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This paper presents a technique for deriving audit requirements from secu-
rity policy, with examples for informal specifications. Augmenting these
requirements with a system model allows an analyst to determine specific
functions within the system that must be audited. We demonstrate the
effectiveness of this technique by deriving audit criteria for the Network
File System, and show that the results would detect numerous well-known
attacks upon implementations of that protocol.

 

1. Introduction

 

The development of techniques to audit computer systems sprang from the need to trace

access to sensitive or important information stored on computer systems, as well as access to the

computer systems themselves. 

 

Logging

 

 records events or statistics to provide information about

system use and performance; 

 

auditing

 

 analyzes these records to present information about the

system in a clear and understandable manner.

With respect to computer security, logs provide a mechanism for analyzing the system secu-

rity state, either to determine if a requested action will put the system in a non-secure state, or to

determine the sequence of events leading to the system being in a non-secure (compromised)

state. If the log records all events that cause state transitions, as well as the previous and new val-

ues of the objects changed, one can reconstruct the system state at any time. Even if a only subset

of this information is recorded, one might be able to eliminate some possible causes of a security

problem; what remains provides a valuable starting point for further analysis.

Two distinct but related problems arise: what information to log, and what information to

audit. The events and actions to audit require a knowledge of the security policy of the system,

what attempts to violate that policy involve, and how such attempts could be detected. From this

last part comes what to log: what commands must a user use to (attempt to) violate the security

policy, what system calls must be made, who must issue the commands or system calls and in

what order, what objects must be altered, and so forth. Logging all events implicitly provides all
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this information; the problem comes in discerning which parts of the information are relevant,

which is the problem of determining what to audit.

Prior work has focussed on either the mechanics of logging or upon the reduction of specific

characteristics (information) to obtain a better understanding of specific changes to system state.

In this paper, we focus on the process of selecting what characteristics and events should be

logged to provide a framework for appropriate auditing. We treat logging and auditing initially as

an integral part of the specification of a system to enforce a security policy, and from that extend

our work to include systems in which logging mechanisms were added without any overall design

or goal.   We consider a model that allows the modeler to derive characteristics or events that

should be logged. Throughout what follows, we assume there is a security policy, and the logs are

to record events (or characteristics) that indicate attempts to breach the policy. Because no com-

puter security mechanisms are perfect, this also means that the logs will reflect any successful

breaches (unless the logs themselves are tampered with; for our purposes, assume the logs are

stored on write-once media).

Our basic approach is to view a security policy as a statement of constraints upon states and

commands. The converse of these constraints provide a description of violations of system secu-

rity; from these one can derive criteria to audit for. Combining these with the system model gives

the low-level commands and data that must be logged to enable effective auditing.

The next section summarizes prior work in logging and auditing. Section 3 presents our goal-

oriented auditing and logging methodology using both formal and informal security policies. In

section 4, several well-known formal models, and a less formal but very widely used model, are

examined and auditing criteria derived. To show the effectiveness of our methodology, in section 5

we present the NFS protocol and derive auditing criteria, and from that logging requirements. The

next section shows that these criteria and requirements allow one to detect several widely-known

attacks on NFS. We conclude by presenting guidelines necessary for effective auditing and log-

ging, and analyze some common errors in logging subsystems.

 

2. Prior Work

 

Anderson [1] first proposed using audit trails to monitor threats. The use of existing audit

records suggested the development of simple tools to check for unauthorized access to systems

and files. The premise, that the logging mechanism was in place and active, required augmenting
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the logs with additional information, but Anderson did not propose modifying the basic structure

of the system’s logging design, the implication being that the redesign of the security monitoring

mechanism was beyond the scope of the study.

Bonyun [6] argued that a single, well-unified logging process was an essential component of

computer security mechanisms. His work discussed the implications of such a process, how the

users of the output (auditors and security officers) should dictate what the logs contained, issues

about the extraction of logging information from the system, and a simple taxonomy of the analy-

ses of the logs. The paper touches upon the derivation of the nature of the information that the log

is to record, stating that the goals of the logging process drive which characteristics and events

should be logged, but on this topic nothing more is said.

Banning 

 

et al

 

. [2] also hint at the statement of the relationship of goals to the type of informa-

tion logged by saying that the goals of the auditing process determine what information is logged.

Again, the way in which the goals drive the determination of those types is not specified.

In many other papers, the authors discuss the way in which they use data presented in logs, or

the classification of such information as useful or useless towards their end. For example, Pic-

ciotto [14] presents a sophisticated audit capability for a Compartmented Mode Workstation [9].

However, the specific use of the logs is under the control of system security officers, who deter-

mine what is to be analyzed. Sibert [19] gives a cursory rationale for the events audited in SunOS

MLS. A presentation of the VAX VMM auditing facility [18] describes another auditing system

without discussing how the events being monitored were chosen.

 Intrusion detection mechanisms that focus on anomalous behavior have also driven research

in auditing and logging. In some systems, generic logs were analyzed to determine measures that

could be used to rate user sessions as anomalous.   In other systems, the developers of the statisti-

cal measures have analyzed audit trails resulting from known attacks to derive the characteristics

useful to log. A third approach was simply to use characteristics or events that seemed relevant.

 

3. Analysis of the Problem

 

A 

 

security policy

 

 is a description of a partition of the states of a computer system into secure

(called 

 

good

 

) and non-secure (called 

 

bad

 

) states. The goal of auditing is to determine when a sys-

tem transitions from a good state to a bad one, or to determine which transitions occurred from a

bad to a bad state (call these 

 

illegal state transitions

 

). For the moment, this analysis focuses on
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only the first type of transitions.

Consider a Turing machine 

  

TTTT

 

 over a finite alphabet 

 

A

 

 = { 

 

a

 

0

 

, ..., 

 

a

 

n

 

 }; let 

 

a

 

0

 

 be the blank. The

set of states 

 

S

 

 has a distinguished member 

 

s

 

0

 

 representing the initial state. A state transition func-

tion 

 

σ

 

: 

 

S

 

×

 

A

 

→

 

S

 

 describes state transitions, and the function 

 

µ

 

: 

 

S

 

×

 

A

 

→

 

A

 

∪

 

{ 

 

r

 

, 

 

l

 

 } describes the

motion of the head and the symbol it prints on the tape.

Partition the set 

 

S

 

 into subsets 

 

G

 

 and 

 

B

 

, where the elements of 

 

G

 

 are the good states and the

elements of 

 

B

 

 are the bad states. We note that the trivial cases are uninteresting, for if 

 

B

 

 = 

 

∅

 

 then

the system can never enter a bad state, and if 

 

G

 

 = 

 

∅

 

 by definition the system can never enter a

good state. The objective of the auditing is to establish if the current state is a member of 

 

B

 

, and if

so what state and symbol caused 

  

TTTT

 

 to enter that state.

Assume 

 

s

 

0

 

∈

 

G

 

. Let 

 

s

 

∈

 

S

 

 and 

 

a

 

s

 

∈

 

A

 

. When 

 

s

 

∈

 

G

 

 and 

 

σ

 

(

 

s

 

, 

 

a

 

s

 

)

 

∈

 

B

 

, a security violation occurs.

Hence, a simple way to determine what causes illegal state transitions is to record each 

 

s

 

 and 

 

a

 

s

 

for which 

 

s

 

∈

 

G

 

 and 

 

σ

 

(

 

s

 

, 

 

a

 

s

 

)

 

∈

 

B

 

. A similar observation applies for illegal state transitions from one

state 

 

s

 

∈

 

B

 

 to another state 

 

s

 

´

 

∈

 

B

 

.

This suggests a very simple methodology for determining what information to log:

1. Determine all 

 

g

 

∈

 

G

 

, 

 

a

 

´

 

∈

 

A

 

´

 

⊆

 

A

 

 such that 

 

σ

 

(

 

s

 

, 

 

a

 

´)

 

∈

 

G

 

.

2. Log any 

 

g

 

∈

 

G

 

, 

 

a

 

″∈

 

A

 

″⊆

 

A

 

 such that 

 

σ

 

(

 

s

 

, 

 

a

 

″

 

)

 

∈

 

B

 

.

Both steps are well-defined as 

 

σ

 

 is a function and 

 

A

 

´ and 

 

A″ are partitions of A. Defining this

methodology on a Turing machine shows that the methodology applies to any computer. The

proof is immediate from Turing’s thesis.

Let s0,...,si be a sequence of states such that sj+1 = σ(sj, ax) where ax ∈ A. Given a statement of

the security policy, one analyzes it to determine which states are secure (“good”) and which are

not secure (“bad”). Let a security policy P represent the secure operation of a computer system.

The policy consists of rules { p1, ..., pn } to which secure states conform. If for any state si of the

system, the state does not satisfy the jth policy rule (written  ¬pj(si)), then state si is not secure

because the policy has been violated.

The system state changes as transitions occur. Further, as transitions occur due to process

actions and not spontaneously, assuming the system starts in a secure state s0, we can show:

Claim. For each nonsecure state si, there is at least one j ≤ n and one k ≤ i such that sk+1 = σ(sk, ax),

pj(sk), and ¬pj(sk+1).
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The issue is to determine the set of nonsecure transitions; that is, we need to find the set of

pairs (ax, sk) for which sk is secure and for which σ(sk, ax) produces a nonsecure state. For a formal

Turing machine, one need only list all elements of G and all elements of A, and execute each tran-

sition to see if the result is in G or A:

Claim. The complexity of finding all nonsecure transitions in TTTT  is O(|G| |A|).

If the Turing machine corresponding to the system being analyzed has so many states that the

elements of G cannot be described efficiently, this number may be so large as to make the problem

intractable. For our discussion, we implicitly assume that the set G is described efficiently enough

to keep the complexity tractable. This assumption is very practical, as the description of G can be

obtained from the system specifications.

Taking secure states to be those which conform to the constraints making up the security pol-

icy, we may rewrite the above methodology as:

Determine which elements of the domain of the state transition function will produce a state

which violates a constraint. Log all such elements.

As an example, suppose the states with the head over the symbol a23 are non-secure. While we

could deal with σ, µ has as its range the Cartesian product of symbol and direction, so it is more

convenient to work with given the characterization of non-secure states. For each product with a23

as an element of a pair in its range, determine the pairs in the corresponding domain. Then log

each occurrence of the pair; that is, make an entry in a log when the Turing machine enters a state

s with the head positioned over symbol a, and (s, a) is in the above list of pairs. 

We proceed from Turing machines to more complex security models and policies.

4. Examples

Wirth’s seminal paper [22] discusses the refinement of a programming problem to a working

program. The refinement of a security policy to audit conditions is similar: one begins with the

broadest expression of system design, and derives constraints at each refinement of the design by

comparing actions (which cause state transitions) to the security policy, and restricting those in

conflict with that policy. Note that each refinement brings the design to a new (usually more con-

crete) level of abstraction, and it is there we begin.

Let Ai be the set of actions possible on the system at a given level of abstraction mi. The secu-

rity policy provides a set of constraints pi which the design must meet in order for the system to be
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secure; this implies that the functions which could cause those predicates to fail must be audited.

As an example, consider the design hierarchy suggested by PSOS [11]. At each level, the design

for mi is verified not to violate the predicates pi. The predicates control specific actions at that

level; thus, by auditing those actions, one can determine if an attempt to breach security has

occurred. Thus, enough information must be logged to allow auditing at these points.

In what follows, we record constraints as “action ⇒  condition.”. Implication requires that the

action be true (which means that the action occurred, in this context) before any valid conclusion

about the condition. can be deduced. While this notation is unusual, it allows us to simply list con-

straints against which records can be audited; if the record’s recorded action is a “read”, for exam-

ple, and the constraint’s action is a “write,” then the constraint is vacuously true. Further, the goal

of the auditing is to determine if the policy was violated (causing a breach of security), so the

result (success or failure) of the operation should match the satisfaction of the constraint. That is,

if the constraint is true, the result is irrelevant,1 but if the constraint is false and the operation is

success, a security violation has occurred.

This section applies the methodology to three archetypal examples of security policies. The

Bell-LaPadula model is the oldest mathematical model of a governmental security policy and is a

standard policy in the military world. The Clark-Wilson model was the first articulation of an

integrity policy that was not based on a multi-level security model (such as Bell-LaPadula). The

Chinese Wall model is a realistic model of how some financial firms must guard their data and

their actions.

4.1. Bell-LaPadula Model

The Bell-LaPadula model with tranquillity [3] is the classic security policy model. It is a mul-

tilevel model, disallowing subjects from reading entities at a higher level, or subjects from writing

to entities at a lower level. (The absence of tranquillity modifies the second requirement some-

what). The simplest form of this policy linearly orders the levels Li (for this section, i > j means

that Li > Lj). A subject S has the level L(S), and the object O the level L(O). Under this policy, a

system state is illegal if S reads O when L(S) ≤ L(O) or if S writes to O is L(S) ≥ L(O). Corre-

sponding constraint are:

1. If the policy includes availability, this statement must be modified to reflect denial of service attacks. None
of the models in this section deal with denial of service, but the conclusion revisits this possibility.
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S reads O ⇒  L(S) ≥ L(O) (1)

S writes O ⇒  L(S) ≤ L(O) (2)

Auditing for security violations merely requires auditing for writes from a subject to a lower-level

object, or reads from a higher-level object, and checking for violations of constraints (1) and (2).

Thus, logs must contain security levels of the subjects and objects involved, the action (to deter-

mine which constraint applies), and the result (success or failure).2 From those logs, testing for

the violation of constraints (1) and (2) is trivial.

We now extend the analysis to include compartments composed of a security level and a set of

one or more categories. Associated with each entity is a set of category labels chosen from the set

of all categories C. The subject S is in categories C(S), and the object O categories C(O). Under

the Bell-LaPadula model, S can write to O if, and only if L(S) ≤ L(O) ∧  C(S) ⊆  C(O) and S can

read from O if, and only if, L(S) ≥ L(O) ∧  C(S) ⊇  C(O). This gives as constraints:

S reads O ⇒  L(S) ≥ L(O) ∧  C(S) ⊇  C(O) (3)

S writes O ⇒  L(S) ≤ L(O) ∧  C(S) ⊆  C(O) (4)

So, to audit a system implementing the Bell-LaPadula model, the logs must record the action

(read or write), the levels and the compartments of the subject and object involved, and the result

of the reclassification. Then the auditing simply checks each transaction to see if constraints (3)

and (4) hold.

As a quick note, removing the assumption of tranquillity (the requirement that entities have

fixed compartments) adds very little complication from an auditing perspective. Without tranquil-

lity, a subject can change the security level or categories of any subject or object it controls to a

level no greater than its own (this allows declassification). The command to do this and the old

and new security levels and categories must be recorded.

To summarize, in the most general case, auditing Bell-LaPadula systems requires logging:

• for reads and writes, the subject’s security level and compartments; and the object, its security 

level and compartments; and the result of the action;

• for variable security levels, the subject or object, its old and new security level and compart-

ments, the security level and compartments of the subject changing the object, and the result.

2. Strictly speaking, the names of the subject and object may be omitted. In practise, they would assist the ana-
lyst in determining the nature and cause of the violation, and so should be included.
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4.2. Clark-Wilson Model

The Clark-Wilson model [8] provides the commercial analogue to the governmental policies

represented by Bell-LaPadula. The model was the first to provide a basis for assessing integrity in

a realistic commercial environment, the first not to be based on the access control matrix model

(and not to use a lattice representation of the computer system; an earlier integrity model [13]

focussed on integrity in a commercial environment but used the lattice model to extend the work

of Biba and Bell-LaPadula). Thus, the Clark-Wilson model is worth examining from an auditing

point of view.

The Clark-Wilson model views integrity assurance as requiring a certification process and an

enforcement process. Certification is the process whereby a security officer or administrator veri-

fies that the initial state of the system is secure (called “valid”), that programs (called “transforma-

tion procedures” or “TPs”) move the state of the system from a valid state to a valid state, that TPs

write enough information to an append-only log to reconstruct the operation, and that TPs operate

only on objects (called “constrained data items” or “CDIs”) on which they have been certified. For

our purposes, we ignore these, as the techniques for ensuring compliance are not discussed within

the framework of the model. (In a sense, the certification requirements are the assumptions of the

model, and so are presumed to hold.)

The enforcement rules are relevant to auditing; if they break down, integrity will be compro-

mised. The logging mechanism therefore must log all actions which violate the enforcement rules.

We consider them separately; the rules are paraphrased from [8]. In order to enforce them, the sys-

tem must log four sets of information and all changes to those sets. Enforcement rule (E1)

requires that the system maintain for each TPi a set of CDIs upon which it has been certified; call

this set CDI(TPi). Enforcement rule (E2) requires that the system maintain for each TPi and each

user uj a list of CDIs that TPi may manipulate on uj’s behalf; call this set AUTH(TPi, uj). Enforce-

ment rule (E3) requires that a user be authenticated; let the set ISAUTH contain the set of authen-

ticated users, so uj  ∈  ISAUTH after uj has been authenticated. Additionally, enforcement rule (E4)

requires that the system maintain a list of the sets of users (agents) that can certify entities; let the

set CERT(uj, TPi) contain the set of entities that uj can certify for TPi.

E1. The system must ensure that the only manipulation of a CDI is by a TP certified on that CDI.

The corresponding constraint is:
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TPj manipulates CDIi ⇒  CDIi ∈  CDI(TPj) (5)

Thus, at each manipulation, the log must record the TP manipulating the CDI, the CDI being

manipulated, the set of CDIs upon which that TP is certified, and the result. Then auditing simply

tests each entry against constraint (5) and reports violations of that constraint. The mechanism for

recording CDI(TPj) may either place a list of all members in the log entry, or may record an initial

value and all subsequent changes to that set; but the mechanism must provide enough information

to enable the auditor to deduce or obtain a list of the CDIs in that set at the time of the transaction.

E2. The system must ensure that TPs acting on behalf of users manipulate only those objects

that the TP is authorized to manipulate on that user’s behalf.

This gives the constraint:

ui executes TPj to manipulate CDIk ⇒  CDIk ∈  AUTH(TPj, ui) (6)

Hence on each transaction, the logging mechanism must record TPj, CDIk, and ui, and the audit

mechanism must be able to determine the membership of the set AUTH(TPj, ui), implying either

set membership must be recorded at each transaction or an initial membership and changes must

be recorded. Then the auditor simply checks that the constraint (6) holds when the transaction was

executed.

E3. The system must authenticate the identity of each user attempting to execute a TP. 

Enforcement rule E3 requires either that the user attempting to execute the TP has been authenti-

cated in the past, or is authenticated before the TP executes. The constraint is:

ui executes TPj  ⇒  uj  ∈  ISAUTH (7)

Thus, the log must record the success or failure of any authentications, as well as TPj and ui, for

each attempted transaction. Auditing consists of checking that constraint (7) is met for each

attempted transaction.

E4. Only the agent permitted to certify entities may change the list of such entities associated

with other entities: specifically, those associated with a TP. An agent that can certify an

entity may not have any execute rights with respect to that entity.

The first part of this enforcement rule requires that only members of a set of distinguished users,

called agents, be allowed to change the list of entities associate with a TP and with a particular

user invoking the TP. If one considers the lists themselves as CDIs and the changing of the list to

be a TP, the first part of this enforcement rule follows from (E2), and the constraint:
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ui certifies TPj to manipulate CDIk ⇒  CDIk ∈  CERT(ui, TPj) (8)

and logging requirements follow immediately. The second part of (E4) is ambiguous as stated. If

its interpretation is that any agent that can certify CDIk for TPj cannot execute TPj on CDIk, the

constraint is:

ui executes TPj to manipulate CDIk ⇒  CDIk ∉  CERT(ui, TPj) (9a)

but if the interpretation is that any agent that can certify CDIk for TPj cannot execute any transac-

tion procedure on CDIk, then the constraint is

ui executes TPj to manipulate CDIk ⇒  ∀ x [ CDIk ∉  CERT(ui, TPx) ] (9b)

where x ranges over the set of TPs. In either case, the set of agents that certify, and the set of enti-

ties that they certify, must be recorded, as must the user, transformation procedure, constrained

data items for each transaction, and sufficient information to derive the membership of the set of

entities that can certify TPx to operate on ui. The audit would check that both constraints ((8) and

(9a) or (9b)) hold.

To sum up, the system must record the user, the TP, the CDI(s), and the result for each transac-

tion. Further, the system must also record in some form the set of CDIs upon which a TP is certi-

fied, the set of CDIs that a TP may manipulate on behalf of a user, and the set of authenticated

users; this can either be recorded at each transaction, or the sets recorded initially and all changes

also logged.

4.3. Chinese Wall Model

The Chinese Wall model [7] presents a more complex commercial policy in which both integ-

rity and confidentiality are essential; it mimics the rules that stock brokerage houses use and is, in

fact, patterned on the requirements of English law. The model partitions the set of all subjects and

objects into “conflict of interest” classes (called COIs), and partitions each COI into “company

datasets” (called CDs). Let the COI of subject S be COI(S) and the company dataset of subject S

be CD(S); for object O, define COI(O) and CD(O) similarly. O may contain sanitized information,

which can be read by anyone, or unsanitized information, which can only be read by a subject in

another COI class, or by one in the same COI class as the object and which has already accessed

another object in CD(O). The predicate san(O) is true if O contains only sanitized information,

and false if it contains unsanitized information.

Let CDH(S) be the set of all CDs accessed by the subject S so far. Then S can read O if and
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only if COI(O) ≠ COI(S) or ∃ O′(CD(O′) ∈  CDH(S)) (intuitively, if S has read some object in a

dataset it can read other objects in the same dataset; but it cannot read objects in other datasets in

the same conflict of interest class as the original object), and S can write to O if and only if S can

read O and ¬∃ O′(COI(O) = COI(O′) ∧  S can read O′ ∧  ¬ san(O′)) (intuitively, if S can read O,

then S can write to O unless S can read an object in a different CD and that object contains unsan-

itized information). The constraints follow immediately:

S reads O ⇒  COI(O) ≠ COI(S) ∨  ∃ O′(CD(O′) ∈  CDH(S)) (10)

S writes O ⇒  (S canread O) ∧  ¬∃ O′(COI(O) = COI(O′) ∧  S canread O′ ∧  ¬ san(O′)) (11) 

where S canread O is true if the consequent of (10) holds.

To validate that these constraints hold for each transaction, the auditor must be able to deter-

mine for each transaction the elements of each COI and CD as well as the set of CDs that a partic-

ular subject has accessed. Any sanitization is also relevant. Then for each transaction, logging the

subject and object identifiers, the action, and the result (success or failure) will enable the auditor

to determine whether constraints (10) and (11) are satisfied.

To summarize, in the most general case, auditing Chinese Wall systems requires logging the

subject and object names. The system must also log when an object is sanitized, and provide suffi-

cient information to enable an auditor to reconstruct the membership of relevant COIs and CDs.

4.4. General Comments

The three models above show that analyzing the specific rules and axioms of the model gives

specific requirements for logging enough information to detect security violations. Interestingly

enough, one need not assume the system begins in a secure (or valid) state, because all the models

assert that the above rules are necessary for secure operation, but not sufficient, and auditing tests

necessity. That is, if the auditing of the above logs shows a security violation, the system is not

secure; but if they show no violation, the system may still not be secure, because if the initial state

of the system is non-secure, the results will (most likely) be a non-secure state. Hence, if one

desires to use auditing to detect that the system is not secure rather than detect actions that violate

security, one needs also to capture the initial state of the system. In all cases, this means recording

the information that would be logged on changes to the state, at start time.

The level of abstraction of the analyses of the models is above that of a Turing machine. This

eliminates the problem of enumerating the states; instead, system states are classified using sets
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with membership determined by one or more constraints. This is an example of a specification

that controls system behavior and allows us to model the system, implicitly, as a Turing machine.

However, in the abstraction, precision can be lost; for example, the actions constituting a “write”

on a Turing machine are clear. The actions constituting a “write” within the scope of the policy

may not be. But they must be modelled. 

This section discussed logging requirements quite generically; for example, the discussion of

the Bell-LaPadula model asserted specific types of data to be recorded during a “write.” In an

implementation, instantiating “write” may embody other system-specific operations (“append,”

“create directory,” etc.). Further, the notion of a “write” may be quite subtle, for example includ-

ing alteration of protection modes, setting the system clock, and so forth. How this affects other

entities is less clear, but typically involves using covert channels to write (send) information.

These also must be modelled.

Naming also affects the implementation of logging criteria. Typically, objects have multiple

names by which they can be accessed; however, if the criteria involve the entity, the system must

log all constrained actions with that entity regardless of the name used. For example, each UNIX

file has at least two representations: first, the usual one (accessed through the file system), and

second, the low-level one (composed of disk blocks and an inode, and accessed through the raw

disk device). Logging all accesses to a particular file requires that the system log accesses through

both representations. Systems generally do not provide logging and auditing at the disk block

level (due to performance); however, this means that UNIX systems generally cannot log all

accesses to a given file.

The next section demonstrates how these considerations affect the derivation and implementa-

tion of logging and auditing criteria by examining the Network File System protocol.

5. Application to a Computer System

Many sites allow computers and users to share file systems, so that one computer (called a cli-

ent host) requests access to another’s (a server host’s) file system. The server host responds by

exporting a directory of the server host’s file system; the client host imports this information and

arranges its own file system so the imported directory (called the server host’ s mount point)

appears as a directory in the client host’s file system (this directory is called the client host’ s

mount point).
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Such a situation has many potential security problems, and we present the derivation of log-

ging criteria and audit criteria for detecting several security problems. We then validate our analy-

sis by showing that use of these criteria allows the auditor to detect several well-known

exploitations of these problems. This section discusses criteria for the servers only; the derivation

for clients is similar.

The site involved in the analysis is connected to the Internet. It runs a local-area network with

several UNIX [16] systems and shares file systems using the Network File System [20]. We next

present a quick overview of this protocol. Then comes a discussion of policy, from which the log-

ging and auditing criteria are derived. This section concludes by looking at several attacks from a

widely-distributed NFS security analysis tool.

5.1. The NFS Protocol

When a client host wishes to mount a server’s file system, its kernel contacts the server host’s

MOUNT server with the request. The MOUNT server first checks that the client is authorized to

mount the requested file system, and how. If the client is authorized to mount the file system, the

MOUNT server returns a file handle naming the mount point of the server’s file system. The client

kernel then creates an entry in its file system corresponding to the server’s mount point. In addi-

tion, either the client host or the server host may restrict the type of accesses to the networked file

system. If the server host sets the restrictions, the programs on the server host which implement

NFS will enforce the restrictions. If the client host sets the restrictions, the client kernel will

enforce the restrictions, and the server programs will be unaware that any restrictions are set.

The UNIX system represents process identity by a user identification number (UID) and a

group identification number (GID). For this example, we assume the protocol underlying NFS

transports this information to the NFS server program on the server host.3

When a client process wishes to access a file, it attempts to open the file as though the file

were on a local file system. When the client kernel reaches the client host’s mount point in the

path, the client kernel sends the file handle of the server host’s mount point (which it obtained dur-

ing the mount) to resolve the next component (name) of the path to the server host’s NFS server

using a LOOKUP request. If the resolution succeeds, this server returns the requested file handle.

The client kernel then requests attributes of the component (a GETATTR request); the NFS server

3. This is the AUTH_SYS authentication mechanism of the RPC protocol [21].
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supplies them. If the file is a directory, the client kernel iterates (passing the directory’s file handle

and the next component of the path in a LOOKUP request, and using the obtained file handle to

get the attributes in a GETATTR request) until it obtains a file handle corresponding to the desired

file object. The kernel returns control to the calling process, which can then manipulate the file by

name or descriptor; the kernel translates these manipulations into NFS requests that are sent to the

server host’s NFS server.

As NFS is a stateless protocol, the NFS servers do not keep track of which files are in use. The

file handle is a capability; possession of that handle allows the possessor to manipulate the corre-

sponding file. Further, many versions of NFS require the kernel to present the requests4, while

some accept requests from any user. In all cases, the server programs can identify the user making

the request by examining the contents of the underlying RPC messages.

Strictly speaking, the MOUNT protocol is not part of the NFS protocol, but as it is central to

the NFS implementation’s functioning, it must be included in the analysis. This raises a homoge-

neity issue: MOUNT is part of the audit criteria for the NFS protocol, of which it is not a part. The

ability to include different systems (MOUNT and NFS) and have the requirements for logging

and auditing specify the interface is one of the strengths of this goal-oriented approach.

5.2. The Site NFS Policy

The goal of the example site policy is to regulate sharing of file systems among all systems on

its local area network (with individual restrictions enforced through the NFS mechanism). All

imported file systems are supposed to be as secure as the local file systems. Thus, we have the fol-

lowing security policy for the servers:

(P1) NFS servers will respond only to authorized clients.

The site authorizes only local hosts to act as clients. Under this policy, the site admin-

istrators could allow hosts not on the LAN to become clients, and so the policy could be

less restrictive than the above statement suggests.

(P2) The UNIX access controls regulate access to the server’s exported file system.

Once a client has imported a server host’s file system, the client host’s processes may

access that file system as if it were local. In particular, accessing a file requires search per-

4. Validation is from the originating port number; the NFS implementations assume that only the superuser
(operator) can send requests from ports numbered under 1024.
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mission on all the ancestor directories (both local and imported).

An important ramification is the effect of the UNIX policy on file type. Only the local

superuser can create device (block and character special) files locally, so users should not

be able to create device files on any imported file system (or change an existing file’s

attributes to make it a device file). However, this policy does not restrict a client host from

importing a file system that has device files.

(P3) No client host can access a non-exported file system.

This means that exporting a file system allows clients access files at or below the

server host’s mount point. Exporting a file system does not mean a client host can access

any file on the server host; the client can access only exported files.

These policies produce several constraints:

(C1) file access granted ⇒  client is authorized to import file system, user can search all parent 

directories and can access file as requested, and file is descendant of server host’s file system 

mount point.

(C2) device file created or file type changed to device ⇒  user is superuser (UID of 0)

These follow immediately from (P1), (P2), and (P3).

(C3) possession of a file handle ⇒  file handle issued to that user

As the MOUNT and NFS server processes issue file handles when a user successfully

accesses a file, possession of a file handle implies that user could access the file. If another

user acquires the file handle without accessing either server, that user might access files

without authorization.

(C4) operation succeeds ⇒  a similar operation local to the client would also succeed

This follows from (P2). For example, as an ordinary user cannot mount a file system

locally, the MOUNT operation should fail if the requesting user is not a superuser.

From the claim in section 3, a transition from a secure to a non-secure state can occur only

when an NFS-related command is issued. Table 1 lists the NFS commands that a client may issue.

One set takes no arguments and performs no actions; these do not affect the security state of the

system. A second set takes file handles as arguments (as well as other arguments), and returns data

(including status information). The third set also takes file handles as arguments, and returns file

handles as results.

Those operations which take file handles as arguments require that the auditor validate con-
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straint (C3); hence, when a server issues a file handle, the file handle, the user to whom it is

issued, and the client to which it is sent must be recorded:

(L1) When a file handle is issued, the server must record the file handle, the user (UID and GID) 

to whom it is issued, and the client host making the request.

The semantics of the UNIX file system say that access using a path name requires that the user

be able to search each directory. However, once a file is opened, access to the file requires the file

descriptor, and is not affected by the search permissions of parent directories. From the operation

arguments, file handles seem to refer to open objects; for example, SYMLINK creates a symbolic

link, which is effectively a write to a directory object; the argument to SYMLINK is the direc-

tory’s handle. Hence, file handles resemble descriptors more than path names, so the auditor need

not verify access permission whenever a user supplies a file handle5. The only issue is whether the

5. The next subsection discusses the alternate approach.

request arguments action
No arguments
NULL none no action
WRITECACHE none unused
Returns non-file handle
GETATTR fh get attributes of the file
SETATTR fh, attrib set attributes of the file
READ fh, off, ct get ct bytes at position off from file
WRITE fh, off, ct, data write ct bytes of data at position off to file
REMOVE dh, fn delete named file in directory
RENAME dh1, dh2, fn1, fn2 rename file
LINK fh, dh, fn create link named fn for file in directory
SYMLINK dh, fn1, fn2, attrib create slink named fn1 for fn2 in directory
READLINK fh get file name that symbolic link refers to
RMDIR dh, fn delete named directory in directory
READDIR dh, off, ct read ct bytes at position off from directory
STATFS dh get file system information
Returns file handle
ROOT none get root file handle (obsolete)
CREATE dh, fn, attrib create file fn in directory with attributes
MKDIR dh, fn, attrib create directory fn in directory with attributes
LOOKUP dh, fn get file handle of named file in directory

Table 1. NFS operations. In the above, fh is “file handle”, “fn” is “file name”, dh is “directory han-
dle” (effectively, a file handle), “attrib” are file attributes, off is “offset” (which need not be a byte 
count; it is positioning information), ct is “count”, “link” is “direct alias”, and “slink” is “indirect 
alias”.
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server issued the file handle to the user performing the operation:

(L2) When a file handle is supplied as an argument, the server must record the file handle and the 

user (UID and GID).

A file handle allows its possessor to access the file to which the handle refers. Any operation

which generates a file handle must record the user and relevant permissions for the object in ques-

tion. For example, on a LOOKUP, recording the search permissions of the containing directory

enable the auditor to determine if the user should have had access to the named file. On a CRE-

ATE, recording the write permissions of the containing directory indicate whether the use could

legitimately write to the containing directory.

(L3) When a file handle is issued, the server must record the relevant attributes of any containing 

object.

Finally, whether the operation succeeds or fails, the system must record the operation’s status

so the auditor can verify the result:

(L4) Record the results of each operation.

As each operation performs a different function, we derive the audit criteria of each operation

separately.

MOUNT. On a MOUNT operation, constraints (C1) and (C4) requires the audit criteria:

(A1) Check that the MOUNT server denies all requests by unauthorized client hosts or users to 

import a file system that the server host exports.

(“Unauthorized users” refers specifically to those users who could not perform the operation

locally.) This means the MOUNT server must record (L1) and (L4)

LOOKUP.  On a LOOKUP operation, constraints (C1) and (C3) give the audit criteria:

(A2) Check that the file handle comes from a client host and a user to which it was issued.

(A3) Check that the directory has the file system mount point as an ancestor and that the user has 

search permission on the directory.

Note that the check for the client being authorized to import the file system (in (C1)) is implicit in

(A2), as if the client host is not authorized to import the file system, the client host will not obtain

the file handle for the server host’s mount point. Performing this audit requires logging (L2), (L3)

(the relevant attributes being owner, group, type, and permission), and (L4). Audit criterion (A3)

requires recording the name of the file being looked up; from this and the file handle, the auditor
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can reconstruct the ancestors of the file.

(L5) Record the name of the file argument in the LOOKUP operation.

GETATTR.  Constraint (C3) gives the audit requirement that the file handle is indeed legitimate,

i.e. (A2), and whether the operation succeeds (L4). The logging requirement is the data for this

check, i.e., (L2).

SETATTR.  Constraint (C3) gives the audit requirement that the file handle is indeed legitimate,

i.e. (A2). Constraint (C2) requires the (new) type of the file not be “device”:

(A4) Check that the new type of the file is not “device,” or that the user is the superuser.

Constraint (C4) requires the requester be either the owner or the superuser:

(A5) Check that the operation fails if the user is neither the superuser nor the owner of the file.

The logging requirement is the data for (A2), namely (L2); whether it succeeded (L4); and

(L6) Record the type and owner of the file both before and after the command is executed.

READ.  Constraint (C3) requires checking that the file handle is legitimate (A2). Hence the sys-

tem must log the information in (L2), and whether the operation succeeds (L4).

READLINK.  As this is effectively a READ operation, the requirements are the same as for

READ.

WRITE.  This is analogous to the READ request.

CREATE.  The requestor must have write access on the containing directory; the NFS server

assumes the requester has that access. As the create operation is like a write to a directory, the log-

ging and auditing requirements are simple modifications of those of the WRITE request. Thus

from constraint (C3), logging requirement (L2) and audit requirement (A2) apply; from constraint

(C4), logging requirement (L3) also applies; the result of the operation (L4) indicates whether the

constraints were obeyed. Validating the constraints hold also requires:

(A6) Check that the UID and GID of the client process and the owner, group, type, and permis-

sion attributes of the directory give the client permission to create the file, and that the result 

conforms to this determination.

REMOVE.  The requestor must have write access on the containing directory and may have to

meet other constraints6 (which this analysis ignores). As the remove operation is like a write to a

6. On many versions of the UNIX operating system, the requestor must own the file being deleted.
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directory, the logging and auditing requirements are analogous to the CREATE request, except

that the auditing checks the remove right.

RENAME.  As the rename operation is like a remove and a create operation, the logging and

auditing requirements are those of the REMOVE request for the directory containing the file, and

those of the CREATE request for the directory which will create the file. This observation does

not imply any ordering of the CREATE and REMOVE operations.

LINK.  As the link operation is like creating a file in a directory, the logging and auditing require-

ments are those of the CREATE request for the directory which will create the file.

SYMLINK.  The requestor must have write access on the containing directory; the NFS server

assumes the requester has that access. As the SYMLINK request is like a CREATE, the logging

and auditing requirements are those of the CREATE request.

MKDIR.  This is analogous to the CREATE request, except it creates a directory.

RMDIR.  This is analogous to the RMDIR request, except it deletes a directory.

READDIR.  This is analogous to the READ request, except it reads from a directory file.

STATFS.  This is analogous to the GETATTR request, except it returns file system attributes.

Table 1 summarizes the above requirements for logging and auditing. 

5.3. Discussion

If we took the alternate approach (requiring access checking when a file handle is presented),

we would augment the audit and logging criteria to check that the owner, group, and protection

modes of the objects involved allowed the operation. For example, the READ request would

require the following additional audit criterion to ensure compliance with (C4):

(A7) Check whether the UID and GID of the client process and the logged attributes of the file 

give the client permission to read the file, and that the result conforms to this.

This requires logging the information in (L3) as well. Such an approach would treat file handles as

file names, and attempt to enforce the Principle of Complete Mediation (stating that the system

must validate every access to every object) [17] more precisely than the above model.

We now present several well-known attacks on NFS and show that meeting the above require-

ments allows an auditor to detect those attacks.
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5.4. Attacking NFS

This section discusses several attacks exploiting security flaws in some implementations of

NFS [10]. Assuming the system implements logging and auditing as outlined above, an auditor

can detect all of these attacks. As above, this analysis assumes that the underlying network pro-

vides authenticity, confidentiality, and availability sufficient to allow logging and auditing mecha-

nisms to meet those requirements.

Unauthorized host mounts file system.  Although NFS implementations provide an access con-

trol mechanism, use of this mechanism is optional, and many implementations have bugs.7 When

the MOUNT server receives a MOUNT request, it logs the client host (see (L1)). Then if the

MOUNT request succeeded, (A1) instructs the auditor to check that the client host was authorized

to mount the file system, and if the MOUNT request failed, (A1) instructs the auditor to check that

the client host was not authorized to mount the file system. In either case, the auditor will detect

7. For example, one vendor supplied a version that required system administrators to list authorized hosts by
name. If the list was more than 256 characters long, the implementation simply turned off access control and
allowed any host to mount the file system.

request logging auditing
MOUNT (L1), (L4) (A1)
GETATTR (L2), (L4) (A2)
SETATTR (L2), (L4), (L6) (A2), (A4), (A5)
READ (L2), (L4) (A2)
WRITE (L2), (L4) (A2)
REMOVE (L2), (L3), (L4) (A2), (A6) [“delete permission”]
RENAME (L2), (L3), (L4) (A2), (A6) [“create permission” on 

destination directory, “delete” on 
source directory]

LINK (L2), (L3), (L4) (A2), (A6) [“create permission”]
SYMLINK (L2), (L3), (L4) (A2), (A6) [“create permission”]
LOOKUP (L2), (L3), (L4), (L6) (A2), (A3)
READLINK (L2), (L4) (A2)
RMDIR (L2), (L3), (L4) (A2), (A6) [“delete permission”]
READDIR (L2), (L3), (L4) (A2), (A6) [“delete permission”]
STATFS (L2), (L4) (A2)
CREATE (L2), (L3), (L4) (A2), (A6) [“create permission”]
MKDIR (L2), (L3), (L4) (A2), (A6) [“create permission”]

Table 2. Summary of logging and auditing requirements for NFS. The rights in brackets are the 
rights that the auditor checks when validating auditing requirements.
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attempts by an unauthorized host to mount the file system.

Mounting through the portmapper.  The second attack relies on an error in the configuration of

the access control list. If the access control list includes the server host, a client host can request

that the portmapper service on the server host act as a proxy to the server host’s MOUNT server.

The client host then relays mount requests to the mount server through the portmapper, which will

then forward all requests as though they came from the server host to the mount server. This gives

the client host the same mount rights that the server has over that file system,8 and as the NFS

server is stateless, it cannot invalidate the use of handles obtained in this way. Again, (L1) states

that the MOUNT logs will show the server host requesting the mounting of the server’s exported

file system, and (A1) instructs the auditor to check that the requesting host (server host) is autho-

rized to mount the file system. As the server host should never be so authorized, this detects the

second attack.

Guessing file handles.  The third attack is the simplest in concept but the most complex in execu-

tion. As file handles are capabilities, if an attacker can guess (or copy) a file handle, that attacker

can access files without mounting the server host’s exported file system. As the server’s MOUNT

and NFS servers may enforce some file system attributes (such as read-only), this allows the

attacker to bypass file system controls; as the file handle is a capability, the attacker can use that

handle to perform unauthorized actions such as deleting system files. The MOUNT server or the

NFS server will send out all file handles obtained in response to the MOUNT, LOOKUP, CRE-

ATE, and MKDIR requests. The system must record all such file handles (L1). On any request

using a file handle, the system must also record that file handle (L2). Then by correlating these

logs, (A2) allows the auditor to detect guessed file handles, and hence this attack. 

Change to parent directory not in exported file system. The fourth attack exploits a bug in an

early implementation of NFS. Under certain conditions9 an attacker can set the process’ current

working directory to the server host’s mount point of an exported file system, and change to the

parent directory, thereby obtaining a file handle of an unexported directory. Given this handle, the

attacker can roam through all subordinate directories whether or not they are exported. The

LOOKUP and MOUNT commands generate file handles for existing files and directories, and the

8. If the access control list does not name the server, the local host cannot mount the file system using NFS. It
can mount it using local mounting procedures. The local server should never be in the access control list.

9. Specifically, that the exported file system’s root directory is not the root directory of the physical file system.



Submitted to ACM Transactions on Computing Systems Page 22 of 24

MOUNT command can do so only for specific directories (the mount points of the exported file

systems). Logging requirements and (L5) for the LOOKUP request require logging the directories

and files accessed; auditing requirement (A3) requires an auditor check that the file name refer to

a file or directory in the exported file system. These requirements will enable an auditor to detect

the fourth attack.

Creating a device. The fifth attack exploits a feature allowing the creator of a file to create any

type of file, including a device file. This allows an attacker to gain access to, and alter, the client

system’s privileged memory. The attacker simply requests that the NFS server create a device cor-

responding to kernel memory. By logging the type of file created, and by checking that none are

device files, requirements (L3) and (A6) enable the auditor to detect such an attack.

UID truncation to 0.  Finally, many NFS implementations support 32-bit UIDs, but many UNIX

systems support only 16-bit UIDs. The client will pass a 32-bit value to the server, which checks

for UID 0; if the UID is not 0, the UID is passed to the kernel. As the kernel treats UIDs as 16 bits,

the upper 16 bits are discarded. In short, only the low-order 16 bits of the UID matter. The

attacker generates a UID that is a multiple of 216, and the kernel will allow access to system files

(as UID 0 has no access restrictions). As all file operations log the UID ((L1), (L2), (L3)) and have

audit requirements to check that the UID is authorized to manipulate or access the file, the auditor

need only check that access is properly denied. If access is not properly denied, or if the kernel

audits file accesses, the mapping of a non-root UID to the root UID will be obvious.

6. Conclusion

This paper presented a methodology to design a logging mechanism as a “stepwise refine-

ment” of the goals of the auditing, and demonstrated its effectiveness by analyzing a protocol

against which several attacks are known; the system built using this methodology detects these

attacks.

The Turing machine model leads to an interesting result with respect to intrusion analysis.

Intrusion analysis is the art of analyzing an attacked system to determine what sequence of actions

put the system into a vulnerable state, and what steps occurred once the system was in such a

state. Because the range of sigma is a state, and the domain a pair with a state and a symbol, the

state transitions are invertible only if there is a single symbol; otherwise, the function is not injec-
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tive and hence at least some elements of the range have multiple corresponding elements of the

domain. So, for realistic systems, such reconstruction will never have entropy 0 unless the log

contains enough information to derive prior states. In that case, the analyst must work from the

logs and not by reconstructing actions directly from the system.

The significance of this paper lies in its unique approach to the audit problem. In the past,

scant attention has been paid to the mechanics of developing a theory of how to determine what

should be logged; the focus has instead been on the mechanisms. Future research topics in this

area include the types of security violations that auditors in the commercial and government world

look for, since that will lead to logging and auditing mechanisms that are useful in practice. The

issues discussed also suggest applying planning technology to this problem; that is another topic

for future research.
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