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Abstract

Most automated packages for intrusion detection focus

on determining if a collection of audit data is suspicious.

Package developers assume that the System Security Officer

(SSO) will combine the results of their tools with a careful

inspection of the logs to determine if indeed there is

evidence of intrusive activity. In practice, most

administrators rely exclusively on the conclusions generated

by such packages. As a result, very few methods have been

developed to browse the raw audit trails. This thesis

presents a new approach to this problem.

By treating conceptual entities in an audit trail as

objects, a framework for observing how entities interact can

be developed. All of the records of interest are first

scanned to determine the objects and actions of interest.

During this initial scanning phase, the objects are

interconnected based on how each affects the other, much

like a directed graph. The vertices and edges represent the

objects and actions respectively. Then, by focusing

initially on one object of interest, a SSO can quickly

determine how that object affected or was affected by any

other object by noting the direction and type of edge

connecting the nodes. Say, for example, a process with

limited privilege was able to create a new process with

unlimited privileges by executing one action. The two

ii



processes are be represented by the vertices, and the action

of gaining privilege could be represented by a directed edge

from the first process to the second. Thus by focusing on

these new objects, the SSO can then determine how other

nodes were directly or indirectly affected by the first

object simply by following the next set of edges.

An initial prototype program was produced and focused

on the UNIX operating system model, and was fairly

successful in following entities in the audit trail. Later

efforts tried to extrapolate the model to more general

computational systems.

Of course, the SSO must still possess technical

knowledge of any system to fully analyze the data and

realize the implications of the actions therein: there is

no substitute for such expertise. This thesis presents a

new methodology for browsing such data.
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1 Introduction

Ever since man began to engage in trade, he has looked

for ways to keep records of his transactions. With the

advent of modern computing machinery, there has been an

increase in the number of transactions by several orders of

magnitude because of the relative ease in which those

transactions can be conducted. Due to computing’s high

cost, accounting mechanisms were placed on systems to track

resources used. Users could be held accountable for

actions, and billed accordingly. As the data being

processed became more sensitive and expensive, the need for

security became critical. Unfortunately, many early systems

tried to apply techniques from the accounting analysis

domain into security. Experience shows that many of these

techniques are not easily adaptable [Picc87].

Computer security issues have become extremely

important in many organizations. Virtually every day we

witness news stories of an invaded government machine, a

person who was harassed because of certain information

maintained in a computer, or in which some company’s

accounting data was destroyed by a malicious program. With

our increasing dependence on computers, the inter-networking

of systems, and the increasing technological base of

expertise, the need for security has never been greater.
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Computer security can take forms from preventive to

post-mortem. Access control mechanisms, such as passwords

and file permissions, restrict users from making illegal

accesses to system resources, and are routinely placed on

systems. However, as history shows, every major system has

flaws. Even a supposedly secure system can be invaded by an

unauthorized person masquerading as a legitimate user, or by

a legitimate user abusing his privileges. In addition, one

cannot ignore programmatic flaws in the implementation of

the system.

Accepting the premise that systems are not necessarily

secure, we immediately see the need for documenting user

actions. Auditing systems are one of the many tools

available for post-mortem analysis. There are many problems

with current models of auditing, largely due to the huge

number of records recorded. (Other problems will be

highlighted in later chapters.) Analysis of audit data has

traditionally been done by hand; the work is tedious and

highly error prone. The auditor must be highly trained in

security issues, and know where to look. For most

situations, a thorough analysis is impossible. Several

automated audit analysis systems have been prototyped, but

many administrators feel that the "best way" to analyze

audit data has yet to emerge. Today’s approaches still

require extensive human interaction.
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Most modern Intrusion Detection Systems (IDS) use audit

data as the primary source of information. IDSs are based

on two premises: users tend to repeat their behavior over

time, and intruders have distinct methods of operation,

generally using distinct sequences of events in order to

penetrate a machine. Most IDSs research has been focused

either on defining normal use (anomaly detection), or on

developing rules that indicate intrusive behavior (misuse

detection). Methodologies for examining audit data have

been underdeveloped in lieu of developing IDSs.

In this thesis, I begin by presenting an overview of

auditing for security purposes: theory, definitions, and

some current issues. Next I discuss some of the previous

work in automated audit systems, followed by an introduction

to a project underway at the University of California at

Davis called the Audit Workbench. This section is followed

by some research into models for a generalized audit trail

browser, which may eventually be incorporated into the Audit

Workbench. Finally we explore the use of a debugging

technique called slicing which naturally lends itself to

audit trail browsing.

Although the debugging technique didn’t work well in

practice, the other results of this research were very

encouraging. Following the construction of a prototype

audit browser, I was able to trace through a series of

simulated attacks with little difficulty. This work led to
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a more general idea for a browser, which is presented as a

proposal. After these initial experiences, the construction

of an audit browser would be very straightforward, and could

make the SSO’s job of browsing audit trails much easier.
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2 Background

[Webs86] defines an audit as a formal examination of an

organization’s or individual’s accounts or financial

situation. Auditing is currently used as a tool for several

purposes as listed in [Bish89]:

to restore file systems and databases to known states

after crashes,

for security purposes, such as documenting intrusions,

assessing damage or information disclosed,

for electronic funds transfer systems used in banking,

and for other types of data processing.

In this research we focus primarily on auditing for security

purposes. We can modify Webster’s definition of audit to be

"a formal examination of records to analyze and document

action within a computer system."

In the 1980’s, the United States Department of Defense

published a series of computer security guidelines known as

the "Rainbow" series. In particular, [NCSC85] (or the

"Orange Book"), and [NCSC88] (or the "Tan Book") describe a

set of guidelines to which computer systems must adhere to

in order to be rated at a certain level of security. In

sections relating to accountability, the specifications are

clear. Computer systems must document all security related

incidents, and keep those records available for later



6

review. The product of such record-keeping is called an

"audit trail," and is "a set of records that collectively

provide documentary evidence of processing used to aid in

tracing from original transactions forward to related

records and reports, and/or backwards from records and

reports to their component source transactions" [NCSC85,

NCSC88].

Most auditing systems follow the model of subjects,

objects, and actions, as highlighted in [Denn86]. Subjects

are generally the users of a system (but could be the

systems themselves), those entities which initiate actions

upon one or more objects. Objects are entities such as

files, processes, or devices, and are managed by the system.

Actions are the events which change the model state between

the subjects and objects. Examples include file actions,

process controls, or machine parameter modifications.

2.1 Steps in Audit Trail Analysis

When we refer to the entire process of auditing,

several distinct events are required:

1) determine which types of audit data to collect,

2) collect that information,

3) reduce the information to a manageable size by

eliminating useless information,

4) analyze the reduced data,
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5) notify the proper authorities of the results, and

6) take appropriate actions (see Figure 1).

[Bish89] makes the distinction between logging and

auditing. Logging is the process of creating the records,

while auditing is the actual review. In the above list of

events, logging consists of steps 1 and 2, while the

remaining steps make up the auditing stage. I will follow

his suggestions, and also use the term "auditing systems"

for systems that perform the combined action.

Most current research has focused on steps 4 and 5.

Audit
Daemon data

data 
reduction analyze

Hel p! ! !

Figure 1 Steps in Audit Analysis.

Most IDSs attempt to automatically reduce the audit data

which the SSO must inspect. They scan for "interesting"

events, patterns of events, and behavior out of the

ordinary, and then they summarize the findings.

We also should make the distinction between "passive"

and "active" auditing [Bony81]. Passive auditing assumes

that the logs will be available for inspection, but does not

assume that any such analysis will take place unless there

is reason. Active auditing differs by attempting to

determine if the audit log contains suspicious events as
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near in time to the actual occurrence as possible. If such

events exist, the audit program or the SSO can take

immediate action. Options include modifying the level of

auditing on a user or file, removing a user from the system,

in extreme cases shutting down the system, etc.

2.2 Purposes of Auditing

According to [NCSC88], the purposes of the audit

mechanism are fivefold, viz. they must:

1) allow the review of patterns of accesses to

objects, provide on demand the access histories of

specific processes and individuals, and allow the

use of the various protection mechanisms supported

by the system [Glig85],

2) allow discovery of both user’s and outsider’s

repeated attempts to bypass the protection

mechanisms,

3) allow discovery of use of privileges that may

occur when a user assumes a functionality with

privileges greater than his own,

4) act as a deterrent against perpetrators’ habitual

attempts to bypass the system protection

mechanisms, and
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5) supply an additional form of user assurance that

attempts to bypass the protection mechanisms are

recorded and discovered [Glig85].

Unfortunately, a large gap has developed between the

original design goals and the resulting implementations.

The first goal has been the most underdeveloped. The

auditing systems do allow for logging the activities;

however, better tools for analyzing the data need to be

developed. Security personnel have continually voiced the

need for audit browsers, tools which provide easy

observation of all events and their interconnections.

Logging mechanisms generate single records as events occur,

with no attempt made to link related records.

System vendors such as Sun Microsystems have stated

their job is only to provide the mechanisms for producing

audit trails [Wetm92a]. (However, new initiatives taken by

Sun may reverse this trend. Increasingly, management has

begun to see the advantages to providing additional tools to

help in the system administrator’s role.) But for now,

further analysis remains the responsibility of the customer.

Research institutions seem primarily interested in

developing the very general models of security.

Unfortunately, most development efforts have focused on

other areas such as intrusion and anomaly detection, and

very little on methodologies for inspecting auditing trails.
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Until better mechanisms for browsing and intrusion

detection are developed, the fourth and fifth goals will not

be accomplished. Most sites do not examine their logs, and

of those who do, many only scan for the most suspicious

users based on a specified criterion. If malicious users

know what sequences of actions will generate warnings, they

can alter their mode of operation and still obtain their

desired goal.

An additional question to consider is the

interrelationship between the auditing communities and those

they seek to hinder. Hackers will not heed the deterrent of

an auditing system, given the combined lack of audit

inspections and applicable legislation. This is the so-

called social gap between social policies and actual human

behavior [Neum88]. Prosecution is expensive, and usually

undertaken only in extreme circumstances. In addition,

previous laws were not conceived to cover the types of

computing currently in use. Until stricter and more precise

laws are enacted regarding computer usage, and unless there

is a belief on the existence of an effective auditing

mechanism and a significant risk of getting caught,

intruders will continue to operate in relative freedom.

2.3 Auditing for Intrusions
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The first published work on intrusion detection tried

to establish different classes of threats, and how they

might be detected using audit data [Ande80]. Table 1

summarizes this work:

Penetrator Not

Authorized to Use

Data/Program

Resource

Penetrator

Authorized to Use

Data/Program

Resource

Penetrator Not

Authorized Use of

Computer

Case A:

External

Penetration

none

Penetrator

Authorized Use of

Computer

Case B:

Internal

Penetration

Case C:

Misfeasance

Table 1 Defining Intrusions.

External penetrators are those users not authorized to

use a computer system. There are many ways by which this

type of user can gain access: wiretaps (monitoring a

network to learn login/password combinations), trial and

error password guessing, or obtaining a valid user’s

password by various means. Accepting that wiretaps and

events outside the computer’s realm are not generally

auditable, trial and error attacks can be detected by an
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abnormal amount of unauthorized activity, in the form of

repeated failed login attempts.

Internal penetration is generally more frequent than

external penetration, according to [Ande80]. The three

types of users in this class are the masquerader, the

legitimate user, the clandestine user.

The masquerader is a user who impersonates another

user. The problem with detecting a masquerader is that

there are no particular features which can provide

conclusive evidence of masquerading. Once identified to a

system, all actions are performed on behalf of that user.

Anderson suggested that the masquerader be detected by

developing models of what behavior is "normal" for a user,

and compare previous histories with current observations.

Of course this requires a definition of what is "normal,"

something the intrusion detection community has been

attempting to define in the ensuing years since Anderson’s

report.

The legitimate user is one who has access to the

computer and the data but abuses his privileges. This makes

the "abnormal" use by a legitimate user harder to detect

than that of a masquerader. Again Anderson suggests that a

comparison of historical patterns be used to look for

abnormal use. Anderson stated that in some instances, some

misuse simply cannot be caught. A statistical method is

probably not feasible.
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A clandestine user is one that can change the level of

auditing such that he may operate without leaving a trace.

The clandestine user is the most difficult to detect.

Anderson suggests that in cases where the probability of a

clandestine user is high, one should add additional levels

of auditing, including monitoring CPU and memory usage,

secondary storage and so on. Another suggestion is to look

for changes in the Operating System files, perhaps with a

static analysis tool such as COPS [Farm91] or Lawrence

Livermore’s Security Profile Inspector [Bart92]. Such users

have been known to modify system files and programs such as

"login" to allow use of a system without detection.

2.4 Audit Trail Formats

Audit trails have been implemented in a variety of

ways. Two major styles are in use, delineated by the type

of information contained in each record. The self-contained

style, used in the Sun Microsystems’ Basic Security Module

(BSM) [SUN91] requires that each record list all the

"interesting" properties of all subjects and objects

involved. For example, a file access record may contain the

file number, the filename, the actual and effective user

name, the group name, the time, the attributes of the file,

any return codes, and so on. This method is quite useful

when browsing the audit trails manually. The more the
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amount of data contained in the audit trails, the less is

the information the audit analysis package has to remember,

thereby meaning that less complex programs are required for

audit analysis. However, this method generates a large

amount of data, namely because the information contained in

repeated references to this file will be repeated in each

audit record. Fortunately, standard compression utilities

can offset this bulk. [Sibe88] predicts up t o a 8 to 1

compression ratio for highly repetitious data. The tradeoff

is classic: ease-of-use versus resource space.

The non-self- contained audit records employed by AT&T

follows the opposite path [Dowe90]. By recording only the

minimal amount of state change information, a smaller audit

trail results. In the example above, a file access record

might only contain the time, effective user name, an

abbreviated filename, and return codes. All other

information, such as the actual user name and file

attributes must be obtained from other records in the audit

trail or from system tables. If the effective user name and

the actual user name were different, an auditor would have

to look backwards in the audit trail to find the record

containing the user name switch. This requires a good audit

browser or a lot of patience, two things missing in current

analysis systems!
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Since UC Davis uses the Sun BSM package for its

Distributed Intrusion Detection System [Snap91a], most of

the discussion that follows will be Sun-based.

2.5 Methods of Data Collection

My experience is in software based auditing systems

only, but it would not be too difficult to develop hardware

based packages as well. These systems could record system

performance, I/O usage, external devices, and so on. These

packages could be logically disconnected from the systems

being monitored, so that even if the monitored machine were

compromised, the disjoint system would also have to be

compromised in order for the audit data to be modified.

Most software audit packages operate upon entry to

system calls, although there are other places where auditing

may be performed. For example, in 4.2 BSD, when any system

call occurs, control is given to a function called

syscall(). syscall() is responsible for determining which

function should be used to handle the request, and then it

builds the interface between the user and system space. If

auditing is enabled, an audit record is created. Control is

then transferred to the kernel, which then completes the

system call. When control returns, syscall() notes the

return values if any; then it updates and writes the audit

record before exiting [Picc87].
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There are two major models for auditing, viz.

application level and kernel level, and each has different

properties. Application level auditing can drastically

reduce the volume of audit data and make it easier to

comprehend a user’s intentions. (This is because the actual

intent of the action is captured in the data, rather than a

series of lower level events which make up the action. A

SSO is not required to deduce from the increased number of

events what the actual intent was.) For example, if a user

employed an editor to modify a file, a system call level

auditor would report all the temporary and system files

accessed, all the supporting processes that were invoked,

etc. This extra data only obfuscates the user’s intentions

[Picc87]. An application level auditor need only report

that an editor was used to modify a specific file, and

perhaps the actual data that was modified. However, this

requires that the application program be trusted to properly

report actions, which opens up the possibility of many

vulnerabilities not being reported. This also requires that

the application program provide its own auditing subsystem,

which can drastically increase program complexity and impact

performance.

The other place where auditing may occur is at the

kernel level. Sometimes it is necessary for auditing to be

performed at this level: namely, when system calls don’t

return (as with reboot()), or in cases where calls cannot be
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audited after returning (modifying the audit state).

Auditing at this level is perhaps the most trustworthy, as

normal user programs should not be allowed to change kernel

code.

There are advantages to having auditing done at various

levels at the same time, but there are limitations as well.

Auditing code must be placed throughout the system:

potentially in the kernel, application, and system call

interface. Additionally, two or more audit records may be

written for a single event. This could make the auditor’s

job more difficult in that he has to correlate the two event

records as being the same event.

2.6 Determining What to Audit

When a user logs into a computer system, an audit state

is established for that user. This state is used by the

logging system to decide which events to write into the log.

Depending on the resources available and the interests of

the SSO, this state may be all encompassing or very minimal

and can dynamically change as required. ([NCSC88] calls

this "pre-selection of auditable events.") Depending on the

needs of the SSO and the resources available, the logging

system may record successful and/or failed accesses to

objects. The SSO can set this state by a series of software

switches, generally based on the type of auditing required.
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[Picc87] has estimated that a Compartmented Mode Workstation

(CMW) can generate up to 135 megabytes/user/day. Obviously,

unless significant system resources are available, logging

must be performed selectively.

In BSM auditing, a series of steps determine the audit

Global State

+ / -
Audit State 

for Fred
User Fred's

State Modifications

Figure 2 Establishing a User State.

state for a user. In Figure 2, a global default state is

set by the SSO, and flags are then modified on a per-user

basis to arrive at a user’s audit state. This state is then

used by the application program. When an event occurs which

is auditable, the program then compares the audit state of

the user with the type of audit record: if there is a match

as in Figure 3, the audit daemon will be instructed to

output the record to a file, otherwise the daemon will wait

for the next event.

The advantages of performing data reduction at run time

is that only records which interest the SSO are kept, and

the number of audit records is reduced. However, the SSO

may decide at a later time that the records which were not
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collected are now needed. If the records were not

joe
greg
peter
.
.
.

All Auditable
Events

Output
Audit Record

event type 
== user state ?

Y

User Audit
States

Figure 3 Actions of the Audit Daemon.

generated, that data is irretrievable. The SSO must decide

where to balance the tradeoff.

2.7 Examples of Sun BSM Audit Data

As previously mentioned, the Sun BSM audit trails are self-

contained. Each record consists of several tokens, either

control, data, or modifier, bracketed between a header and a

trailer token. Each audit record is the result of an

action, and as such its type is defined by the action. Each

audit record type has a defined series of subtokens. Each

subtoken may either be another or series of subtokens, or a

series of bytes.
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There are a variety of token types. The more common

ones are shown below:

header token: provides information about the
event type, date and
time,

trailer token: delineates the audit record,

path token: contains information about the
path used to access the
object,

attribute token: contains attributes of the
object accessed, e.g.,
types and device numbers,

process token: contains information about the
process which accessed
the object,

argument token: contains the arguments to the
action, and

return token: contains any return values
which were returned to
the calling program.

Sun stores the audit data in a binary format, with

items such as user names, token types, and times in their

respective integer notation. This conserves space, but it

is impossible for a human to interpret. To achieve this

purpose, Sun provides a tool called praudit to translate the

raw data into a human-readable form.

The following will help to illustrate the format of the

BSM audit trail, and to demonstrate praudit. In the first

example, user frincke was running process 624, and created

(forked) a new process 1352.

Ex. 1) header,53,fork(2): process creation,
Tue Sep 29 15:34:27 1992, + 170000 msec

argument,0,1352,child PID
process,frincke,frincke,frincke,staff,624
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return,Error 0,1352
trailer,53

As mentioned, the entire audit record consists of several

tokens, delineated by a header and a trailer. The fields in

each token are as follows:

.header token: size in bytes of the binary
audit record,

record type, and
time and date of access.

argument token: "0" represents the first
argument (additional
arguments have increasing
values),

child process number,
text explanation of this

argument token,

process token: audit, real, and effective
user names,

group name, and
process number,

return token: error number if the action
generated one, and

return value of the system
call, and

trailer token: record size in the binary
audit data.

The two identical numbers in the header and trailer

represent how many bytes this records takes in the raw audit

trail file. These numbers can be used by an analysis

program to skip over the audit record if needed. Each BSM

audit record normally range from tens to hundreds of bytes,

with tests conducted at UC Davis showing an average of

around ninety.

In the next example frincke’s new process executed the

/usr/bin/cat program:
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Ex. 2) header,95,execve(2):,
Tue Sep 29 15:34:27 1992, + 180000 msec

path,/,/usr,/usr/bin/cat
attribute,100755,root,staff,1798,2467,5952
process,frincke,frincke,frincke,staff,1352
return,Error 0,0
trailer,95

Because the execution audit format is different from the

fork format above, some tokens are replaced by others:

path token: user’s conceptual root
directory as set by the
chroot(2) system call,

user’s current directory, and
filename, and

attribute token: file permissions (10755),
the owner and group names, and
file system numbers (inodes,

devices, etc.).

In the third example, /usr/bin/cat (process #1352) read

a file called /home/frincke/robin:

Ex. 3) header,101,open(2):read,
Tue Sep 29 15:34:23 1992, + 420000 msec

path,/,/home/frincke,/home/frincke/robin
attribute,100644,frincke,staff,1802,1056,224
process,frincke,frincke,frincke,staff,1352
return,Error 0,4
trailer,101

Sun’s BSM was actually a port of the auditing code from

the Compartmented Mode Workstation (CMW) project, which in

turn was adapted from Sun’s Multi-Level Security (MLS)

project. Therefore, a similar format was also used in each

of the respective formats. [Sibe88] lists the design goals

that were met using the token format, namely the

expendability by third party vendors of the audit trail

event and token types as well as the minimal changes to any

existing or future audit analysis software. Because the
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audit tokens are self-contained, an analysis program can

work regardless of the auditing style of the system

generating the messages [Sibe88].

2.8 Problems with Audit Analysis

In addition to the problems discussed earlier, the

major obstacle in developing effective analysis tools is the

copious amounts of data that logging mechanisms generate.

Most of the data are uninteresting for normal analysis by

the SSO; the problem lies in identifying and eliminating

such data and focusing on the suspicious data, akin to the

proverbial "Needle in the Haystack" problem. Several tools

have been developed based on statistical methods, expert

systems, and machine learning, but each method has

limitations which seriously hinder its effectiveness.

Analysis and tools related to the interconnection of

audit entities is the major focus of this thesis. By

developing "dependency threads" within the audit data that

logically link the entities, we can have a much clearer

picture of the events in a system and how they interact.

Not only can we examine users and system resources to

identify at what point they become suspicious, but we can

also examine the events that lead up to the suspiciousness.

Preliminary trials with an entity interconnection examiner

have proven very successful.
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Another problem area being explored in a project at UC

Davis is the identification of actions which violate

security policies. When organizations develop security

policies, the results are normally abstract English

sentences, with no thought given as to how to audit such

actions. From Columbia University, we have:

"Each user is responsible for insuring that his/her use

of the computing facility does not interfere with other

users or with proper function of the system" [Colu92].

Or from Rice University, we have:

"It is expected that all users of University computing

resources will use the facilities at their disposal in

a manner that is ethical, legal, and responsible.

Exercise etiquette and common sense when using the

academic computing resources" [Rice92].

As a result, it becomes a challenge to determine if actions

violate policy. If we could develop and specify a policy

language, we could take a big step to determine what kind of

audit data is required for effective auditing.

As mentioned before, most logging mechanisms operate at

the system call level. A main obstacle to rapid prototyping

of audit analysis algorithms seems to be the absence of

high-level abstraction. We must bridge the gap between the

very low-level, OS specific audit trail data and the fairly

high level abstract concepts used in analysis algorithms.

By converting system-specific data into appropriate high-
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level abstractions that are easy to analyze, new analysis

algorithms can be prototyped with less effort.

By employing abstractions, we can tackle another

problem that plagues audit systems, viz. portability. Audit

trails frequently contain many system-specific details in

their data. If such system-specific details are allowed to

permeate the analysis, the details usually become

inextricably embedded into the analysis algorithms causing

the audit analysis algorithms, auditor, and operating system

to become inseparable. This tight coupling hinders

portability amongst different auditors, and makes comparison

and evaluation of audit analysis algorithms developed using

different auditors very difficult. Furthermore, an

algorithm developed under a specific auditor usually

inherits all the strengths and weaknesses of that particular

auditor or OS. The contribution from a powerful auditor or

the handicap of a weak one can significantly influence the

performance or effectiveness of an audit analysis algorithm.

Another problem of audit trails results from the way

audit trails were originally designed. In the early days of

computing, a system was its own universe, with all of its

resources centrally located. With the advent of mass

interconnections and shared resources, actions are generally

audited on the machine which initiated the request. If we

were to ask for a list of modifications on a file, we must

poll all machines which have write access to a filesystem.
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(Note that this approach is not acceptable if the initiating

machine is untrusted.) With some of the new architectures

being proposed, such as massively parallel CPUs and

distributed computing bases, new methodologies for

distributed auditing must be quickly developed.

One last problem is that the audit trails themselves

may become the target of the intruder. According to the

Orange Book, it is the responsibility of the Trusted

Computing Base to protect the audit trails from intruders.

However in some systems, notably the Sun BSM, no provisions

are made for protecting the files once the intruder becomes

root. (Sun’s CMW does attempt to protect the audit trails

by separating the roles of the system administration team.)

Methodologies for protecting the audit trails will not be

discussed in this thesis.

In addition to the issues raised above, there are a

variety of others, such as types of data to collect, storage

methods, protection, and standards, which are very important

and necessary to the auditing process. They are beyond the

scope of this thesis.
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3 Previous Work

There has been a lot of work done in the area of

automated audit analysis, mainly for intrusion detection

purposes. The focus of these systems was to make broad

judgements about the actions observed, and pass that

information to the SSO for further analysis. These tools do

not assist in browsing raw audit trails; they only help to

determine which data to examine, which also is far from a

definitive solution. The three main approaches are

statistical, rule-based expert systems, and machine

learning.

3.1 Statistical Methods

Automated statistical systems such as SRI’s IDES

[Denn87, Javi91] and Haystack Laboratory’s Haystack [Smah88]

focus primarily on defining characteristics of a normal user

or group, which generally involves a period of training;

then they employ statistical measures to determine if a

current user’s characteristics match his previously observed

behavior. In recent literature, these approaches have been

called "anomaly detection," meaning that the systems are

attempting to identify patterns of usage which are different

from the expected set. Attributes used in statistical
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methods include the number of times a user looks at files

outside his own directories, the amount of CPU and I/O

usage, how many times a user listed a directory, what time a

user logged in, etc.

An anomaly reported by such a system is not conclusive

evidence of an intrusion, only that the current actions fall

outside of normal boundaries. It is the responsibility of

the SSO to examine the raw audit records to determine if

indeed the events are indicative of an attack.

These systems rely on the premise that there will be

statistically significant differences between user

behaviors. This idea was first proposed by Denning

[Denn86], but has yet to be verified experimentally. (IDES

[Javi91] was the best attempt at such a system.) In general

computing environments, for this type of anomaly detection

it is particularly difficult to define the "normal" user,

and what makes a user "suspicious." For this reason,

"anomaly detection" seems to be falling out of favor from

some members of the intrusion detection community.

For example, independent testing at UC Davis has had

difficulty in setting the proper thresholds for Haystack’s

algorithms in DIDS. And, from individual conversations with

Teresa Lunt, the project leader for IDES, IDES has not had a

successful record of intrusion detection due to the high

number of false conclusions reached [Wetm92b]. Both

development efforts have the same problem with defining
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exactly what makes a user "suspicious." The ability to

accurately discriminate between normal and suspicious

behavior highly depends on how widely the user’s behavior

varies.

There are additional problems with statistical methods,

namely:

they can be computationally expensive,

they can generalize too much and lose specifics,

the algorithms have predetermined metrics. This

predetermination is usually done in an ad-hoc

manner.

However, only anomaly detection can catch masqueradors,

unless the perpetrator takes actions which are easily

caught.

3.1.1 Haystack

Haystack [Smah88] is a monitoring system originally

designed to collect audit trails from a single Unisys

(Sperry) 1100/60 mainframe, and perform the analysis on a

personal computer.

The data is first transformed into a Canonical Audit

Trail, which is an attempt to define a system independent

audit trail. This data is then aggregated into user

sessions. These sessions are then analyzed to form session

vectors, which categorize a session’s activity with respect
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to the variables measured. The vectors are then multiplied

against a weighted multinomial function with a set of ranges

for approximately two dozen features. If a vector’s values

fall outside of 90% of the normally expected values, a

warning is generated. After combining these warnings,

Haystack attempts to draw conclusions about this session,

such as whether this person is a browser, leaking data,

malicious, mobile, paranoid, or a possible security

penetrator.

Haystack Laboratories, Inc. has been actively expanding

its number of supported platforms. Haystack now runs on a

Sun Sparcstation running BSM, and there was an effort to

port it to the VAX VMS operating system. Haystack’s

algorithms were also recently modified from strict session

boundaries to handle a real-time monitoring capability, and

were incorporated into the UC Davis Distributed Intrusion

Detection System (DIDS) [Snap91a].

3.1.2 IDES

IDES grew out of work performed earlier by Sytek

International [Syte85], and primarily from a model proposed

by Dorothy Denning [Denn86]. The main goal of IDES is to

provide a series of tools which could detect many forms of

intrusions. IDES does have an expert system component, but

its main contribution is the use of complex statistical
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computations. It transforms audit records into a N-space

user profile, which is compared against previously observed

behavior. Like Haystack, if the previous profiles are

sufficiently far from current behavior, a warning report is

generated.

The original IDES prototype used several types of

measures, and unlike Haystack, employed a covariance matrix

to account for the interconnectedness of the variables used.

IDES has changed much during its development. In the latest

report, the covariance matrix was dropped, mainly because of

the huge expense in computation [Wetm92c]. In fact,

[Wetm92c] found that the statistical methods in IDES were

very similar to Haystack’s.

3.2 Rule Based Expert Systems

Automated expert systems such as portions of IDES

[Lunt89, Garv91], DIDS [Snap91a], Wisdom & Sense (W&S)

[Vacc89], and signature analysis [Snap91b] pursue a

different approach. Instead of detecting anomalies, these

systems attempt "misuse detection" by using a priori rules

that are indicative to a human expert of an intrusion.

These systems rely on the premise that intruders have

distinct methods of operation, and use unique signatures to

penetrate systems. Generally, these systems use categorical

data (object names, object types, etc.) instead of metric
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data (number of times an action was observed) as in

statistical systems, because it is relatively easy to write

rules for categories of data.

As an example of a rule, one particular vulnerability

requires two separate actions: installing a login trojan

horse by one user intended for another, followed by the

latter’s login activity. The expert system scans the

resulting audit trails, picking out first the record which

corresponds to the installation, and then watching for the

user’s login. The rules which correspond to such an attack

would then be fired, and warnings could be generated. Of

course, this warning is only a precursor to further

investigation.

The expert system approach has several limitations;

mainly, the expert systems are always playing "catch-up,"

meaning that rules can only be added or updated AFTER new

vulnerabilities have been identified, potentially after the

damage has already been done. In addition, most systems are

hand-crafted, meaning that an expert’s knowledge must be

extracted, codified, and documented. This process can take

a great deal of energy.

3.2.1 Signature Analysis

[Snap91b] explored the idea of applying a concept

called signature analysis to intrusion detection. Snapp
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proposed a method for utilizing finite state automata to

determine whether a specific attack is under way. This

method has subsequently been implemented in later versions

of Haystack, and is being used in the UC Davis DIDS project.

The method works by using a series of tagged objects.

By analyzing accesses to these objects, it advances the

state of a finite automaton to represent how far a specific

attack has proceeded. When all the requirements for an

attack have been observed, a warning can be generated. One

advantage of employing this method is that for particularly

long signatures, warnings can be generated before the attack

has been completed.

For example, suppose user A creates an executable

trojan program, and then waits for user B to execute it.

Once executed, the program modifies user B’s security state

(say adds an entry to .rhosts file), allowing A to operate

as B. A state machine could be created as in Figure 4. It

then becomes a simple matter to traverse the states as the

audit actions are observed.

Intuitively, the mechanism holds promise, but currently

only simple signatures have been implemented.

3.2.2 MIDAS

MIDAS also attempts to encode a priori rules that

define an intrusion [Sebr88]. This system is under
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development at the National Computer Security Center (NCSC),

A creates
executable

B runs
executable

B modifies
.rhosts file

Executable
removed

no change
to .rhosts

A runs
as B

S0 S1 S2 S3 S4

Figure 4 State Machine for Signature Analysis.

and is designed to monitor a Multics system. It uses a

forward chaining engine and an explanation facility, much

like the signature analysis method above. The rules are

written in LISP, and can run at 150 inferences per second.

At the time the survey paper [Lunt88] was written,

approximately 40 rules had been encoded.

MIDAS is also based on Denning’s intrusion detection

model, and uses four types of rules to detect attacks:

Immediate uses no previous information about past

or expected user behavior.
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Anomaly uses statistical user profiles to detect

departures from a user’s normal

profile.

System-wide maintains system wide parameters to

determine what is normal for the

system globally.

Sensitive-Path similar to Snapp’s signature analysis,

tries to encode the SSO’s knowledge

to detect attacks in progress.

Specifically, MIDAS attempts to catch the following kinds of

attacks: attempted break-ins (by authentication failures,

unusual originating hosts, etc.), masqueraders (unusual

times, locations, commands, etc.), penetrators (sensitive

commands, unauthorized commands, sensitive objects, etc.),

misuse (overuse of resources), and trojan horses and viruses

which modify system files and programs by unusual execution

of predictable commands.

3.2.3 Wisdom & Sense

W&S [Vacc89] is a system under development at Los

Alamos National Laboratory. It tries to combine statistical

methods, machine learning, and rule-based expert systems.

Given a set of training data, W&S tries to create rules

regarding the observed behavior. The rules created can be

very general or very specific, such as; privileged users do
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not work over dial-up lines during normal working hours.

According to the literature, the rules are English-like and

can be easily modified by a SSO, so that he can quickly

incorporate his knowledge of specific attacks. The rule

base generated can be quite large, on the order of 10 4 to

106 rules, but through optimization each rule can take just

6-7 bytes of memory, and on an inexpensive workstation W&S

can fire approximately 20,000 rules per second. This makes

it suitable for real-time intrusion detection.

W&S 1.0 and 2.0 were designed for a single host, but

W&S 3.0 is designed for a distributed environment, in which

several systems are monitored by a single host [McAu90].

3.2.4 ComputerWatch Audit Trail Analysis Tool

AT&T’s ComputerWatch tool [Dowe90] was designed to

summarize audit trails for the AT&T System V/MLS Operating

System. (MLS stands for Multi Level Security, which adds

Mandatory Access Control to UNIX. This is similar to Sun’s

CMW.) Again, a priori rules are applied to the audit data,

which give the usual security summaries. An interactive

rule editor is also provided which allows the SSO to modify

the rules to fit the characteristics of a system. Finally,

a SQL-like language is available to produce custom queries.

3.2.5 Information Security Officer’s Assistant (ISOA)
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ISOA was developed by Planning Research Corporation as

a prototype real-time intrusion detection system and network

security monitor. Like IDES and Haystack, it uses

statistical and expert rules to create warnings. However,

unlike the other two systems, ISOA has four levels of

auditing modes: real-time (incoming audited record is

immediately examined), session (marked by login and logout),

intermediate (done at the end of a particular type of

action, such as a program run), and high level (to prevent

attacks from occuring over multiple logins).

3.3 Machine Learning

The application of machine learning and neural networks

[Deba92, Doak92, Goan92, Vacc89] is a relatively new

approach to the intrusion detection problem. Machine

learning attempts to monitor and learn the normal activities

of users. By knowing past events, inductive learning

algorithms try to predict later events. This technique

differs from the statistical systems above by not

predefining the specific characteristics or traits, but

rather choosing and weighing data as it becomes available.

This approach also differs from Expert Systems in that it

does not incorporate specific system vulnerabilities. The

whole field of machine learning is still very young, so no

major revelations have come from this area yet.
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3.4 Other Systems

Most of the above systems use system-generated audit

data as input. There are other systems which provide for

some analysis without relying on the system logs.

Heberlein’s NSM [Hebe91] and Clyde-Digital System’s Audit

[Lunt88] both allow a SSO to collect and analyze data

passing through a network or terminal, respectively. They

provide a set of warning levels for each session, and tell

the SSO why the session was considered suspicious. They are

interesting in that they do not rely on the host audit

trails for data collection, but rather do it themselves.

3.5 Audit Trail Browsing

Most of the current automated analysis tools remove the

user from having to "get dirty" in analyzing raw audit

trails. Most of the above tools generate fairly abstract

views of systems, so much so that the SSO relies on the

conclusions reached. However, getting and working with the

raw audit data is exactly what is required when documenting

damage, information flow, or change to a system.

The only tool I know of for helping browse audit trails

is ComputerWatch for AT&T’s MLS [Dowe90]. It performs its

analysis by formulating the raw data into eight human-

readable database files. The exact contents of the files
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were not apparent in [Dowe90], but they are grouped as

follows:

exec.tab Process execution information

fork.tab Process fork/exit information

alias.tab files accesses and link information

ipc.tab interprocess communication information

syscall.tab system call failure information

uli.tab user level information (logins, suid’s)

io.tab all read/write success/failure

information

other.tab everything else (mounts, kills, etc.)

ComputerWatch approaches modelling as a relational database

problem. The reason for selecting these formats is based on

the combinations of data items most frequently referenced

together. From the paper, it appears that the database

files do not try to link threads within the data, they only

reformat audit records into database records. Navigating a

path through the data must be done as a series of SQL

database management system queries.

Also, it appears that the size required for all the

database files may become quite large. Say a process opened

a file. The execution file exec.tab would have the

corresponding record, as well as alias.tab (for recording

file accesses) and io.tab (for read/write information). By

using the relational database format, information will be
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repeated throughout the database files, adding to their

size.
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4 The Audit Workbench

In 1992, Chris Wee and I developed the idea for an

"Auditing Workbench." The idea was to build a "workbench"

or "sandbox" to experiment with auditors and audit analysis

systems. The idea has generated much interest, and a new

auditing research group has been formed at UC Davis. The

original scope of this project has grown, and now includes

many diverse aspects of auditing. But one of the primary

goals for the workbench was to aid in browsing audit trails.

Below, we shall examine the original design and goals of the

workbench.

4.1 Architecture

Our standard model of audit analysis consists of four

separate processes: data collection, management, reduction,

and analysis. Correspondingly, there are four layers to the

Audit Workbench shown in Figure 5, each component of which

represents a different layer of abstraction:

Audit Generators responsible for the creation of

audit data,

Audit Management responsible for the parsing,

translation and management of

audit data,
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Audit Views responsible for combining lower-

DIDS Scientific 
Visualization

IDES algorithmAudit Applications

Audit Views Entity Relation Behavioral View

Audit Management Audit Manager

Audit Generators Audit Daemon Synthesizer Debuggers

Figure 5 Audit Workbench Architecture.

level audit trails into

higher-level abstractions

appropriate for audit

applications, and

Audit Applications which perform the actual analysis,

e.g. intrusion detection

algorithms, graphical user

interfaces, audit browsing,

program debuggers, network and

system monitors, security

analysis, etc.

Any program or module capable of producing audit data

(either at the system or the program level) is called an
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Audit Generator. These can include audit daemons, audit

trail synthesizers, debuggers, accounting systems, and

system monitors. We have also envisioned a tool for

synthesizing audit trails using an event description

language. This would be very useful for experimenting with

race conditions, and in situations where actual tests would

irrevocably damage a system, such as recursively removing

files.

The Management layer would be responsible for

performing all of the data manipulation functions, providing

mechanisms for the recording, playback, splicing (grafting

multiple audit streams into one), compression, storage, and

retrieval of audit trails. An open area for research is

developing abstract specifications for Generators and Views

to automatically create translators that connect Generators

and Views.

The Views layer of the Workbench would translate and

filter audit trails to reduce the quantity and improve the

quality of the audit data. Each audit application may

demand to ’view’ the system using a different abstract

model. It is the responsibility of the View layer to map

the incoming audit information onto the abstract model. By

converting system specific data into the appropriate high-

level easy-to-analyze abstractions, new analysis algorithms

can be prototyped with far less effort.
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For example, a collection of a user’s files and

permissions may be abstractly modeled as the security state

of a user. Instead of processing audit records that report

if a file was read, the analysis algorithm would only

receive audit records that specify changes to the security

state of the file. This permits the intrusion detection

module to only examine what effects this change may have on

the security state of the monitored system.

Once the audit data has been reduced and presented to

the application layer as a series of views, the application

layer programs are free to utilize those views and make

higher level inferences and abstractions. The applications

are freed from dealing with raw audit information, and can

concentrate on higher level abstractions.

4.2 Research Goal

The Audit Workbench will permit us to develop new

auditing paradigms and to evaluate audit analysis algorithms

independent of specific auditors or operating systems.

Additionally, we feel that by using the Audit Workbench, one

can prototype new audit analysis algorithms rapidly and

easily. The Workbench will allow greater interchangeability

between various auditors and algorithms, and ease the tasks

of testing, debugging, and evaluating auditing applications.

Thus the major design goal is to provide a rich set of tools
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for manipulating audit data, which we hope will encourage

and expand the usefulness of audit analysis.

4.3 Rationale

We believe that the Audit Workbench would serve as a

friendly and robust environment for researching and testing

auditing algorithms as well as any other applications that

might use auditing of data. The following sections give an

overview of some of the perceived benefits of developing

such a system.

4.3.1 Utilizing Multiple Views

A natural result of layering is the ability to support

multiple Views from the same audit trail, or use multiple

sources of audit information to create a View. This

flexibility enables us to experiment with much richer models

than those permitted by a single auditor. For instance, we

could create a very high-level View that tracks user

behavior and concurrently draws upon audit trails,

environmental sensors, behavioral psychology, and expert

systems as generators of audit information. Alternatively,

we could provide an intrusion detection algorithm with an

object dependency view as well as a session view. This

would allow algorithms quick access to objects in the
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system, and show how one session is interacting with those

objects.

4.3.2 Combining the Stronger Pieces of Different Auditing

Systems

With the Workbench, we can tackle another problem which

hinders auditing. An algorithm developed under a specific

auditor usually inherits all the strengths and weaknesses of

the auditor or operating system. The contribution from a

powerful auditor or the handicap of a weak one can

significantly influence the performance or effectiveness of

an algorithm. By being able to utilize the most effective

pieces from different auditors, stronger algorithms can be

developed.

4.3.3 Portability of Analysis Algorithms

When audit events are described primarily in terms of

the abstract logical model, the algorithms need only contain

a few system-specific details that are essential to the

analysis, making the algorithms more general and portable.

Thus, if the algorithms are decoupled from the auditor, we

can port the audit analyzer by simply substituting the

underlying auditor in the Workbench. This is analogous to

writing computer programs that utilize basic services
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through an application library rather than accessing the

bare machine. Thus, algorithms developed using the Audit

Workbench will be more robust and depend less upon the

specifics of any particular auditor.

4.3.4 Testbed for Intrusion Detection Systems

The Audit Workbench will also be useful as a standard

platform on which to compare different intrusion detection

systems. Frequently, algorithms are developed on different

operating systems, using different auditors, and it becomes

very difficult to distinguish the contribution of a strong

auditor or the handicap of a weak one with respect to the

performance or the effectiveness of the IDS. There is no

level playing field on which to compare intrusion detection

algorithms. Instead, we are forced to compare specific

implementations of the algorithms, and the side effects of

the host-specific auditor cannot be mitigated. The Audit

Workbench helps us to concentrate specifically on the IDS

algorithms by creating multiple Views from the same audit

trails. Thus, we can compare the performance and

effectiveness of various algorithms when presented with the

same input. Selecting the proper input information,

however, is akin to designing good benchmarks and is yet

another research issue.
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4.3.5 Extensible Audit Trails

Since the Audit Workbench will permit extensible

auditing by being able to combine audit data from multiple

sources, we can integrate new auditing features with

existing auditing packages, and then use the augmented

auditor with existing analysis algorithms. For example,

there is a project under way at UC Davis to add auditing to

Remote Procedure Calls (RPC) and the Network File System

(NFS) to the Sun BSM [Choi93]. This will significantly

enhance intermachine auditing, as RPCs are not audited.

4.3.6 Experimenting With Hard-to-Duplicate Conditions

Using the Workbench, we hope to be able to synthesize

audit trails. A normal trail with specific attacks embedded

inside can be used for testing and debugging audit analysis

algorithms. These composite trails can help create

realistic simulations to evaluate intrusion detection

systems. The Workbench can also assist in testing real-time

analysis applications by playing back or simulating audit

events in a real-time mode.

4.3.7 Ease of Data Collection
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Finally, the management facilities of the Audit

Workbench would allow audit trails to be manipulated so that

archival, splicing, compression, and filtering of audit

trails may be performed easily. Many of the management

functions are similar to multi-media system controls. The

similarity exists because audit trails are sequences through

time, not unlike audio or video sequences. Therefore it

would be conceptually very easy to press "RECORD" to begin

collecting audit data, and to press "PLAY" to simulate the

same series of events.

4.4 Development and Testing

DIDSAudit Applications

Audit Views

Audit Management Audit Manager

Audit Generators Audit Daemon

DIDS View

Figure 6 Vertical Testing.



50

We plan to construct a rapid prototype to explore the

feasibility of the Workbench concept, and perform two

experiments. The first experiment diagrammed in Figure 6

will integrate a module from each level of the Workbench

into a single functioning intrusion detection system. This

vertical integration will demonstrate that all the

interfaces between each level work as specified. Next,

using audit trail generators from two different vendors,

e.g., DEC’s VMS and Sun Microsystem’s Basic Security Module

(BSM), we will use the Workbench to translate them into

identical Views. The unified View should be constructed

such that an IDS algorithm using the View cannot distinguish

between the two audit generators. This horizontal layer

test in Figure 7 ensures that the layers’ concept works with

heterogeneous auditing systems.

As an example, UCD’s DIDS [Snap91a] is primarily

concerned with users, host machines, and their

interconnections over a network. Details about the file

system, user processes, or activities which are strictly

local to the hosts are generally irrelevant to DIDS’s

analysis algorithms. Unfortunately, the audit trails

produced at each host are full of such details and DIDS must

filter out most of that noise, but retain enough details to

associate users via network connection Ids, user Ids and

process Ids. Using the Audit Workbench, we envision

creating a DIDS View that describes host machines and
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network connections as the primary entities of the abstract

DIDSAudit Applications

Audit Views

Audit Management Audit Manager

Audit Generators

DIDS View

Sun BSM DEC VMS

Figure 7 Horizontal Testing.

logical model. All other details about processes, user ids,

operating system resources, and network protocols are

abstracted, combined, or filtered to produce a coherent View

consisting only of host machines and users connected between

hosts. Thus, the DIDS algorithms can concentrate on the

users and hosts as abstract entities without the processing

burden of irrelevant information.



52

5 Towards More Effective Audit Browsing

The focus of this thesis is to develop useful

techniques for browsing audit data. As mentioned, most

previous intrusion detection research has focused on

determining what data to examine, and has assumed that the

SSO can examine the underlying audit trails to determine if

intrusive activity has occurred. Unfortunately, few

techniques exist for browsing. In current practice, most

SSO’s do not have the time to inspect reams of paper, and

must rely on the conclusions reached by an IDS. [Dowe88]

has proposed the straightforward application of Database

Management Systems (DBMS) technology. I propose an

alternate solution. While the DBMS and my solutions

primarily focus on audit data from single systems, both

models could be generalized to handle distributed auditing.

5.1 Questions to Ask of Audit Trails

Before continuing, we must determine what kind of

questions will be posed to such audit analysis tools. The

questions will be diverse, starting with the simple ones:

1) Who logged in during a specified time period?

2) Who created, read, wrote, or deleted a particular

file?
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3) What program(s) did a process run?

4) What subprocesses were created by a process? What

did they do?

5) Which process is the parent of a process? What

did it do?

6) Did someone try to obfuscate the audit trail by

copying a well known system file under a

different name?

7) How was this accomplished? (What usernames,

programs, permissions, etc., were used?)

8) After some particular action, what did a user do?

9) How did a user gain additional permissions?

10) What effects did a file modification have on the

system?

11) How did a file’s permissions change without the

owner’s consent?

12) How did information from one file end up in

another?

13) Was a vulnerability exploited on this system? If

so, what was it? What steps were used?

14) Are there indications of a virus or trojan horse?

This list is not complete, but it does give a flavor for

possible questions. Many of the simple requests can be

satisfied by performing string matches on the audit data or

by using a DBMS query for particular events. However, in



54

situations where multiple events were required to document

the actions, manual browsing can become very difficult.

As an example, I used a well known vulnerability in

SunOS to modify the login program. I wanted to examine the

resulting audit data to determine what data was written and

how it could be used to aid in a SSO investigation. The

attack required several steps, beginning with a particular

vulnerability in the UNIX program rdist. By exploiting this

hole, an interactive shell was created which gave the user

full permissions to the system. The person then modified

and recompiled the source code for the login program,

finally installing the trojan version. The events were all

documented by the logging system, but this was a complex

attack involving several stages and different types of

system resources. Manually piecing together the individual

events in the resulting log was very difficult, due to the

number of processes, files, and actions involved.

5.2 Object-Based Analysis

The model I develop centers on the concept of an

object. An object is any underlying system abstraction we

wish to model: for example, users, processes, or files.

(This differs from [Denn86], where a separation is made

between subjects and objects. For our model, adding

subjects into the object class simplifies the analysis.)
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Most of the analysis programs described in Section 3 model

users as the only objects. They fail to take into account

how actions interconnect users, processes, and files.

In the models presented in this thesis, an object is

any abstraction which is the source or destination of an

action, e.g., a file write would document the action by a

process source object onto a destination file object. As

the audit trail is parsed, a graph of the object

interconnections can be created by first determining which

objects are involved, and then creating links between these

objects. Note that this method can be easily implemented

using the traditional directed graph notations of nodes and

edges.

As an example, suppose we must determine a process

hierarchy. A corresponding algorithm might follow this

format:

/************************************************
* src = process which created the new process *
* dst = the new process *
************************************************/

whil e ( x := get_next_process_create_audit_record() )
dst_obj := find_or_create_object( get_dst(x) );
src_obj := find_or_create_object( get_src(x) );

dst_obj.parent := src_obj;
src_obj.child_list := src_obj.child_list

+ dst_obj;
}

This example is specific to processes, but it shows how

easily objects can be interconnected. By adding other types

of objects such as files, user and user sessions, devices,
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I/O ports, and other machine resources, a complex data

structure may result, but because the objects are

interconnected in this manner, a hypertext-like browsing

system can be applied, thereby allowing easy navigation.

Although a lot of preprocessing is required, one strong

4 5 6 7

4 7 8 54 6 3 5 4 8 2 4

5 0 2 3 5 0 2 4 5 0 2 6

5 9 2 4

...

Process Browser

Select a node to browse...

Figure 8 Process Tree.

advantage is that once the links are constructed,

interactive browsing can be performed rapidly. Since all

the interconnections were built during the preprocessing

stage, the SSO can immediately see which objects affected or

were affected by the current object. The SSO can start at

one node, and move to any other node by following the

dependency links. In a Graphical User Interface (GUI) as in
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Figure 8, following links could be as simple as clicking on

paths to follow.

Also, with the proper internal data structures, results

of these graphs could be easily incorporated with earlier or

future graphs by simply merging the objects and actions

involved. Another advantage of object-based analysis is

that it can allow the system to be modeled in a manner

consistent with the underlying abstractions.

Object-based analysis would also be of assistance in

browsing the AT&T style of non-self-contained audit records.

These logs have a large header which contains the internal

name map describing global characteristics of every object

in the system. The remaining audit records simply record

the deltas, or changes to the objects. As a result, these

audit trails are smaller in the sense that they keep the

minimal amount of information for each object, and depend on

the user to correlate the header and actions for the

objects. Not only will Object-Based Analysis group the

actions for each object, but it will also make the header

data easily accessible to the analysis tool.

This model has the additional advantage that events on

an object over extended periods of real time are compacted

to just the list of actions. Suppose a raw audit trail has

three million audit records, and only the first and last

records involved make references to a particular object.

Using a text find utility such as the UNIX "grep" on the raw



58

audit trails would require that the entire trail be parsed

just to find the references. When links are built and

maintained, the SSO need only find the object, then display

the accesses. The data reduction is handled automatically.

This paradigm might also be useful in signature

analysis. A signature is an enumerated list of actions

necessary to achieve a particular goal. It might be

possible to keep a list of signatures-so-far in each object,

and as the next stage of a signature in an object is

observed, the signature-so-far can be updated and

transmitted to the next object(s) in the sequence. For

example, a user modifying someone else’s .cshrc file

followed by that person logging in might be considered to be

a signature of a trojan horse. When the file object for the

.cshrc file is consulted, the code could make a note that

the owner of the object is not the same as the person

initiating the write. The file object could then notify the

user object that a subsequent login would trigger a possible

trojan horse.

5.3 Applicability of Relational Databases to Audit Browsing

There are some questions that are well suited for a

DBMS, but the primary reason for wanting to develop an

additional technology is that the interconnections among

objects must be hand-crafted using a series of canned or on-
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line queries. After each interconnection is discovered, an

entirely new query must be formulated and submitted. A lot

of time will be spent generating and executing these custom

queries. Then, once the results are available, the SSO must

decide which results warrant further investigation. Since

many of these queries may be red herrings, much time will be

wasted.

Additionally, during DBMS table construction, much of

the data will be repeated because the DBMS stores each

record’s data separately. Having to list the name of each

object in several records can potentially vastly expand the

database files. By using objects, the name needs to be

stored only once in the system: each successive reference

would simply perform a lookup to find that object.

Finally, trying to get an overall view of a system with

all objects and their interconnections displayed

simultaneously would be impossible with a DBMS. The queries

to establish all possible links would take an unacceptable

amount of time.

5.4 Model #1, A UNIX Specific Model

The first model we develop will be UNIX specific. This

model expands on the model presented in the Section 5.2 to

include files. By adding file objects, we can now ask

accountability questions about files, and gain a broader
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understanding of system operation than by processes alone.

This section will demonstrate two points: firstly, that

effective audit browsing is feasible on BSM audit trails,

and secondly, that preprocessing can perform a great deal of

audit trail reduction.

To test my two points, a prototype preprocessor called

Raw Audit
Data

praudit ab

Figure 9 Conceptual Model of the Audit Browser.

"ab" - audit browser - was constructed in C. Figure 9

diagrams its purpose, viz. to parse the output from Sun’s

praudit command, create objects, and establish

interconnections. On a lightly-loaded Sparcsystem 1, "ab"

took only 5 minutes to process the data from a 16Mb binary

audit file. In comparison, praudit took almost 10 minutes

to convert the binary data to the form "ab" eventually used.

For this simple model, I was interested in analyzing

only those actions which succeeded. I only wanted to see

how the security state of the system actually changed over

time, not how users attempted to change the state.

Obviously, this method will not be able to detect those

attacks which depend on failed accesses, such as doorknob
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rattling.

Process Object File Object
creation
  time
exit time
pid
uid
euid
gid

Process:
    Parent
    Children

Files:
    read
    write
    exec

file system id
node_id
device_id

filename

Access
  history

access
  type
uid
euid
gid
time
attributes
process

File Access
Object

Figure 10 Conceptual Diagram of Objects Used in "ab."

Each object contained information useful for audit

analysis. In Figure 10, each process object contained the

process id, the parent process id, the real and effective

user id, the group id, the process creation time, the

process exit time, pointers to the children and parent

objects, and pointers to file objects for the three main

types of file references: read, write, and execute. Each

file object contained the file system, node and device ids,

the filename, and pointers to the access histories.
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Since there were a variety of system calls involving

file objects, I used the following heuristics to determine

to which group(s) a reference belonged:

1) If the reference caused any portion of the file

system to change, the access was considered a

write operation. The references included writes,

creations, deletions, permission changes, etc.

(Note that directory operations were also included

in this grouping.)

2) If the reference caused any portion of data to

flow from the file system to the processes, the

access was considered a read operation.

3) If the reference was caused by a process trying to

execute a file object, the access was considered

an exec operation.

Note that there are some operations which involved multiple

groups, such as a file open for read/write. In these cases,

I considered a reference to a file to be both a read and a

write.

Finally, I created a third data structure object that

held the history of accesses for a file object. The access

history object structure contained information such as user

and group ids, time of access, file attributes used, and

pointers to the process involved. Each file access record

in the audit trail caused a file history object to be

created; then "ab" filled in the objects with the data
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available from the audit record. The associated process

object was updated to reflect the new action. Although not

specifically shown in Figure 10, this structure was quite

complex and was the heart of the linking procedure between

processes and files.

The pseudo-code for the main loop for "ab" follows:

/*************************************************
* Main driver for modelling. Get type of audit *
* record, then take the appropriate action. *
*************************************************/

whil e ( x := get_next_audit_record() ) {
y := get_type( x );
case ( y ) of {

fork : create_new_process( x );
exit : exit_process( x );
exec : process_exec( x );
open_read : file_access( x, READ );
open_write,
mkdir,
chown,
... : file_access( x, WRITE );
open_read_write: file_access( x,

READ.OR.WRITE );
default : /* ignore ( x ) */

}
}
browse_objects();

"ab" continued to read audit records until the supply

was exhausted. After parsing each record, the record’s type

was determined, and sent to the appropriate handling

routine. The routines for forks and exits are similar to

the pseudo-code in the previous section. For file

references, the pseudo-code follows from expanding the

process paradigm to its logical equivalent:

/****************************************************
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* x = the parsed audit record *
* access_type = type of access {READ, WRITE, EXEC} *
****************************************************

file_access( x, access_type ) {
access_obj := create_file_obj();
access_obj.values := fill_in_audit_data( x );

process_obj := find_or_create_process_obj( x );
file_obj := find_or_create_file_obj( x );

access_obj.process := process_obj;
file_obj.access_list = file_obj.access_list +

access_obj;

if ( access_type == READ )
process_obj.read_list :=

process_obj.read_list + access_obj;

if ( access_type == WRITE )
process_obj.write_list :=

process_obj.write_list + access_obj;

if ( access_type == EXEC )
process_obj.exec_list :=

process_obj.exec_list + access_obj;
}

After the audit data was formed into the model, "ab"

then called a display routine which dumped the data in a

easy-to-read form. First, all pertinent information such as

user ids and group ids for each process object were

displayed for each process, followed by the list of file

accesses arranged by access type and the list of child

nodes. To allow easy observation of the process tree, each

child is indented from the parent by a small amount, as is

each grandchild and so on. Finally, each file object is

displayed followed by its access list.

With this model, several experiments were conducted

with actual audit data. In each case, as long as the audit
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trails contained the necessary information, "ab" was able to

correlate the process and file interconnections. This in

turn allowed me to easily browse the audit trails and follow

the attack.

In addition to the example below, I was also able to

follow an attack that relied on the vi editor’s ability to

save files following a crash. It was a simple matter to

follow the objects to see how the file permissions were

compromised.

5.4.1 A Worked Example

One of the scenarios I tested was a simulated attack on

one of the UC Davis Computer Security Laboratory machines.

I created an executable script called change_mod which

exploited the rdist vulnerability. rdist then was tricked

into changing the permissions on /bin/sh so that by running

it, I would gain the permissions of the super-user. The

resulting audit trail was then analyzed by "ab." I have

included a portion of the output in Appendix 1. To conserve

space I have only included a small portion of the output.

Since I knew what to look for, perhaps calling the

procedure "easy" is a misnomer. But I will plead temporary

ignorance, and lead the reader through my browsing session.

Given that the user had masqueraded as root, it was my job

to determine how that was accomplished. I first searched
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the audit trails by hand to determine which users had an

4408

4412

4421

Process Objects File Objects

/bin/sh
change permissions to suid

exec as root

f o

rk f ork

Figure 11 Browsing the rdist attack.

effective user id equal to root. (Unfortunately, in this

model I hadn’t modelled users as objects, so I had to

perform this step by hand.) Once I had the list of possible

users, I invoked "ab," and from the full set of objects, I

selected the login process for user "insider." I next

examined the set of children for this login process.

Immediately I noticed that process 4421 was created by

running a shell with the user id set to root. (Figure 11

provides a graphical representation of the situation.) This

gave me the first evidence that somehow the permissions on

/bin/sh had been improperly set. Fearing the worst, I

immediately checked all subprocesses of 4421 to d etermine

what programs and files had been manipulated as root. In
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this case, the only thing the user did was to reset the

permissions back to the original setting.

In order to determine how the permissions were set, I

next selected the /bin/sh object. By examining the access

history, I noticed that the permissions were changed twice,

once by process 4412 and once by 4423, a child of 4421. In

between the permission changes, I found that only one root

shell had been created, and it belonged to the user

"insider," which was the process I had just examined.

(Apparently no one had time to create another root shell

before the window of opportunity closed.) I then selected

process 4412 to determine how the permissions were set. By

looking at the list of exec’d files, I knew immediately that

rdist had either been compromised or that a vulnerability

within rdist existed. By checking past accesses to the

rdist object, I could find no evidence of any tampering

during the time the audit daemon was operational. I finally

followed the parent link of this process to process 4408,

and determined that the program called change_mod had caused

rdist to be executed. I then disabled the "insider" account

as a preventive and punitive measure. It took me a week to

get my account reactivated!

5.4.2 Advantages of this Model
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This UNIX-specific model has a number of advantages,
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Figure 12 GUI interface to "ab."

mainly that it presents the SSO with a view which closely

models that of the operational system. Further, the SSO is

not required to piece together links between files and

processes; "ab" does it automatically. Also, it

demonstrates proof of concept that an useful automated audit

browser can be built. The process and file objects are easy

to traverse by simply selecting the next object from the

list of objects present in the current object, or from a

global object selector. If time had allowed, I would have

liked to construc t a X Windows-based application which would
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have displayed the objects and their links together on the

screen (see Figure 12). By using a point and click

interface, browsing would be far easier than in a text-based

environment.

In addition, we have demonstrated a straightforward

method for data reduction. By only considering successful

actions, only those records which actually change the

security state of the system are allowed to enter the

analysis. As mentioned, this method will not be able to

detect some failure-based attacks. But for documenting how

a user was able to change the state of a machine, and how

information flow might be detected, the only items of

interest are those calls which are successful.

5.4.3 Disadvantages of this Model

Unfortunately, there are a number of disadvantages of

this model. Firstly, the model is very specific to BSM

UNIX. Although it would have been fairly easy to modify the

parser and data structures to accompany the new style of

auditing, trying to port "ab" to another Operating System

such as DEC’s VMS or IBM’s MVS, which have different

underlying abstractions, would be very difficult.

Additionally, some of the object fields were hard to manage,

especially those which changed frequently over the life of

some objects. There were several instances of filenames
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changing, users changing effective user id as they executed

certain programs, etc. These problems required that an

alternate solution be found, and thus formed the basis for

the model described next.

5.5 Model #2, A More General Model

There are a variety of methods from which to view audit

records, but the one most intuitively obvious to a SSO would

be to follow the model of the system being audited.

Unfortunately, while every system has many of the same

abstractions such as files and processes, building a general

purpose audit browser would be impossible if the specifics

of any operating system were allowed to permeate the design.

Therefore, in order to keep the model as general as

possible, we should design a system which only uses the

underlying objects, and keeps a common framework with which

to manipulate them.

Consider the following scenario: regardless of the

auditor, each audit record represents an action between

objects. By specifying which objects may be expected in

each audit record and what their interconnections are, we

may build a model in the same flavor as our previous UNIX-

specific model, while maintaining a much more portable

analysis technique.
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The technique follows the same methodology as the

Audit 
File

Parser Modeller Browser

grammar object
structure

Figure 13 General model of analysis.

previous UNIX model, in that the audit trail is parsed and

each record is passed to a modeling component as in Figure

13. However, in this design, instead of being hard-coded,

the parsing grammar and the definitions for how object

structures are created are now inputs to the system,

allowing much more flexible definition of objects.

To determine what objects should be extracted from the

audit trails, the audit trail format specification would be

manually inspected to determine what information is

available. For the interconnections, a table listing the

dependencies between the objects would be developed. The

dependencies are again determined by inspecting the

specification of the audit trail and using the SSO’s

knowledge of system operations. This table would then be

utilized by the parser to extract those objects, and by the

modeler to make the interconnects. By changing only this

table, this type of browser can be adapted to any kind of

logging system. The browser need not know anything about
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the underlying abstractions, except that there are objects

and interconnections.

For the interconnections, a paradigm of source and

destination objects would be quite useful. For example,

when presented with the problem of trying to establish

information flow from files to users, the original read of a

file could be considered a source object, with the user or

process involved being the destination. Or for the process

creation domain, the parent process might be the source, and

the child the destination. This method has the potential to

turn the problem of audit browsing into a directed graph

problem, a well-examined problem area. A typical query

might be: starting at this file object (node) and

traversing the links (directed edges), can you reach this

user (node)?

As an example of how this table might be constructed,

consider a BSM file_open_for_read audit record, of which an

example follows (for an explanation of the fields, please

see Chapter 2):

header,101,open(2):read,
Tue Sep 29 15:34:23 1992, + 420000 msec

path,/,/home/frincke,/home/frincke/robin
attribute,100644,frincke,staff,1802,1056,224
process,frincke,frincke,frincke,staff,1352
return,Error 0,4
trailer,101

The SSO might define the objects to be the file, user, and

process associated with the event. Based on this decision,

a table of the interconnections is then developed:
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(S = source node , D = destination node)

Type/Object ... file ... process child
process

user

Open_READ S D

Open_READ S D

...

Process_FORK S D

Process_FORK D S

Figure 14 shows diagrammatically how the objects and their

interconnections could be represented. The contents of

objects will change considerably. In the UNIX-specific

model, each object contained several types of information,

such as user and group ids. Rather than having to rewrite

the object definitions for each logging system, it makes

more sense to keep only the information necessary to

uniquely identify it, and leave the unnecessary information

in the audit trail.
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Additionally, there should be a list of object

Audit Trail
Location

Pointer to
Linked Object

Next
Item

Action
Type

Object IDD S

Figure 14 Proposed data Structures for objects.

accesses. Since we have used the example of source and

destination accesses, there should be a corresponding list

for each. And finally, each accessed object should contain

the data found in that record. Unfortunately, since the

amount of data necessary could be very large, it would be

more efficient to keep a pointer to the corresponding

location in the audit trail. A side benefit is that now the

SSO can examine the raw audit trails if necessary.

The high-level psuedo-code for this system is very

similar to that of the earlier example. However, since most

of the information will remain in the audit trail, and the

objects and interconnections are much more general, the

lower-level code is simplified.

whil e ( x := get_audit_record() ) {
y := get_type( x );
foreac h ( z := table_entry fo r y ) {

src_obj := find_or_create_src_object(z,x);
dst_obj := find_or_create_dst_object(z,x);
src_access_obj := create_access_object();
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dst_access_obj := create_access_object();
src_obj.access_list := src_obj.access_list +

src_access_obj;
dst_obj.access_list := dst_obj.access_list +

dst_access_obj;
src_access_obj.action_type := y;

dst_access_obj.action_type := y;
src_access_obj.location :=
current_position_in_audit_file

dst_access_obj.location :=
current_position_in_audit_file
src_access_obj.obj_ptr := dst_obj;

dst_access_obj.obj_ptr := src_obj;
}

}
browse_objects();

This method has direct applications to the area of

modelling and data reduction. By simply changing the model

information in the table, an entirely different picture of

the system can be generated. Some models might be useful

for abstracting information flow, while others are better

suited for discovering how a file changed its access

permissions. Data reduction could be performed at this

stage by simply changing the table to model only the actions

of interest. Note that with the proper table, this audit

browser could have the same functionality as the UNIX-

specific model presented earlier. With enough experience, a

wide library of tables could be developed, each suited for a

special purpose.

5.5.1 Advantages of this Model
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As previously mentioned, there are many advantages of

this method. By defining different tables, the system can

easily model different objects or kinds of objects. By also

changing the grammar, the system becomes highly portable

across platforms. The system is not forced to rely on the

same underlying abstractions. The only abstraction which

must be made is that objects and interconnections exist

within the system. The system is less memory intensive

since it keeps most of the audit data in the audit trails,

and the resulting structures could be used by graph

algorithms.

5.5.2 Disadvantages of this Model

The primary disadvantage of this model is that it

requires the majority of the audit data to be kept in the

audit trails, rather than in memory with the objects. This

will alleviate memory requirements in large models, but this

method requires that the browser be able to efficiently seek

to the required locations. If an object has a multitude of

links, it may take the program some time to retrieve all of

the data. Additionally, this method requires that the

operating system be able to maintain the integrity of the

data after the model is built. If the data were to change,

the browser could read the wrong information.



77

5.6 Answering the Questions

At the beginning of this section, we posed some

questions which might be asked of audit trail browsers.

Therefore it is appropriate to give some guidelines as to

how these questions can be answered using this object-based

analysis approach.

1) Who logged in during a specified time period?

This type of question would be more suited to a database

query, but can be answered using our browser. First, the

data must be reduced to include only those records from the

time in question. Since records in audit trails are

normally stored by time, it should be fairly easy to write a

filter. Then once the model has been built, the session

objects can be examined for login activity.

2) Who created, read, wrote, or deleted a particular

file?

This question can be answered by simply looking at the

access history for the file object.

3) What program(s) did a process run?

Similar to 2).

4) What subprocesses were created by a process? What

did they do?

The browsing tool could be instructed to show only the

process manipulation access histories, from which additional

processes can be examined.
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5) Which process is the parent of another process?

What did it do?

Similar to 4).

6) Did someone try to obfuscate the audit trail by

copying portions of a sensitive file under a

different name?

7) How was it accomplished? (What usernames,

programs, permissions, etc., were used?)

12) How did information from one file end up in

another?

To answer 6), 7), and 12), if the file in question was read

by a file copy command, it stands to reason that the new

file might contain information from the original file. This

can be caught very easily by first looking at the file in

question and then examining the processes and executed

commands. However, if the information was leaked when a

process opened a file for reading and another for writing,

we cannot be as sure. One process reading the data does not

necessarily imply it wrote the same data. Additionally, the

process which read the data may not necessarily have done

the writing. By some interprocess communication, audited or

not, any other process may have performed the write.

Unfortunately, there are many ways for processes to

communicate, not all of which are currently auditable, e.g.

changing system performance metrics which another process

could detect and intrepret as data.
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8) After some particular action, what did a user do?

Again, this involves following the links from a particular

point in the model.

9) How did a user gain additional permissions?

11) How did a file change permissions without the

owner’s consent?

13) Was a vulnerability exploited on this system? If

so, what was it? What steps were used?

9), 11), and 13) can be answered by considering the previous

example demonstrating how rdist can be subverted into giving

root access. The resulting structures were able to detect

the change, and the SSO could follow the flow of events to

document what happened.

10) What effects did a file modification have on the

system?

Many of the questions cannot be answered unless the change

had some kind of effect on the audit records. For example,

a user modifying the password file to create a new user will

only generate file change records. Until the new user logs

in, we won’t know what change was made. Some of the

modification problems would be better handled by static

analysis tools such checksumming in COPS [Farm91] and SPI.

14) Are there indications of a virus or trojan horse?

If the actions caused by the trojan horse or virus are

auditable, it is very likely that the SSO would be able to

detect attempted changes to system files using the methods
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described. However, some trojan horse attacks do manage to

escape auditing, thus frustrating our efforts.

5.7 The Downfall of Slicing

One of the original goals of this thesis was to

determine the utility of incorporating a debugging technique

called slicing [Weis81, Agra90] into the analysis of audit

trails. A goal of slicing is to use dataflow analysis and

graph theory to determine all statements in a program or

program segment which might affect the value of a variable.

The slicer uses these statements to construct a minimal form

of the program which still produces the observed behavior.

As an example, it is desirable to find all statements

which affect the value of variable Y in statement s10 in the

code below.

begin
s1: read(X);
s2: if ( X < 0 ) then
s3: Y := f1(X);
s4: Z := g1(X);

else
s5: if ( X = 0 ) then
s6: Y := f2(X);
s7: Z := g2(X);

else
s8: Y := f3(X);
s9: Z := g3(X);

endif
endif

s10: write(Y);
s11: write(Z);

end
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They are statements s3, s6, and s8. Then we use this set of

statements, and add to it all statements which can affect

these new nodes, either by a data or a control dependency.

This process continues until we develop the set {s5 (because

X determines which function is called, affecting the value

of Y), s2 (for the same reason), s1 (because the value of X

is set here, which affects the outcome of s2 and s5), s3,

s6, and s8}. By considering only this minimal subset, we

can focus our debugging effort on these statements, because

statements s4, s7, s9, and s11 will have no effect on Y.

I had originally hoped that a variation of this method

would be useful for analyzing audit trails. Starting with a

particular object, we could slice backwards or forwards,

only keeping a small subset of references which directly

affected or were affected by the objects in the working set.

As our slicer moved into the audit trails, if an audit

record was found that contained one of the working set

objects, the record would be output to the SSO, and the

other objects discovered in that record would be added to

the working set and slicing would continue.

As an illustrative example, assume that user joe logged

into a heavily used system, and then changed his user

identification to frank . User frank read some confidential

information, and over the course of the next hour, he read

some files, changed his user name to mark , then created and

wrote information into a world readable file called file1 .
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Thirty minutes later, file1 was downloaded by someone using

the file transfer daemon into a machine called cracker.

Three days later, the SSO is called to find out how the

information was compromised. He may print the voluminous

audit trails and step through it by hand (not likely), or

call the slicer to slice the audit trail to construct a

chain of events starting with the sensitive file access.

The slicer would note that the sensitive file was read

by frank . By slicing earlier in the data, it would find the

user id switch from joe . At this point it would know that

it can disregard any audit data which do not reference any

of three objects, {sensitive_file , frank , or joe} . Now by

slicing forward, it would find the user id switch from mark ,

and mark ’s subsequent creation of file1 . Our working set

now contains { sensitive_file, joe, frank, mark, file1} .

Note that the SSO only had to provide the initial audit

record; while the slicer took care of the data reduction.

Note also that this is an interactive process; at each step

the SSO must state what objects to add to the working set

based on his knowledge of the problem, and instruct the

slicer as to which direction to process. I had constructed

a small prototype of this slicer, and the results were very

encouraging, especially when the results were displayed

graphically using a tool called xgrab. (See Figure 15.)

At first glance, the idea seemed plausible. There were

several issues to be resolved: namely, which attributes
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should be used for slicing. Several showed potential, such

Actions Working Set

joe

frank

mark

file1

ftp file1

Sensitive
File

{file}

{file, frank}

{file, frank, joe}

{file, frank, joe, mark}

{file, frank, joe, mark, file1}

Slicing
Direction

Figure 15 Graphical view of slicing, with working set.

as users, processes, and files. The attribute problem was

the same as the object problem in the earlier object-based

models. Some attributes might be of more use for certain

kinds of browsing.

While further developing this model, I noticed that

this method had a major flaw, which caused me to abandon

further research into it. If the slicer started with an

object and moved forward, it might pass over objects that

are needed later in the analysis. Since those objects are

currently not in the working set, they are ignored. After

the slicer finds an applicable record and determines those

objects should be added to the working set, the slicer must

be instructed to move backwards, parsing and analyzing all
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the data it previously examined as in Figure 16. If enough

x

x

x

x

x

x
x

location in
audit file

Figure 16 Slicing showing excessive forward and backward
motion.

direction changes are necessary, the algorithm becomes

terribly inefficient. It might be possible to keep a list

of recently seen objects, but this may be of no use,

especially if the locality of object references is small.

The algorithm does seem to work quite well if the actions

occur serially, but this cannot be guaranteed, especially

/since BSM sometimes reports records out-of-order.

5.8 Experiences with BSM

Sun’s BSM does have a variety of limitations; however

it is a relatively complete package. Since the experiments

performed for this thesis involved BSM for SunOS 4.1.1, a
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brief summary of my experience is in order. The primary

limitations are:

1) audit data is sometimes out-of-order,

2) no per-object auditing (other than user),

3) no easy model for distributed auditing,

4) no auditing on some standard OS services,

5) a bug in the output of filenames, and

6) reliance on system configuration between audit

collection and analysis.

The first point is well known to Sun [Wetm92d], but

should be mentioned. There are some instances in which the

audit data is not stored in the same order as the

corresponding actions. For example, when a process forks,

the audit trail shows the beginning actions of the new

process before the process fork is seen. Any audit browser

which depends on records being in proper time based order

must take this partial ordering problem into account, or the

resulting analysis will be invalid. One could overcome this

limitation by using a windowing mechanism similar to those

used in out-of-order communication protocols.

Sun allows great flexibility for setting the audit

state of users, since this is the historical model for

collecting data. However, no provisions were made for

setting the audit state of other objects. In some cases it

would be of great utility to have finer control over objects

being audited. In this manner, if the SSO determined that
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additional information regarding actions to a particular

file is required, the audit daemon could produce that

information.

As an example, consider the UNIX password file. Each

entry in this file defines an individual user. If a general

text editor were used to edit this file, the audit trail

would only contain the file open and the processes and

programs involved. Of much greater use would be how much

data was read or written, or at least the change in the

number of lines in the file. There is some work being done

at UC Davis to combine static and dynamic analysis tools

which could detect these changes, but it would be useful to

have the information available directly in the audit data.

Conversely, in other cases some information in audit

trails is useless. For example, there are several

dynamically linked files which are read before the execution

of every program. Unless these files are modified, their

inclusion in audit trails is unnecessary. By allowing a

per-object preselection audit state to be set, an additional

level of audit reduction can be performed.

Another problem area comes from the interconnectivity

inherent in intermachine communications, specifically

regarding NFS. Auditing is only performed on the system

which invoked the request. Frequently, the object accessed

resides on a remote file system. Unfortunately, if a SSO

tries to determine who accessed a file, he must poll each
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audited machine in order to determine accountability. Sun

has provided some tools for aggregating audit files, but it

seems more straight-forward to perform auditing both on the

host machine where an object resides, and on the machine

which initiated the request. Additionally, the machine

which generated the request may be a machine which is not

running BSM, which would preclude all chances of determining

responsibility.

In addition to the problems mentioned above, there are

several standard service mechanisms which are not audited,

and are the focus of ongoing research at several

institutions. Inetd and many of the inetd servers, such as

finger and remote procedure calls (RPCs) are generally not

audited. The requests generated by these servers do invoke

auditing once the lower level system calls are invoked. But

it would be useful to provide application-level auditing in

these areas. It would be of more use to a SSO to know that

one machine originated an excessive number of finger

requests than knowing the password file was opened multiple

times. This data could supplement the information already

captured, and would help in analysis by providing higher-

level explanations to lower-level actions. Pipes and other

interprocess communications mechanisms need to be audited

more.

One of the biggest problems noticed during

experimentation was BSM’s inability to distinguish certain
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objects, namely files. The first problem was apparently the

result of a bug in the audit daemon. Files with especially

long pathnames generated sequences of unknown binary

characters. It was not apparent how to get around this

limitation, so I switched to file system numbers for object

identification. Unfortunately, these numbers were not

consistent either, so some of the experiments had to be

interpreted manually.

Another potential problem comes from the reliance of

system tables remaining the same between audit data

collection and analysis. As an example, all references to

users are represented in audit trails by the user id

assigned in the password file. If a user id number were to

change, or if the numbers on the collection machine and

analysis machine are different, the SSO might assign

responsibility to the wrong individual.

One possible solution would be to include an "object

record" the first time an object is seen, along with a

cross-reference value which could be used in future

references as in the AT&T style of auditing [Dowe90]. This

"object record" would include all pertinent information

relating to this object, its name, its type, and perhaps an

ASCII description of the object. Unfortunately, this would

require a penalty in performance in the audit daemon, as the

daemon must now maintain this information. This is probably

not a valid option. Before an audit browser based on the
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techniques presented in this thesis can be developed, this

object identification issue must be resolved.
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6 Future Work

In the area of audit browsing, much work still needs to

be done. The only two methods proposed for browsing are

DBMS and Object-Based Analysis. There may yet be another

paradigm more appropriate; for following the

interconnections of object, Object-Based analysis seems

appropriate.

For immediate future work, the most pressing issue is

to actually build the proposed generalized audit browser.

After the initial success with the UNIX-specific model, I

have great confidence that a prototype can be quickly built

and effectively used. During the next year, I hope to

continue further development of this model and construct the

prototype. Once the prototype is built, benchmarks must be

established to determine the effectiveness of this system.

There should also be research undertaken to determine

if signature analysis could be implemented using these

concepts. Since the current method uses individual events

to advance the finite state automata, by a careful

organization of data structures, the object links could be

traversed as a replacement for the automata. By linking the

objects in real time much as is done in DIDS, the browsing

could be done simultaneously with signature analysis.
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This method may also have use for comparing expected

versus actual performance for programs. For example, in

normal rdist program operation, several processes are

created in a very specific order, each with very specific

duties. The process running rdist is supposed to read

several system files, fork some subservient processes, and

then create and change permissions on one temporary file.

If the system observed that the create and change operations

involved different files, a warning would be generated. By

comparing the processes and duties observed with a template

of those expected, we should be able to determine if

something is amiss. This form of misuse detection would

have the additional advantage that the program developers

could specify the expected actions of a working program.

This method does not require that bugs be exploited before

an expert system rule can be generated.

Finally, a closer examination should be made as to how

graph algorithms could be incorporated into the analysis. I

have hypothesized that such techniques would be useful, but

until the object browser has been built, I cannot say for

sure.
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7 Conclusions

Viewing the media reports of late, computer systems are

being compromised with increasing regularity. It is

apparent that many of the system restrictions are being

circumvented by various means. Many of the intrusions are

caused by human factors such as weak or compromised

passwords, or by insiders abusing their privileges. When

the preventative measures fail in their effectiveness,

auditing can be called upon to help document actions. While

auditing cannot solve the problem of detecting all

intrusions, it has the potential to help the SSO. But until

reasonable methods are available for viewing these audit

trails, the potential remains untapped.

In this thesis, I have proposed an alternate method to

the DBMS method proposed in [Dowe90]. Apparently these are

the only two models in existence. This method develops

system abstractions into objects, and then attempts to

develop interconnective links. A UNIX-specific prototype

system was developed, and showed great potential. It

allowed a SSO to easily monitor the results of several

controlled attacks. A general model was then proposed, with

a series of future enhancements. This generalized method

seems to be very appropriate for answering many of the
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questions an SSO will be asking of audit trails, once

generalized browsing becomes widely available.
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10 Appendi x 1 - Output of "ab"

Processes:

Process: 4408
began at: Mon Nov 2 23:01:11 1992
exited at: Mon Nov 2 23:01:14 1992
auid = insider ruid = insider euid = insider egid = staff
---Files Exec’d---
execve(2): /home/insider/change_mod(100700) at Mon Nov 2 23:01:11

1992
ruid = insider euid = insider egid = staff
---Files Read---
open(2):read /home/insider/change_mod at Mon Nov 2 23:01:11 1992

...output deleted...

Process: 4412
began at: Mon Nov 2 23:01:12 1992
exited at: Mon Nov 2 23:01:14 1992
ruid = insider euid = insider egid = staff
---Files Exec’d---
execve(2): /usr/ucb/rdist(104751) at Mon Nov 2 23:01:12 1992
ruid = root euid = insider egid = staff
---Files Written---
chmod(2): /usr/bin/sh at Mon Nov 2 23:01:14 1992
ruid = root euid = insider egid = staff

...output deleted...

Process: 4421
began at: Mon Nov 2 23:01:17 1992
exited at: Mon Nov 2 23:01:32 1992
ruid = insider euid = insider egid = staff
---Files Exec’d---
execve(2): /usr/bin/sh(104777) at Mon Nov 2 23:01:17 1992
ruid = root euid = insider egid = staff

...output deleted...

Process: 4423
began at: Mon Nov 2 23:01:29 1992
exited at: Mon Nov 2 23:01:19 1992
ruid = root euid = insider egid = staff
---Files Exec’d---
execve(2): /usr/bin/chmod(100755) at Mon Nov 2 23:01:29 1992
ruid = root euid = insider egid = staff
---Files Written---
chmod(2): /usr/bin/sh at Mon Nov 2 23:01:30 1992

...output deleted...

File System:

file_system_id = 1798 node_id = 2441
filename = /usr/bin/sh
Access History:

chmod(2): (file attributes 100755) at Mon Nov 2 23:01:14 1992
process = 4412 ruid = root euid = insider egid = staff
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execve(2): (file attributes 104777) at Mon Nov 2 23:01:17 1992
process = 4421 ruid = root euid = insider egid = staff

chmod(2): (file attributes 104777) at Mon Nov 2 23:01:30 1992
process = 4423 ruid = root euid = insider egid = staff


