in sections 3 and 4 are concise and elegant,
but verifying that a system has either of these prop-
erties generally involves lengthy and complicated in-
ductions [1].

2 Access Control

Access control (also known as the Bell-LaPadula se-
curity model) is the most familiar of all security mod-
els. System objects such as processes and files are as-
signed a security level! (e.g., “unclassified”, “secret”,
or “top secret”), and the following two requirements
are enforced:

1. Processes or users may only read from data ob-
jects of identical or lower security level.

2. Processes or users may only write to data ob-
jects of identical or higher security levels.

The second requirement is necessary so that high-
level information can not be accidently or maliciously
leaked to a lower level. The access control model of
security was inspired by “paper world” security.

One inadequacy of the access control model is that
most operating systems require the existence of a “su-
pervisor” which can read and write globally to any
data object. Clearly, the existence of a supervisor
violates both of the above conditions, so access con-
trol implies nothing about the “trustworthiness” of

1In general, security levels form a partially ordered set

the supervisor. Another shortcoming of access con-
trol is that all information does not flow through ez-
plicit channels (i.e., files or messages). A high-level
“Trojan horse” program could pass information to a
low-level process by, for example, through a “covert”
channel. A high-level Trojan horse process can signal
a low-level process by writing a file to a disk through
the supervisor, which is then read by the low-level
process.

Another type of covert channel is a “timing chan-
nel”. For example, if the Trojan horse spots “we at-
tack at dawn” in a high-level file, then it acquires the
disk at midnight. If the Trojan horse does not acquire
the disk at midnight, it has not found the message in
any high-level files. The low-level process can, then,
determine whether an attack is imminent by looking
at the activity of a certain disk at a certain time.

3 Generalized Non-Interference

A low-level user can deduce information about
high-level processing only when the high-level process-
ing has some effect on the low-level user’s state. The
“effect” can be direct (e.g., reading a secret file) or in-
direct (e.g., noticing some shared resource like a disk is
busy). In this sense, the insecure phenomena derives
from the secret user interfering with the unclassi-
fied processing. In this case, the secret processing is
not transparent to the unclassified user. The non-
interference security model is an attempt to formalize
this notion rigorously.

We define non-interference in terms of a system
model called an event system. An event system is a
quadruple < E, T, I,0 > where the set E is all system
events, the set T is the set of all valid system traces,
and I and O are all system inputs and outputs, re-
spectively.

The standard interpretation of an event system fol-
lows. An event can be an internal state transition
(e.g., incrementing a register) or a communication
event (e.g., a message passed between processors). A
valid system trace in T is a sequence of events from
E permitted by the system. T defines the behavior
of the system. I and O are disjoint subsets of E. It
should be noted that an event system is an abstract
object completely independent of the standard inter-
pretation. Our event system comes from [1], but there
are many similar models in the literature [¢f. McCul-
lough and Goguen/Meseguer].

We can now define non-interference formally. Let
event system S = < E,T,I,0 > and t1 = a” d1 be
a trace in 7" (NB, is sequence concatenation). S has
the non—interference property if for all such t1

and sequences a” d2, where d2 differs from d1 only
in high-level inputs, there is a trace t3 = a” d3, where
d2 and d3 differ only in high-level outputs. That is, if
one changes the high-level inputs in trace t1 (the re-
sult of which is not necessarily a trace), one can find a
valid trace t3 differing from t1 only in high-level out-
puts. Or in other words, changes in high-level inputs
result only in changes of high—level outputs. S is, in
this case, said to have the non-interference property
for the low-level view. A definition of non-interference
in HOL can be found in the following figure.

IS_NON_INTERFERING
"def V v es. IS_NON_INTERFERING v es =
(V a di d2.
let ev == EVENTS es and
tr = TRACES es and
INP = INPUTS es and
0UT = OUTPUTS es and
HI_O0 = OUT DIFF v and
HI_I = INP DIFF v
in
(a SEQ_CONC di) IN tr A
(SAME_VIEW (ev DIFF HI_I) d1 d2) ==
(3 43.
(a SEQ_CONC d3) IN tr A
(SAME_VIEW (ev DIFF HI_0) d2 d3)))

Here, SEQ_CONC means sequence concatenation, HI_I
and HI_O are the sets of input and output events,
respectively, which are not visible from the view v.
SAME_VIEW ev s1 s2 is true if and only if the two
sequences of events s1 and s2 are identical when re-
stricted to elements of the set ev.

4 Restrictiveness

Generalized non—interference provides a satisfac-
tory standard of security for a single system. How-
ever, the composition of two non-interfering systems
is not necessarily non-interfering. [cf. McCullough].
Composability of a security property is very desirable
because of the growing popularity of distributed com-
puting. Hence, lack of composability is a severe draw-
back of the non-interference security model.

A refinement of non-interference called restric-
tiveness (also known as hook-up security) overcomes
this problem. Restrictiveness is a strengthening of
non-interference which is preserved under composi-
tion. An event system is restrictive if, for all traces
a" bl” gl, where b1 is a sequence of inputs, and for
all sequences a” b2" gl obtained by changing high-
level inputs in b1, there is a trace a” b2" g2 in which
gl and g2 differ only in high-level outputs.

At first glance, this definition appears to be little
different from non-interference. however, restrictive-
ness requires that any difference in high level outputs
between gl and g2 occur entirely after any changes
to the high-level inputs of bl. This additional require-
ment allows restrictiveness to be composable [5]. An
HOL definition of restrictiveness follows.

SAME_VIEW
'—def Yv t1 t2.
SAME_VIEW v t1 t2 =
(t1 SEQ_RESTRICT v

t2 SEQ_RESTRICT v)

IS_RESTRICTIVE_DEF
l_def Vv es.
IS_RESTRICTIVE v es =
(Va b1 b2 gl.
let EV = EVEHNTS es and
TR = TRACES es and
INP = INPUTS es and
1_D_V = (IKPUTS es) DIFF v
in

(a IN TR A

SEQ_IN_SET_STAR b1 INP A

SEQ_IN_SET_STAR b2 INP A

SEQ_IN_SET_STAR g1 EV A

((a SEQ_CONC b1) SEQ_CONC gi) IN TR A

(SAME_VIEW v b1l b2) A

(g1- SEQ_RESTRICT I_D_V = WULL_SEQ) ==
(3g2.
(SEQ_IN_SET_STAR g2 EV A

((a SEQ_CONC b2) SEQ.CONC g2) IN TR) A

(SAME_VIEW v g2 g1) A
(g2 SEQ_RESTRICT I_D_V) = NULL_SEQ)))

5 Information Flow

Information leakage can occur even in a system in
which access control is rigidly enforced. An access
control policy can prevent direct channels, but can not
eliminate so-called “indirect” or “covert” channels.

The following whimsical example of an indirect
channel comes from [8]. Imagine a computer system
with a high-level user, a low-level user, and a supervi-
sor which enforces access policy. This system has the
following instructions:

e READ() : X := Register(i)
o WRITE(i): Register(i) := X

where X is a supervisor variable inaccessible by either
user. If the high-level user executes READ(1) and
no other operation affects X until the low-level user
executes a WRITE(1), then the low-level user has po-
tentially gained information about the state of the
high-level processings - specifically what Register(1)

65

contained at one point. Note that this leakage was
permitted by the access policy because never once did
the low-level user attempt to get high-level informa-
tion directly.

Information flow analysis overcomes the inadequa-
cies of simple access control by detecting any kind
of information channel — direct or indirect — between
users of different security levels.

Information flow is defined in terms of generic in-
structions like assignment and conditionals. There
instructions are sufficiently general to apply to the
instruction set of any computer. The predicate
FLOW(X,Y) means there is a flow from variable Y
to variable X. FLOW(X,Y) is true for each of the fol-
lowing operations:

1. X :=f1(..)Y,...) (explicit flow)
2. if f(...,Y,...) then X := a (implicit flow)

3. if a, then OP(X,Y,...) , where OP causes flow
from Y to X (conditional flow)

Furthermore, FLOW is a transitive relation. That is,
if FLOW(X,Y) and FLOW(Y,Z), then FLOW(X,Z).

A system S is secure according to the information
flow security model if for every pair of variable X and
Y such that FLOW(X,Y), security-level X > security-
level Y. There are two properties of this approach that
are particularly worth noting. Firstly, information
flow analysis is an entirely synifactic technique. One
can determine the flow patterns between system re-
sources by examining code exclusively. A consequence
of the syntactic nature of the analysis is that poten-
tial information channels may be identified in which
no flow actually occurs. However, data flow analysis
will never identify a non-existent channel [8].

In the opinion of the authors, the information flow
model of security is equivalent in some sense to gen-
eralized non-interference. That is, for some general
class of event systems E and es € E, es has the non-
interference property between security levels if and
only if es does not allow information flow between
levels.

6 Summary and Conclusions

For the most part, the four models of security de-
scribed in this paper have all been formalized in other
logics and used to verify systems. The restrictiveness
model has been formalized in HOL and used to verify
generic components [1].

Ideally, executable code should be verified; but in
practice, design specifications and other code abstrac-

tions have been verified. Generally, this happens for
two reasons:

o Designs are more susceptible to formalization in
logic than code, due to the complexity of pro-
gramming language semantics.

e Code includes many implementation details
which are irrelevant to the intended purpose of
the system design.

Currently at UC Davis, we are designing and speci-
fying a distributed operating system kernel with the
goal of verifying restrictiveness at the code level.

Acknowledgements

We wish to thank Jim Alves-Foss for the figures
and terminology from his paper [1].

References

[1] Jim Alves-Foss and Karl N. Levitt. Verification of
Secure Distributed Systems in Higher Order Logic:
A Modular Approach Using Generic Components.
1991 IEEE Symposium on Securily and Privacy,
1991.

[2] Computer Science Laboratory, SRI International,
Menlo Park, CA. EHDM Specification and Ver-
ification System Version 5.0 —Description of the
EHDM Specification Language, January 1990.

(3] J.A. Goguen and J. Meseguer. Security policies
and security models. In Proc. IEEE Symposium
on Security and Privacy, pages 11-20, 1982.

[4] J.A. Goguen and J. Meseguer. Unwinding and
inference control. In Proc. IEEE Symposium on
Securily and Privacy, pages 75-86, 1984.

[5] D. McCullough. Specifications for multi-level se-
curity and a hook-up property. In Proc. IEEE
Symposium on Security and Privacy, pages 161-
166, 1987.

[6] D. McCullough. Noninterference and the compos-
ability of security properties. In Proc. IEEE Sym-
posium on Security and Privacy, pages 177-186,
1988.

[7] D. McCullough. Foundations of Ulysses: The the-
ory of security. Technical Report RADC-TR-87-
222, Odyssey Research Associates, Inc., July 1988.

[8] J. K. Millen. Operating System Security Verifi-
cation. Technical Report M79-223, The MITRE
Corporation, September 1979.

66

