

Extending the Take-Grant Protection Model Page 0

Extending The Take-Grant Protection
System

Jeremy Frank and Matt Bishop

Department of Computer Science
University of California at Davis

Davis, CA. 95616-8562

December 5, 1996

1. Abstract.

The Take-Grant Model is used to analyze systems in order to determine
how information and access rights can be passed from one subject to
another. However, the Take-Grant model does not contain enough power to
discriminate between two different flows. We propose a method of
extending Take-Grant to generate information and rights flows in order
of

costs

. Our method involves finding the most permissive Take-Grant
graph achievable from the initial graph, and adding the notion of cost to
the application of the

de jure

 and

de facto

 rules. We also discuss the
complexity of finding this most permissive graph or

closure

 and the com-
plexity of generating witnesses from the closure graph. We discuss the
use of this extended model both for finding witnesses and for finding
paths of information and rights flow.

2. Introduction.

In 1976, Harrison, Ruzzo, and Ullman proved that the general question
of security in an arbitrary system is undecidable [1]. To study under
what conditions it was decidable, Jones, Lipton, and Snyder developed a
model of protection called the Take-Grant protection Model [2] in which
questions of security were not only decidable, but decidable in time lin-
ear with the number of objects and rights. The basis of the work was a
graphical representation of a system in which the nodes are subjects or
objects (active objects are called subjects) and the directed edges indi-
cate the rights that one object has over another.

The Take-Grant Protection Model provides a set of graph rewriting
rules that allow one to study the changes induced in the graph by the
transfer of authority. The rules are summarized in [5]. The

take

 and

grant

 rules control the addition of rights; the

create

rule governs the cre-
ation of new nodes and rights. The upper diagram in figure 1 shows an
example of the

grant

 rule, in which

x

 gives

y

 the

read

 right over

z

. A

remove

 rule also exists, but it is rarely used in security modelling
because once a right is acquired, only its owner can delete it, and such

Extending the Take-Grant Protection Model Page 1

deletions are rare. Sequences of rule applications are called

witnesses

,
and models and witnesses in which the remove rule is not used are said
to be

monotonic

. Because these rules change the state of the graph, they
are called

de jure

 rules.

Accompanying these rules are a set of 4 other rules which do not
change the state of the graph but capture the paths along which informa-
tion may flow throughout the graph. Application of these rules does not
alter the protection state of the graph, and so they are called

de facto

rules because they model what may happen in fact (as opposed to "by
right," which is captured by the

de jure

 rules). We may apply these rules
to determine if information may flow from one entity to another, with or
without the cooperation of other entities. The lower diagram in figure 2
shows an example of the

post

 rule, which states that since

z

 can

w r i t e

x

and

y

 can

read

 what is wri t ten to

x

, then in fact

y

 can

read

z

.

The issue of

cooperation

 is central to the question of theft. Each of
the

de jure

 and

de facto

 rules require one or more subjects to apply the
rule. For

de jure

 rules, exactly one actor is required; for

de facto

 rules,
either one or two actors is required, depending on the rule. Snyder
tightly bounded the number of subjects (called

conspirators

 in this con-
text) that had to participate in a transfer of rights; in [6], Bishop
determined how to obtain a bound on the number of conspirators involved
in a transfer of information . The obvious remaining problem is to iden-
tify those conspirators. In a monotonic system, this is somewhat
straightforward: one can use known techniques [3][6] to determine the
paths along which rights or information may flow, and then monitor key
nodes and edges. In a small graph, this is easy. In a large graph, this may
be very difficult. We can change the focus of the problem slightly: given
a Take-Grant graph representing a large system, what entities (systems)
and/or edges (network links) should be monitored to detect the il l icit
transfer of information with highest probability? In other words, given
that it is infeasible to monitor all paths between two vertices, and given
that we cannot monitor the endpoints, over which edges and through

●⊗ ⊗
y x z

g β |– ●⊗ ⊗β

Figure 1. The grant rule: x grants y α r ights to z .
zxy

g

● ●
r w |–

● ●
⊗ ⊗

Figure 2. The post rule: z posts to x through y .

r

r

w

zxy
y x z

r

Extending the Take-Grant Protection Model Page 2

which vertices does the rights or information have the greatest probabil-
ity of flowing? The reformulation also applies to post-mortem analysis
of a breach of policy or security. I f information or r ights i l l icit ly f lowed
between two subjects, what is the most likely path? Take-Grant is not
equipped to handle questions of this type; we can conclude that it is pos-
sible for information or r ights to f low, but we must turn to intuit ion to
determine which of two possible witnesses is most likely. Further, in
many cases (and in most realistic ones), generating the witnesses in
some order will focus the analysis on the most likely candidates.

Suppose the higher the number of edges the greater the cost of using
the path. In figure 3, our intuit ion tel ls us that traff ic between

x

 and

z

would most likely use the path through

y

. However, if the information
being transferred was information identifying members of a group that
pirated software, and

y

 were the Software Publishers’ Association’s
site, then

x

 and

z

 would use the longer route to minimize the chance of
detection.

We extend the Take-Grant model to include a notion of the

cost

 of
information or rights flows. With this notion we will then be able to gen-
erate witnesses in increasing order of cost. We assume low cost flows
with high probabil i ty; as a result, a low cost witness for some i l l icit
information or rights flow is a high-probabil ity witness, and therefore
should be investigated first or given preference in monitoring. We will
see that even in Take-Grant models incorporating applications of the
remove rule, we can stil l generate witnesses by first considering the
most permissive Take-Grant graph derivable from the initial graph,
called the

closure

. We will give results for the complexity of finding the
closure and for finding the witnesses.

The organization of the paper is as follows. In the next section we dis-
cuss previous work on the Take-Grant Protection Model. Then we discuss
the ordered generation of witnesses for information flow. In this section
we will show how to find the closure and discuss the addition of costs to
Take-Grant models. Following that, we will show how to generate wit-
nesses for rights flow. In the penultimate section we will present some
examples, and the final section concludes and presents some ideas for

● ●

r wy

x z

●

●
● ●

rt w t

Figure 3. Scenarios where z is to send information to x ; the path through
y is intuitively the best one, but in various contexts this would be wrong.

Extending the Take-Grant Protection Model Page 3

future investigations.

3. Previous Work

In 1979, Bishop and Snyder [4] added the notion of information flow to
the Take-Grant model, creating a new type of edge called imp l i c i t and a
new set of rules called de facto rules. These rules represent how infor-
mation may flow about the graph, and the implicit edges capture the
resulting paths. Note that these rules do not alter the graph; they simply
represent the flow of information.

 The notion of the f t of rights was introduced in 1981 [3], and described
how one vertex acquires rights over another without cooperation of any
owner of those rights. This was generalized to cover the theft of infor-
mation [5], and was applied to the Take-Grant model to analyze a theft of
information over a network [6]. In the model, each site (repository) is
represented by a process or subject vertex. The ability to "take" a right
over a file requires that the file be represented by a separate object,
with parent the process of the site upon which the file resides.

These results were applied to determine the number of conspirators to
networks, but did not touch upon which paths information is likely or able
to flow over because of complexities in the costing of the transfer of
rights and information. In other words, the generation of witnesses
serves to identify possible conspirators without regard to likelihood or
simpl ic i ty.

In this paper, we expand upon this work to identify likely paths along
which rights and information can flow, and the cost of specific sets of
witnesses to conduct the transfer.

4. Ordered Generation of Witnesses for Information Flow

The goal is to determine which witness(es) minimize cost of the trans-
fer of information or rights. First, we compute the closure of the Take-
Grant protection graph. From this, we can generate a subset of interesting
witnesses with low cost. We select a witness with the minimum cost. If
additional (non-cost) constraints apply, we can select the witness that
meets the constraints and has the lowest cost.

First we examine the problem of generating all possible witnesses;
then we augment the Take-Grant Protection Model with the notion of cost.
Following that, we combine the two ideas.

4.1. Finding the Closure

We define the closure of a Take-Grant model by beginning with the
notion of a witness :

Definition. Let G = (V, E) be a Take-Grant graph where V is a set of vertices

Extending the Take-Grant Protection Model Page 4

and E is a set of edges. The set V is partit ioned into subjects and
objects, and the elements of E are labelled with members of the set of
r ights R. The elements t , g, r , and w of R are distinguished symbols for
take, grant, read, and w r i t e , respectively. We write G |- * G’. i f the appli-
cation of a de facto or de jure rule to G results in G’. If a sequence of
rule applications to G produces G’ then we say G |- * G’, and the sequence
of applications is called a witness.

We can think of the closure of a Take Grant graph similarly to the way
we think of finding the closure of directed or undirected graphs: if there
is a "path" between two nodes in a graph we add the edge connecting
those two nodes.

We can now define the closure.

Definition. Let G = (V, E) be a Take-Grant graph. G* is the closure of G i f
there is a witness such that G | - *G* and, for all de facto and de jure
rules, G* | - * G*.

To find the closure of a Take-Grant graph, we apply each de facto and
de jure rule to the graph until we cannot apply them any more. There are
two complicating factors, however: creates and deletes. The application
of deletes removes rights from an edge. No rule in Take-Grant is predi-
cated on the absence of rights, hence we should not use delete rules to
form closures. Further:

Lemma. Delete rules can be re-ordered to be the last rule applications in
any witness.

Proof: Suppose not. Then by re-ordering deletes to the end of a witness it
would have to be the case that G |-* G’ is false. However, this is ridicu-
lous, since moving the deletes until later does not make it impossible to
apply any rule. (Re-ordering them to occur earlier, however, is a differ-
ent matter!) So we have a contradiction. ■

Thus, if deletes are allowed, we can reorder them so they do not affect
the generation of witnesses.

Creates are important in a Take-Grant model because of the
i r ref lex ive nature of the model. Unlike reflexive models of protection, a
subject in an irreflexive system has no rights over itself. Thus, the abil-
ity to "take" a right over a file requires that the file be represented by a
separate object, with parent the process of the site upon which the file
resides. So, in the worst case, each subject would need to apply the cre-
ate rule repeatedly in order to account for situations where reflexivity is
mimicked by takes over files created by subjects. However, each subject
needs to do only one create rule application, since now the subject has
the power to grant itself all rights over this newly created object; no
second object would add any more capability to the subject for the pur-
poses of information or rights flow. This is clear from the de jure rules,

Extending the Take-Grant Protection Model Page 5

in which no target of an edge ever obtains rights not possessed by at
least one of its sources.

As a final point, we can arbitrari ly take and grant every right possible
when these rules are applied, since we can always acquire these rights
later.

Lemma. Let G = (V, E) be a Take-Grant graph. The closure of G contains
fewer than 2V nodes, 4V2 edges and 16V2 rights.

Proof: In the worst case, each node may perform a create, doubling the num-
ber of nodes. Also in the worst case, there could be a directed edge
between every pair of nodes in the graph, and each edge can have 4 rights
in the set of associated rights. ■

We now consider the complexity of finding the closure of G. We begin
with the de jure rules. Let F be a l ist of all take and grant edges; clearly
O(E) operations produces this set. Let the set N be empty. For each edge e
in F proceed as follows:
1. Add e’s endpoints to N.
2. Check for a possible de jure rule application; this requires looking at

the current edge and any other adjacent edges. Do this by looping
through N, checking each node v in N and the endpoints of the current
edge to see if any de jure rules involving the three vertices can be
applied.

3. If any de jure rules can be applied, and the resulting edge and right has
not yet been put in F, add the resulting edge and right to F. Note that an
edge may already exist between the nodes; the key is the newly added
right.

4. Delete the curent edge from F
5. Repeat steps 1, 2, and 3, stopping when F is empty.

Steps 1 and 4 are constant time operations. Step 3 requires keeping a
list of edges added to F; checking for redundency is at worst O(V2) time.
Step 2 is more complex; before evaluating it, we show:

Theorem: The above algorithm is a correct implementation of the closure
algorithm in that it does not add multiple edges between vertices and all
possile edges and rights in the closure are added.

Proof: Step 3 eliminates redundent edges. Now suppose some edge is not
added. Its endpoints could not appear in N, because if they did, step 2
would cause the rule application that would add the edge to F. But then no
edge incident on either endpoint could appear in F, because if such an edge
did appear in F, the endpoints would be added by step 2. Continuing on in
this fashion, it becomes clear that the only graph meeting these condi-
tions is one with no edges, in which case the theorem vacuously holds. ■

Theorem: Let G = (V, E) be a Take-Grant graph such that all creates have

Extending the Take-Grant Protection Model Page 6

been performed. The complexity of finding the closure G* with respect to
de jure rules is O(V4).

Proof: As the algorithm does not add multiple edges between vertices, at
most O(V2) edges will be added. The loop in the above algorithm takes
O(V2) time as each node match could take V time, and there are V nodes,
with 4 matches possible for each node. Hence the worst case complexity
is O(V4). ■

Adding de facto rules is straightforward once one observes that de
facto rules add only (implicit) read edges. Let E be the init ial set of
edges. All de facto rules require two adjacent edges, so at worst, every 2
edges could be paired to form a new, third edge. The complexity of this is
O(V2) for the set of possible edges and O(V2) for each possible pairing;
hence the complexity of this is O(V4). Combining this with the result
above, this shows:

Theorem: Let G = (V, E) be a Take-Grant graph such that all creates have
been performed. The complexity of finding the closure G* is O(V4).

Once we have found the closure we can now determine whether or not
information or rights have flowed between any two nodes in the graph.
The reason is that the closure propagates all information and rights to
every subject in the graph that could ever achieve them through any wit-
ness. If a initially had read permission over x and there is a witness that
gives b read permission over x , then b will have read permission over x
in the closure. However, both a and b having read permission over x does
not imply b obtained its permission from a ; in fact, i t is possible that b's
read permission was derived from another subject c and not a at all.

4.2. Adding Costs to Take-Grant

Simply determining the closure does not give us the tools we need to
generate witnesses in a particular order. We must augment Take-Grant
with a notion of "cost" in order to determine the cost of any witness. Our
method is to associate a cost with each rule application, and to assume
that the cost of a witness is a function of the costs of each rule applica-
tion. For example, associate a cost with each edge; then the cost of a rule
application (and resulting edge) might be the sum of the costs of the edges
involved.

Since our goal is to generate witnesses in increasing order of cost, we
must first assign a semantics to the cost. There are several meanings
we could assign costs, but the two most appealing are probabil i ty and d i f -
f i cu l t y . If we view cost as probability, then we would like to generate the
most probable witness; i .e. that witness which reflects the most
probable flow of information. There are some difficulties with assigning
costs based on probabilities. If each rule application had a probability

Extending the Take-Grant Protection Model Page 7

associated with it, then the probability of a witness would then be the
product of the probabilities of each rule application, assuming each rule
application was independent of the others. Our task would then be to gen-
erate the witness with the highest probability. Maximizing the cost
function would require determining the longest path in the Take-Grant
protection graph, as in this case the longest path is that path with the
highest probability. The problem of finding the longest path in a graph is
known to be NP-Hard.

The other alternative is to have our cost reflect the diff iculty of the
rule application as seen by the agent applying the rules. Using this mean-
ing of cost, we would like to generate the lowest cost witness, and the
cost of a witness is the sum of the costs of each rule application.

We now foreshadow a moment: if each rule application results in a
"cost" of reading in a Take-Grant graph, it is possible to cast our problem
as one of finding the shortest path of information flow from the source
to the destination, which has a well-known solution. While the notion of
difficulty is not as appealing as that of probability, the prospect of a
well-behaved solution is enough reason to pursue it for now.

Having settled on the notion of cost, we now must examine the rules to
determine what costs to add to the graph with each rule application.
There are a few preliminaries. First, any read edge in the graph must be
assigned a cost, since they may play a part in the generation of new edge
costs and in which witness is chosen.

Second is the question of what to apply the cost to: the edges or the
rule applications. If the former, each added (implicit or explicit) edge is
assigned a cost based upon the rights associated with the edge. The cost
of a set of witnesses is simply the total of the costs of the final path
along which the transfer occurs. In the second case, applying a rule incre-
ments the cost of the witness. The cost of each rule application may be
constant, or it may vary based on the specific rule applied, the number of
actors required, the co-operation required, and so forth. However, for the
most part, the relative magnitude of costs must be motivated by the
domain which the Take-Grant system is applied to.

Third is the issue of de facto rules and implicit read edges. Their cost
in the transfer of rights is irrelevant, since only de jure rules and
explicit edges are involved. In the transfer of information, both implicit
and explicit edges are used, but the de jure rules can only manipulate
explicit edges. Without loss of generality, we can reorder the rule appli-
cations so that all de jure rule applications precede all de facto rule
applications. Hence, unless the metric is temporal (in some way), one can
minimize over the set of (reordered) witnesses to obtain the best set of
witnesses, and then derive the path.

Extending the Take-Grant Protection Model Page 8

4.3. Augmenting the Closure

This technique can both find witnesses and analyze the cost of infor-
mation flow along paths in the graph. Each requires a similar
augmentation of the closure of the graph. What the cost model applies to
differentiates the interpretations. If the cost model applies to rule appli-
cations then we will be able to find the witness, but not the cost of
information flow through the resulting graph. If the cost is the cost of
the path through which the information flows, then we may have lost the
information about the witness. We can use the model to generate either
one depending on the requirements.

If we want to analyze the cost of information flow paths, then the clo-
sure need only assign the cost of each read edge added to the graph.
However, edges with multiple cost can be added to the graph (see Figure
4).The closure graph G* is now a weighted graph, and we can simply mod-
ify Dijkstra's algorithm to return the shortest path in O(V2) time. An
extension of Breadth-first search can be used to return the k-shortest
paths in order.

As it happens, we can do exactly the same thing if we want to
generate the cost of witnesses. However, we only want costs of edges in
this graph to reflect the application of rules, where in the previous case
read edges cost whether they were added by rules or present in the origi-
nal graph. So initially, all read edges in the graph cost nothing. As new

Figure 4. When cost is a function of rule applications, the (implicit) path
from x to y has multiple cost. Suppose the spy rule costs 1 and the post
rule costs 2. If the path is generated by to applications of the spy rule in
the obvious way (see second graph), the path from x to y costs 2. But if
the post rule and the spy rule are used to generate the graph (see third
graph), the cost is 3.

● ●
r r

● ●
r

w

● ●
r r

● ●
r

w

r

r

● ●
r r

● ●
r

w

r

r

x

x

x

y

y

y

Extending the Take-Grant Protection Model Page 9

read edges are created during closure, they are annotated with the cost of
the rules used to create them. In some cases we may need an auxiliary
copy of the graph to keep track of information used in computing the cost
of rule applications; for instance, if the cost of rule applications is a
function of some other costs of edges between the nodes. As before, we
can apply Dijkstra's algorithm or breadth-first search to find the short-
est paths.

As an aside, we note that if computing the cost of each rule applica-
tion is constant, then the cost of computing the closure is polynomial in
the size of the graph.

5. Ordered Generation of Witnesses for Rights Flow

An equally important question in Take-Grant graphs is that of rights
flow. Often we would like to determine whether or not rights could flow
between two subjects. We now show how to modify the closure so that
we can determine the minimum cost path for the flow of rights. In this
case, we must build an auxiliary graph such that a directed edge between
two nodes in the auxiliary graph is labeled with the cost of passing the
right from one node to another according to the cost model. Fortunately,
in this case, we can dispense with the de facto rules, since these rules do
not alter the state of rights in the graph. As we showed earlier, we can
also dispense with deletes. As before, we can interpret these costs as
either the cost of generating the appropriate witness or as the cost of
excercising the rule to accomplish the rights flow. We can run Dijkstra's
algorithm on the resulting graph as usual.

6. Examples

We first present an example based on a model of network transfer [6]
in which information is transferred from f ’ to f . Given the protection
graph in Figure 5, the following is the set of edges in the initial graph;
the notation is (source, r ights, target):

(p, r , f) (p, r , q) (s , r , p) (s , r , q)
(q, r , s) (v , r , s) (v , w , f ’)

The spy rule adds read edges by combining 2 adjacent read edges:

(v , r , p) (v , r , q) (p, r , s) (q, r , p)
(s , r , f) (q, r , f) (v , r , f)

The post rule adds one more read edge based on a read and a write edge:

(f ’ , r , f)

Before turning to witnesses, let us establish two cost metrics. Metric
A is rule-based; each application of the spy rule costs 1, and each
application of the post rule costs 2. Metric B is edge-based; each edge

Extending the Take-Grant Protection Model Page 10

initially has cost 2, except for the edge (s , r , p), which has cost 1000;
for this metric, the cost of a new edge is the sum of the costs of the
edges used in the rule application that added the new edge.

Consider now the following two witnesses:

W1: spy (s , r , f); spy (v , r , f); post (f ’ , r , f)

W2: spy (v , r , q); spy (q, r , f); spy (v , r , f); post(f ’, r , f)

W1 involves two applications of the spy rule (add the implicit edges
from s to f ’ and from v to f ’) and one application of the post rule (add the
implicit edge from f to f ’), and so under metric A costs 1 + 1 + 2 = 4. W2
involves three applications of the spy rule (add the implicit edges from v
to q, from q to f ’ , and from v to f ’) and one of the post rule (add the
implicit edge from f to f ’); under metric A, this costs 1 + 1 + 1 + 2 = 5.
So by metric A, W1 costs less (and hence is more likely to be used) than
W2, so given the choice between the two, under metric A, the path (f ’ , p),
(p, s), (s , v), (v , f) should be monitored. Under metric B, the cost of W1
is (1000 + 2) + (1002 + 2) + (1004 + 2) = 3012, and the cost of W2 is (2 +
2) + (2 + 2) + (4 + 4) + (8 + 2) = 26; so given the choice between the two,
under metric B, the path (f ’ , p), (p, q), (q, s), (s , v), (v , f) should be
monitored.

 Now consider figure 6. The second figure shows the closure; again, any
of a number of information may flow using a number of witnesses. Here,
the initial edges are:

(x , t , y) (y , w , z)

●

●

●

●❍

❍

r
r

r
r

r r

f

p q

s
v f’

Figure 5. An example Take-Grant Protection Graph and its closure. The
dashed lines are implicit edges, all read. As only de facto rules are used,
no creations occur.

●

●

●

●❍

❍

r
r

r
r

r rf p q

s v

f’

w

w

Extending the Take-Grant Protection Model Page 11

As de jure rules are needed to compute the closure, we first do creates:

(x , t g rw , x’) (y , t g rw , y’) (z , t g rw , z ’)

Then we apply the take and grant rules to compute the de jure closure.
The following edges are added by the take rule:

(x , t g rw , y’) (x , w , z) (y , t g rw , x’)

The following edges are added by the grant rule:

(x’ , t , y) (y’ , t g rw , x’) (y’ , w , z) (x’ , w , z)

The post rule adds two implicit edges:

(x , r , y) (y , r , x)

The f ind rule adds two more:

(z ’ , r , x) (z ’ , r , y)

So does the spy rule:

(z , r , y) (z , r , x)

However, the pass rule adds only one implicit edge:

(z , r , y’)

Cost metric C is rule-based; each application of a de jure rule or of
the pass rule costs 1, and each application of other de facto rules costs
2 (the cost is the number of subjects that must act in the rule applica-
tion). Consider now the following two witnesses showing how
information can be transferred from x to z :

W3: create (z , t g rw , z ’); take (x , w , z); find (z ’ , r , x); spy (z , r , x)

W4: create (y , t g rw , y’); take (x , r , y’); pass (z , r , y’); spy (z , r , x)

● ● ●
t wx y Z

● ●
t wx

y

z

● ●

t g rw tg rw
tg rw

tg rw

tg rw
w

t

w

Figure 5. A second example Take-Grant Protection Graph and its closure.
The dashed lines are implicit edges, all read. Note that the creates
helped add implicit edges, but not explicit ones..

●

●

t g rw

w
x’

y’ z ’

Extending the Take-Grant Protection Model Page 12

One uses the f ind rule and the other the pass rule. If cost is based
solely on the rule application (metric C), then W3 costs 6 and W4 costs 5;
hence W4 is more likely than W3, and the path it uses should be monitored.

7. Conclusions and Future Work

We presented the notion of "cost" to generate the most likely wit-
nesses, and hence paths, for information and rights transfer. We carefully
avoided prescribing a metric for cost. First, many models may be appro-
priate; we presented two, one based on the number and type of rule
applications, and the other based on assigned edge cost. As we saw, the
lowest cost path (or witnesses) is very sensitive to the choice of model,
and a model may assign multiple weights to a single edge even when only
one metric is used.

The choice of cost model is domain dependent, but we can identify
two fundamental types: the fixed cost per rule models and the variable
cost per rule models. The latter offers a rich set of possibil it ies; for
example, one could partition nodes and edges into sets and base simple
cost functions upon membership in those sets. Appropriate domains for
this type of model include operating systems (the cost of paging protec-
tion information suggests one simple division of subjects and objects) and
conspiracy classes (in which transfer among members of a conspiracy is
of minimal cost, but transfer through a domain where a non-member
might detect the transfer is of high cost).

The latter suggests that the most desirable path may not controlled by
cost but by other factors such as probability of detection, certainty of
completion of the transfer, and a bartering of favors in the non-technical
realm. In these cases,a better metric for path selection is a probability
taken over all possible paths (or sub-paths). Such an approach requires a
different algorithm, because we try to maximize probability rather than
minimize it, as we do with cost, and the algorithms we use to minimize
cost are no applicable to maximizing probability.

Generalizing this approach to cover reflexive Take-Grant would be an
interesting exercise. While the algorithms would be straightforward
(nothing in this work depends upon the irreflexivity of the model) the der-
ivation of the complexity would differ considerably, because the analysis
would be correspondingly more complex. Whether the complexity of the
reflexive model is greater than or equal to that of the irreflexive model
may shed some light on the usefulness of the two.

Our goal has been to determine the path along which rights and infor-
mation can be transferred with lowest cost. In practise, psychology plays
a role in the cost function because an omniscient adversary may use
knowledge of our cost function to plan the transfer. Under this scenario,
one might add as part of the cost function a measure of how many paths

Extending the Take-Grant Protection Model Page 13

the edge (or node) lies on. This approach is somewhat speculative, in the
sense that intrusions and countermeasures follows gaming theory rather
than algorithm analysis. Still, the analysis in this paper provides a basis
for handling the problem. The key is the cost function.

8. References

[1] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in Operating Sys-
tems,” Communications of the ACM 1 9 (8) (Aug. 1976), 461-471.

[2] A. Jones, R. Lipton, and L. Snyder, “A Linear Time Algorithm for Decid-
ing Security,” Proc. 17th Annual Symp. on the Foundations of Computer
Science (Oct. 1976), 33-41.

[3] L. Snyder, “Theft and Conspiracy in the Take-Grant Protection Model,”
JCSS 23, 3 (Dec. 1981), 333-347.

[4] M. Bishop and L. Snyder, “The Transfer of Information and Authority
in a Protection System,” Proc. 7th Symp. on Operating Systems Prin-
ciples (Dec. 1979), 45-54.

[5] M. Bishop, "Theft of Information in the Take-Grant Protection Model,"
Journal of Computer Security 3 (4) (1994/1995), 283-308.

[6] M. Bishop, "Conspiracy and Information Flow in the Take-Grant Protec-
tion Model," to appear in the Journal of Computer Security.

