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Abstract

A Data Level Database Inference Detection System

by

Raymond Wai-Man Yip

Doctor of Philosophy in Computer Science

University of California at Davis

Professor Karl Levitt, Chair

Inference is a technique a user can employ to defeat access control mechanisms in a

database system. It poses a con�dentiality threat to a database system, making it di�cult to

control access to sensitive information. An inference detection system is needed to determine

if users can use legitimately accessed data to infer sensitive information. The design of an

inference detection system is a trade-o� among soundness, completeness, accessibility of

the database, and e�ciency of the inference detection process. We describe six inference

rules to determine if an adversary has collected enough data to perform inference, namely

split query, subsume, unique characteristic, overlapping, complementary, and functional

dependency. We prove our detection system is sound, thus it will not object to legitimate

queries. Schema-based inference detection systems, which detect inference using functional

dependencies, are unsound and incomplete, that is, they can generate false positives and

negatives. Our system makes use of the database contents to detect inferences, making it

more complete than schema-based inference detection systems. In this respect, our inference

detection system detects a known inference attack called Tracker, not detectable by the

schema-based approach. Our detection system can be ine�cient, as we need to keep track

of all queries issued by users, and perform inference detection using them. A performance

evaluation of our prototype shows that the system performance is a�ected by the size of

the database, the amount of duplication of data in the database, the number of projected

attributes and conjuncts in queries, and the number of return tuples from queries. We

show that the system could be practically employed for certain realistic types of databases

and queries, for example, a database with large number of attributes. Experimental results
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also show a strong correlation between the information inferrable by an adversary and the

amount of overlapping among return data and also the fraction of the database that has

been accessed by a user. To report on an adversary approaching an inference, we investigate

the detection of approximate inference. Our main results are for static inference, but we

also investigate the detection dynamic inference.

Professor Karl Levitt
Dissertation Committee Chair
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Chapter 1

Introduction

Modern database systems allow multiple users access to data. When users are

not to be allowed accesses to every item of data in the database, an access control system

is needed. An access control system has two components: the access control policy and

the access control mechanism. The access control policy speci�es the accesses that are

allowed or disallowed for each user in the database system. The access control mechanism

enforces the policy. A mechanism is sound with respect to a policy if it allows accesses that

are allowed by the policy, and disallow accesses that are not allowed by the policy. The

mechanism is complete with respect to a policy if it addresses all accesses as speci�ed in the

policy.

Each user accesses the database system using queries. For each query issued to

the database system, the access control system determines if the query is allowed by the

database system. The allowed queries are processed by the database system, and the

results are returned to the user. The disallowed queries can be handled in various ways.

For example, the user may simply be noti�ed that the query violates the access control

policy and is not processed by the database system, or the database system intentionally

returns incorrect responses to the user in order to protect the data. The invalid accesses

might also be recorded for further investigation.

There are two types of access control systems: mandatory and discretionary. In

mandatory access control systems, each piece of data in the database is given a classi�cation

level. Each user is assigned a clearance level. It is the clearance level of a user u, the

classi�cation level of a data item d, and the type of the access operation that determine

whether the user u can access the data d. Common mandatory access control policies
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include the Bell-LaPadula [BL73], and Biba policies [Bib77], addressing con�dentiality and

integrity respectively.

In discretionary access control systems, the accesses to data are explicitly granted

to or denied to users. The access control policy can be expressed in two forms: 1) a user is

allowed to access all data unless it is prohibited by the policy, or 2) a user is not allowed

to access any data unless it is granted by the policy. A typical discretionary access control

policy is expressed in a 3-tuple: (user, data, operation). If (u, d, o) is in the policy, then

subject u is allowed (or disallowed) to perform the operation o on the data d.

Inference is known as a way to defeat an access control mechanism. It poses

a con�dentiality threat to a database system. Consider the following database with two

tables: NSJ and JS.

NSJ: (Name [U], Salary [C], Job [U])

JS: (Job [U], Salary [U]).

Table NSJ stores data about the employee names, their salaries and job titles. Table

JS stores data about the job titles and their salaries. Attributes followed by an `U' are

unclassi�ed. Attributes followed by an `C' are con�dential. Consider a mandatory access

control system that enforces the Bell-LaPadula policy. It states that a user can read a

piece of data if the clearance level of the user dominates the classi�cation level of the

data. Suppose the access control policy requires that only users with con�dential clearance

can access the salaries of employees. A naive way to enfore this policy is to classify the

attribute Salary in table NSJ as con�dential, while leaving other attributes as unclassi�ed.

In this way, an unclassi�ed user cannot directly access the salaries of employees from table

NSJ. However, suppose job titles functionally determine salaries; that is, each job title is

associated with one and only one salary. With this property among the data, an unclassi�ed

user can infer the salaries of employees. This is done by discovering the job J of an employee

E from table NSJ, and then the salary S of the job J from table JS. Then, the user can

infer that the salary of the employee E is S.

Inference can also occur in discretionary access control systems. Suppose the policy

speci�es that a user U is not allowed to access the salaries of employees. Again, a naive

way to enforce this policy is to reject any query issued by the user U that accesses data

about both the employee names and salaries. Using a similar method as discussed above,
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if a user can �nd out the job title J of an employee E, and the salary of the the job title J

is S, the user can infer the salary of the employee E.

The inference problem is de�ned as follows.

De�nition 1 An inference occurs when a user is able to use legitimately accessed data to

infer data that the user is not allowed to access according to an access control policy.

In mandatory access control systems where the Bell LaPadula policy is employed,

the legitimate data that a user U can access are those whose classi�cation levels are domi-

nated by the clearance level of the user U . In discretionary access control systems, legitimate

data that a user U can access are those that the user is allowed to access according to the

access control policy. The existence of the inference problem defeats the access control

mechanisms, making them neither sound nor complete. In general, the set of data that

can be inferred is determined by the structure of the database, and the data stored in the

database.

A multilevel database system is a database system that enforces the Bell LaPadula

policy. Early work on inference detection in multilevel database systems employed a graph

to represent functional dependencies among attributes in the database schema. Each node

in the graph corresponds to an attribute in the database schema. An edge from node A

to node B in the graph indicates that the attribute corresponding to node A functionally

determines the attribute corresponding to node B. An inference path is detected when there

are two or more paths found in the graph that connect one node to another, and the paths

are labeled at di�erent classi�cation levels [Hin88, Bin93b, QSK+93]. The classi�cation level

of a path is the least upper bound of the classi�cation levels of the attributes corresponding

to the nodes on the path. For example, consider the NSJ and JS tables. We can construct

a graph as shown in Figure 1.1 to represent the database schema.

U

Name Salary Job

C

Salary

U

Figure 1.1: An Example on the Schema-based Inference Detection Approach.

Each node in the graph corresponds to an attribute in the database. The node `Job'
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corresponds to the attribute Job in both tables. Each edge is labeled with the the least

upper bound of the classi�cation levels of the attributes connected to the edge. An inference

exists in this database as there are two paths with di�erent classi�cation levels. They are

the unclassi�ed path connecting the `Name' to `Job' which in turn is connected to `Salary',

and the classi�ed path connecting the `Name' and `Salary'.

Lunt [Lun89] points out that some inference problems can be avoided by redesign-

ing the database schema, and classifying the attributes properly. However, redesigning

the database schema results in data duplication which leads to update anomalies. It also

requires modi�cations to existing application programs.

Inference paths can also be eliminated by upgrading attributes along the paths

[SO87, Sti94]. However, upgrading makes the database less accessible to users. Consider

the inference as found in the NSJ and JS tables. This inference can be blocked by classifying

the attribute Salary in table JS as con�dential, as shown in the following new database

schema,

NSJ: (Name [U], Salary [C], Job [U])

JS1: (Job [U], Salary [C]).

In this way, unclassi�ed users cannot access any data about salaries, and hence cannot

perform the inference. However, this makes the database system less useful to users. For

example, it prevents unclassi�ed users from accessing the salaries of job titles, not prohibited

by the policy. Knowing the salaries of job titles does not necessary always lead to inference

of salaries of employees. If an unclassi�ed user only accesses job and salary data in table

JS1 but does not access table NSJ, then the user cannot infer the salaries of employees.

However, with the new schema, such accesses are denied. Therefore, the new schema pre-

vents inference at the expense of decreasing the accessibility of data to unclassi�ed users.

An ideal access control system should on the one hand prevent inference, and on the other

hand provide maximum accessibility of the database system to users.

In discretionary access control systems, it is not an obvious task to grant users with

all of the access rights they need. In some cases, users are simply given more access rights

than they need in order not to hinder their work. User activities should be monitored

to make sure that they are not misusing their privileges. A simple way to monitor user

accesses is to reject any query that performs unauthorized access. However, a user may

issues a series of authorized queries to infer data, using the similar inference techniques as
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in multilevel database systems. Motro et al. address a similar problem, but their work

focuses on detecting aggregation instead of inference attacks [MMJ94]. In the statistical

database security community, various techniques have been proposed to protect individual

records, for example, query-set-size control, cell suppression, and data perturbation [AW89].

However, these techniques are not suitable for detecting inference attacks employing general

purpose queries.

As noted by SRI researchers, monitoring user activities may lead to detecting more

inference than that can be detected by using schema-based approach which yeilds both false

positive and false negative reports [SGLQ94]. Consider the following database.

Name Salary Resident

Robert 45K San Francisco

Phil 50K San Francisco

Jack 60K Palo Alto

Resident Salary

San Francisco 45K

San Francisco 50K

Palo Alto 60K

In this database, the attribute Resident does not functionally determine attribute Salary,

as both Robert and Phil live in San Francisco but they earn di�erent salaries. As a result,

schema based inference detection systems do not report any inference threat in this database.

However, if a user knows that Jack is the only employee who lives in Palo Alto, the user

can infer the salary of Jack by querying the database to �nd the salary of the employee who

lives in Palo Alto in the second table. This example illustrates that simply examining the

database schema to detect inference is not su�cient, and taking the data in the database

into consideration can lead to the detection of more inferences. We term the approach

that detects inference with the consideration of the data in the database as the data level

inference detection approach.

In this dissertation, we describe our e�ort to develop a data level inference detec-

tion system. We have identi�ed six inference rules that users can use to infer data: `split

query', `subsume', `unique characteristic', `overlapping', `complementary', and 'functional

dependency' inference rules. These rules essentially cover the set-subset, intersection, and

di�erence relationships among the return tuples of queries. The functional dependency

inference rule is introduced to simulate the schema-based inference detection approach.
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Hence, our system can detect more inferences than that detected by systems using the

schema-based approach. The detection system can apply these rules any number of times,

and in any order to detect inference. These inference rules are sound but not necessarily

complete. Although we have no example that demonstrates incompleteness, more research

e�ort is needed to determine if they are complete. We employ a rule-based approach so

that when a new inference rule is discovered, it can be incorporated into the inference de-

tection system. Our work con�rms the inadequacy of the schema-based inference detection

approach.

We have developed a prototype of the inference detection system to study its

performance. The experimental results show that the system performance is a�ected by

the characteristics of the database and queries. In general, the inference detection system

performs better with a larger number of attributes in the database, more duplication of

attribute values in the database, smaller number of tuples returned by the queries, smaller

number of attributes projected by the queries, and larger number of conjuncts in the queries.

Our approach would be most useful in detecting subtle inference attacks.

Most existing approaches to inference detection make the worst case assumptions

and put more restrictions on the uses of the database. They focus more on making the

access control mechanism complete rather than sound. On the other hand, our approach

detects if an inference could possibly occur, and hence our system allows the maximum

accessibility of the database to the users.

This dissertation is organized as follows. In Chapter Two, we describe previous

work in inference detection and elimination. In Chapter Three, we introduce our rule-

based approach to data level inference detection. We illustrate the e�ectiveness of our

inference detection system by using the inference rules to detect the well known TRACKER

inference attacks on database systems. In Chapter Four, we describe our prototype of the

inference detection system, and present the experimental results. The results show how

the characteristics of databases and queries a�ect the system performance. In Chapter

Five, we explore issues in developing a realistic inference detection system. We discuss the

detection of approximate inference and dynamic inference, and the uses of multiple tables

in the database and nested queries. In Chapter Six, we discuss possible future work and

provide a conclusion.
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Chapter 2

Background

In general, users perform inference in two stages: 1) data collection, and 2) rea-

soning with the collected data. The data being collected include data in the database that

are accessible to users, integrity constraints that hold in the database (including the func-

tional dependencies among attributes), and real-world knowledge (which is not represented

in the database) on the application domains. The data collection and the reasoning stages

are performed repeatedly by the adversary until the intended inference is achieved or he

gives up. The data that adversaries want to infer include the existence of certain item in

the database, or the associations among data. For example, if a user wants to infer if a

project is about developing some nuclear weapons (perhaps an association not explicitly

represented in the database), the user might try to �nd out if there exists a team mem-

ber who is a nuclear weapons expert. Also, if a user wants to �nd out the salary S of an

employee E, the user not only needs to �nd out that there exists such an employee E and

a certain salary amount S in the database, but also needs to �nd out that the salary S is

associated with the employee E. In some cases, instead of inferring the exact data values

in the database (precise inference), users may be content with a set of possible data values

(imprecise inference or approximate inference). For example, when a user can infer that an

employee earns either 60K or 61K, the user has practically inferred the employee's salary.

To tackle the inference problem, we should explicitly represent all information

available to users, and mimic the reasoning strategies of users. These are major challenges

to the inference problem. For more than a decade, researchers have proposed numerous

approaches, however, up to the present, there is no single approach that can completely

prevent the occurrence of inference without seriously sacri�cing the accessibility of the
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database systems. Note that one simple way to block any inference in a multilevel database

system is to classify all data at the highest classi�cation levels. In this case, obviously,

no inference occurs, but the database becomes completely inaccessible to users with low

clearance levels.

In the following sections, we review the characterizations of inference and existing

approaches to detect and eliminate inference. We illustrate the inadequacy of existing

approaches and, hence, demonstrate the need for a more sophisticated approach to the

problem as provided by our data level inference detection system.

2.1 Characterizations of Inference

There are two types of inference: static and dynamic [Den86, Hin89]. Static infer-

ence is performed with respect to a snapshot of a database, that is, the approach assumes

there is no change to the database while the inference is performed. Dynamic inference is

performed when there are changes to the database. The objects to be changed include data

stored in the database (by the update, insert, and delete operations), classi�cation levels

of data (for example, due to sanitization), and the database schema. The changes may be

initiated by adversaries so as to facilitate inference, or they may result from normal oper-

ations on the database system. It is possible for a user to perform inference by observing

the changes to the database. For example, when a new employee arrives, his/her data are

added into various tables in the database. By querying the database before and after the

new employee's records are added, a user can determine the set of newly added records that

are accessible to the user. The dynamic inference problem is more di�cult to handle than

the static inference problem as we need to consider the e�ects of update operations. Most

research e�orts to date focus on tackling the static inference problem. In Chapter 5, we

explore the issues of dynamic inference by discussing the e�ects of update operations on

our data level inference detection system.

There have been three reasoning strategies in inference: deductive, abductive, and

approximate reasoning strategies [GLS91, GL92]. Deductive reasoning uses modus ponens

to deduce information. Given that a statement S1 is true, and the rule `if the statement S1

is true, then the statement S2 is also true', it is concluded that the statement S2 is true.

The challenge in deductive reasoning is the development of the complete set of rules for

inference.
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In abductive reasoning, users infer the possible causes of an observation. Given

that the statement S2 is true, and the rule `if the statement S1 is true, then the statement S2

is also true', the user may infer that the statement S1 is true. When there are more than one

causes to the observation, the user might need to estimate the probabilities of occurrences

of the causes given that the observation has occurred. The user could then conclude that

the most plausible cause occurs, or conclude that one of the causes has occurred.

In approximate reasoning, probabilities are involved in inference. Morgenstern

provides a fundamental framework for studying the logical inference problem [Mor88]. He

quanti�es inference by de�ning an inference function called INFER in an information the-

oretic sense. INFER(x! y) is a value between 0 and 1. The value denotes the reduction

in uncertainty about y when x is known. This function is used to construct a sphere of

inference which represents the set of data that can be inferred from another set of data.

This framework sparked a decade of research in the inference problem.

Buczkowski developed a Database Inference Controller [Buc90]. He uses a prob-

abilistic model to determine the probabilities of events. An inference network is used to

represent the logical dependencies among classi�ed parameters. The probabilities are then

propagated along the inference network. If events A and B are independent, then the prob-

ability of (A OR B) is (P (A) + P (B)� P (AB)), where P (X) is the probability that event

X occurs. If the two events are dependent, then P(A OR B) becomes MAX(P (A); P (B)).

This is a very simple probabilistic model. This model provides a way to derive estimated

values about the probabilities that sensitive data are leaked. However, its accuracy is bound

by the accuracy of the estimations of the probabilities of individual events.

Chang et al. apply the Bayesian methods to the inference problem [CM98]. The

data to be inferred are treated as missing data in the database. Inference is then made

based on data accessible to users. It assumes that the missing data follow a distribution

as indicated by the accessible data. When there is more then one value to be inferred,

the Bayesian Network approach is employed. This is proposed as a new approach to the

inference problem. The complexity of the solution still remains to be analyzed, especially

when the number of missing data in the database and the size of the data domains are large.

Most research e�orts to date use the deductive approach. Not much e�ort has been

done using the abductive approach because it is di�cult to enumerate the complete set of

causes for each observation. There are a handful of papers on the approximate reasoning

approach. The di�culties are on the proper assignment of probabilities to events, and the
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reasoning with probabilistic events. Also, it is di�cult to assess the levels of con�dence of

the conclusions. In the following section, we discuss the uses of the deductive approach in

inference detection and elimination.

2.2 Inference Detection

Most existing work in inference detection focuses on how to detect inference in

a multilevel relational database systems. Hinke pioneered the use of a graph to represent

the associations among attributes in a relational database [Hin88]. Each attribute in the

database is represented by a node in the graph. A directed edge is added in the graph from

a node representing attribute A1 to another node representing A2 if there is a one-to-one or

one-to-many association between A1 and A2. An inference is said to occur when there are

two paths going from one attribute to another in the graph, and these paths are classi�ed

at di�erent classi�cation levels. The classi�cation level of a path is the least upper bound

of the classi�cation levels of attributes corresponding to the nodes on the path.

Binns constructs an inference path by joining tables that have common attributes

[Bin93b]. He quanti�es the potential of having an inference by estimating the probability

that a value of the attribute at one end of an inference path can identify the value of the

attribute at the other end of the path. He argues that the longer the inference path, the

less likely users can recognize the inference path. By doing so, he attempts to reduce the

complexity of the inference detection problem at the expense of generating false negative

reports.

DISSECT is an inference detection tool developed at SRI. Inference paths are

constructed based on relationships involving primary keys and foreign keys in the database

[QSK+93, GLQS93]. They only detect inference paths from attribute X to attribute Y

when an attribute value of X uniquely identi�es a single attribute value of Y . Hence,

their approach is more restrictive than that proposed by Hinke [Hin88]. Burns describes

an integration of DISSECT and the Software Through Pictures (StP) that has a graphical

interface for detecting inference [Bur95].

Hinke et al. take into consideration the cardinalities of associations to detect

inference [HDW97]. Instead of simply using functional dependencies among the attributes to

identify inference paths, they suggest using associations with low cardinality. An association

between two attributes X and Y has a low cardinality if given an attribute value of X, there
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are only a few possible corresponding Y attribute values. This method can be used to infer

a set of possible inferred values.

As discussed in Chapter 1, schema-based inference detection systems are not com-

plete. Such systems are not sound either; that is, they may produce false positive reports.

This is because the existence of an inference path in the database schema does not neces-

sarily imply the path also exists in the data of the database. For example, consider the

following database for dental care records,

PJ: (Part-time-ID, Job)

JD: (Job, Dental-care-allowance)

Table PJ stores the identi�cation number of the part-time employees and their job ti-

tles. Table JD stores job titles and the corresponding dental care allowances. Suppose

attribute Part-time-ID functionally determines attribute Job which in turn functionally

determines attribute Dental-care-allowance. Using the schema-based inference detection

approach, there is an inference path going from attribute Part-time-ID to attribute Job,

and then to attribute Dental-care-allowance. However, suppose part-time employees are

not entitled to have dental care allowances. In this case, the inference path does not exist

in the database. Measures that block this `inference path' (for example, by restricting ac-

cesses to table JD) may result in making the database less accessible to users. A way to

detect such false inference path is to issue queries to determine if the inference path exists

in the database [Hin88, Bin93b]. The queries can be issued periodically or when there are

changes to the database. However, this method is e�ective only if all the inference paths

are detected in the �rst place.

The inference problem becomes more di�cult to handle when users employ real-

world knowledge to perform inference. For example, the fact that a ight carries bombs is

sensitive. Suppose a user knows that a ight carries some cargos that weight more than

10 tons. With the real-world knowledge that cargos that weight more than 10 tons are

probably bombs, the user can infer that the ight carries bombs. In order to protect the

fact that the ight carries bombs, we should also protect the weight of the cargos on the

ight. The challenge in handling real-world knowledge is the representation of all relevant

information, and determining how this information relates to data in the database.

Thuraisingham uses a multilevel semantic net to represent a multilevel database

schema [Thu92]. Two semantic associations are supported: ISA (membership relationships)
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and AKO (set-subset relationships). Rules are developed to assign classi�cation levels to

objects in the semantic net. An inference occurs when the classi�cations of data violate the

constraints as speci�ed in the semantic net.

Hinke et al. developed an inference analysis tool that factors domain knowledge

into the inference detection system [HDC94, HDW95, DH96]. They group inference relevant

information into three layers: entity layer, activity layer, and the entity-activity relationship

layer. Each layer is further subdivided into facets (or associations) to represent knowledge

on that layer. Example facets include is-a, part-of , temporal, and used-for facets. The

inference detection tool searches for inference paths through the associations on the same

layer or across layers. Such a scheme is useful only if all the relevant knowledge is explicitly

represented, and the reasoning strategies that users employ to process the knowledge are

identi�ed.

Another approach to deal with inference using real-world knowledge is to represent

the knowledge as a part of the database called catalytic relations [Hin88, HS97]. The

inference detection system is then run against the database together with the catalytic

relations. Hale et al. employ imprecise and fuzzy relations to form the catalytic relations

[HS97]. The e�ectiveness of such approach depends on the abilities of capturing all relevant

real-world knowledge into the catalytic relations.

2.3 Inference Elimination

There are four inference elimination approaches reported in literature: upgrad-

ing attributes, withholding query results, polyinstantiation, and schema redesign. There

are other inference elimination methods that are suitable for statistical database systems,

including data perturbation, cell suppression, and random sample queries [AW89]. In sta-

tistical databases, users can only query statistics about the database. In this dissertation,

we discuss the inference problem in general purpose database systems. Hence, we do not

further discuss the inference elimination techniques that apply to statistical databases only.

Su and Ozsoyoglu point out that users can make use of the functional dependencies

among attributes to perform inference [SO87, SO91]. They have developed algorithms

that remove inference by upgrading attributes involved in functional dependencies and

multivalued functional dependencies. In their solution, for any functional dependency where

X functionally determines Y , the resulting classi�cation level of X dominates or equals
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that of Y . They prove that the problem of �nding the minimum number of changes to

classi�cation levels of attributes is an NP-complete problem on the number of attributes in

the database.

However, it is not necessary to maintain such relationships among the classi�cation

levels of attributes in all functional dependencies. For example, consider the inference

path where X functionally determines Y , and Y functionally determines Z. In Su and

Ozsoyoglu's solution, the classi�cation level of X dominates or equals that of Y which in

turn dominates or equals that of Z. Yet, if we only want to prohibit the user from inferring

attribute values of Z, we can simply classify Y at a level that dominates or equals that of

Z, and X can be assigned with any classi�cation level. Su and Ozsoyoglu's conservative

attribute upgrading scheme results in overclassifying attributes. Attributes are overclassi�ed

if they are classi�ed at levels that are higher than necessary to eliminate inference, making

the database less accessible to users.

Stickel tackles the same upgrading problem [Sti94]. He formulates the problem

as a set of formulas that specify the constraints on classifying the attributes. He then

uses the Davis-Putnam theorem-proving procedure to obtain an optimal solution for the

classi�cation problem. He has not addressed the performance issues of this system.

The LOCK Data View project eliminates inference by rejecting suspicious user

queries [HOST90]. The system maintains a history �le of previously answered user queries.

Each new user query issued to the database is checked with the previously answered user

queries to determine if they together reveal sensitive information. Violating requests are

simply denied. Lunt [Lun89] comments that it is di�cult to assure the correctness of the

access control mechanism in such a scheme as it is needed to be included in the Trusted

Computing Base.

Another way to eliminate inference is to use polyinstantiation (or cover stories)

[DLS+87, DLS+88, JS90]. In a polyinstantiated database, each classi�cation level has its

own view of the database. It is possible to have data associate with one classi�cation

level di�erent from the corresponding data at di�erent classi�cation level. For example,

if knowing the expertise of an employee is in nuclear Physics leads to inferring classi�ed

information, then the system can eliminate inference by telling unclassi�ed users that the

employee's expertise is in, say, Computer Science. Chen and Sandhu have developed a

model to handle update operations in polyinstantiated database [CS95]. Binns [Bin93a]

noted that polyinstantiation should be done with care, otherwise the inference problem can



14

still exist. For example, the second tuple in the following database is added to cover up the

classi�ed information about John's salary. However, if there is another table that reveals

the salary of legal consultant to be 80K, then a user can still infer John's salary.

Name Job Salary Tuple Classi�cation Level

John legal consultant 80K Classi�ed

John legal consultant 45K Unclassi�ed

Lunt points out that some inference problems can be solved by schema redesign,

instead of developing any special access control mechanism [Lun89]. Suppose we need to

classify the salaries of job titles while the individual attribute values of attributes Job and

Salary are unclassi�ed. Lunt suggests creating the following three tables,

(Job code, Salary code) [C],

(Job, Job code) [U], and

(Salary, Salary code) [U].

Attributes Job code and Salary code are unique identi�cations of attribute values of at-

tribute Job and Salary respectively. The �rst table stores data about the associations

between attribute Job and Salary. It is classi�ed. The second and third table store data

about individual attribute values of Job and Salary, and they are unclassi�ed. Hence, un-

classi�ed users can still access the individual attribute values of Job and Salary, but they

cannot access the associations between them.

However, modifying the database is an expensive operation. First, we need to

adjust application programs that access the modi�ed database. Second, creating separate

tables to store protected associations lead to duplication of data. This introduces update

anomaly problems. Also, extra join operations are needed to retrieve the protected as-

sociations. Although the join operations can be done e�ciently with appropriate index

structures, maintaining the index structures is costly.

Blocking one inference path by upgrading some attributes might introduce new

inference paths [SO87]. Binns notices that some of these new inference paths are false

inferences [Bin94]. He suggests maintaining two classi�cation levels for each attribute: the

intended and the actual classi�cation levels. Only the intended classi�cation levels are used

to detect inference.

There are also research e�orts in developing a database system that is free of
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inference. Lin de�nes a lattice model where the classi�cation level of each view in the

database is the least upper bound of the classi�cation levels of its elements [Lin93]. He claims

that when a database satis�es such model, there is no inference. However, he ignores the

fact when two related items (for example, related by functional dependencies) are classi�ed

at di�erent levels, inference can occur. A counter-example is shown in [Bin93b].

Qian identi�es classes of integrity constraints that make a database free of both

static and dynamic inference [Qia94]. These constraints are su�cient but not necessary con-

ditions to have an inference free database. However, more research is needed to determine

if there exists some other less tight integrity constraints that can also result in inference

free guarantees, and at the same time make the database more accessible to users.

Marks considers queries in a speci�c form where the selection condition is a con-

junction of \A = a", where A is an attribute, and a is an attribute value [Mar96]. He

develops an e�cient algorithm that determines if a query poses an inference threat. This

is the case when the query projects attributes in a protected view, a view of the database

whose data are to be protected. The detection system is designed to make the database

completely free of inference. He takes a conservative approach, making the database system

less accessible to users. The method is e�ective only if the complete set of protected views

is speci�ed. However, the cause of most inference problems is the failure to identify the

complete set of data to be protected. Marks' method can be useful in eliminating inference

once the inference paths are identi�ed, and hence the protected views are de�ned.

2.4 A Summary of Existing Work

Most existing inference detection approaches rely on examining the database schema

to discover inference paths. Other approaches attempt to extend the database schema with

knowledge found in the application domain (as catalytic relations). The database schema

provide a general picture of the data stored in the database. However, inference paths

found in the database schema do not necessarily occur in an extension of the schema. Most

approaches make the worst case assumption, and prohibit any accesses that might lead to

inference. That is, users are penalized for being suspected of making inference. Although

existing approaches try to make the system as complete as possible, there are inference

paths that are not found in the schema but exist in an extension of the schema.

This dissertation describes our e�ort in developing a data level inference detection
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system. We aim at determining if a user has collected su�cient data to perform inference.

Not only does our system detect inferences that can be detected by previous approaches,

it also detects inferences that could not be detected previously. In particular, our system

can detect inferences that do not exist at the database schema level. Hence, conventional

schema-based inference detection systems fail to identify such inferences. Our inference

detection system is sound, and hence it allows the database to be more accessible to users.

However, as our system needs to monitor every user query, it has a higher operational cost

than schema-based detection scheme. We have developed a prototype of the system, and

evaluated its performance. We show that for certain types of database and queries, our

system can still be practical to be employed.
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Chapter 3

The Design and Theoretical Basis

of a Data Level Inference

Detection System

In this chapter, we discuss the design of a data level inference detection system. We

present the six inference rules that we have developed: `split query', `subsume', `unique char-

acteristic', `overlapping', `complementary', and `functional dependencies' inference rules.

These rules are developed to mimic the reasoning strategies employed by a human. We

provide examples to illustrate the rules. We also demonstrate the e�ectiveness of the in-

ference rules by using them to detect a known database inference attack called Tracker

[DDS79, DS80]. Any inference elimination method reported in the literature (including up-

grading attributes, withholding query results, polyinstantiation, and schema redesign) can

be used to eliminate inferences detected by our system. The inference elimination problem

indeed is orthogonal to the detection problem, and we do not further discuss the inference

elimination problem in this dissertation. Some results in this chapter have been reported

in [YL98a].

3.1 Design Criteria

An inference detection system is evaluated according to the following criteria:

� soundness.
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� completeness.

� accessibility of the database.

� e�ciency.

An inference detection system is sound if it only reports inferences that exist. It

is complete if it reports all inferences that exist. The degree of accessibility of a database is

measured by the amount of data that are legitimately accessible to users. The more data a

user can access from the database, the higher the accessibility of the database to the user.

An unsound inference detection system leads to decrease in accessibility of the database.

This is because queries that do not lead to any inference might be restricted, making the

database less accessible to users. Similarly, the more complete the detection system, the

lower the accessibility of the database if users are restricted to access the detected inference

paths. For schema-based detection system, e�ciency of the detection system may not be

an issue, as the detection system is run once { at the database design time. For detection

system that detect inference using user queries, e�ciency can be an issue when the system

needs to detect inference in real-time.

We note that the existence of an inference does not necessarily imply that the user

is aware of it. An inference exists means that there is su�cient data available for a user to

draw an inference. However, unless a user confesses that he/she has drawn the inference, it

is impossible to determine if the user indeed has made use of the inference. For example, a

user �nds out the sum of the salaries of all employees is X1, and the sum of the salaries of

all employees excepts software engineers is X2. Suppose there are n software engineers, and

their salaries are about the same. The user can infer that the salary of a software engineer

is about X1�X2

n
. A user may not be aware of this inference unless he/she intentionally does

the calculation. Taking a conservative approach to inference detection, we assume the user

is aware of any possible inference. We could track a user who has su�cient data to draw

an inference about critical data to determine what he does with the inferred information.

Ideally, we should develop an inference detection system that is sound, complete,

allows high accessibility of the database, and e�cient. However, to date no such inference

detection system exists. Schema-based inference detection systems tackle the problem by

developing e�cient detection algorithms. However, as shown in Chapter 2, such an approach

is neither sound nor complete. Other researchers extend the database schema by including
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background knowledge as a part of the database, for example, in the form of catalytic

relations (a part of the database that represents external knowledge). This brings their

system closer to a complete detection system. Marks attempts to develop a complete

detection system [Mar96]. However, his approach generates numerous false positive reports

as any query that accesses any part of a sensitive association is considered to be able to

lead to inference.

The design of an inference detection system is a trade-o� among soundness, com-

pleteness, accessibility of the database, and e�ciency. If we want to have a secure system,

then we should develop a complete detection system. If we aim at providing higher ac-

cessibility of data to users, we should develop a sound detection system. E�ciency is a

desirable characteristic, and should be achieved whenever the soundness, completeness, or

accessibility of the database is not sacri�ced. In this chapter, we describe our data level in-

ference detection system, which is sound and can detect more inferences than schema-based

detection systems. The system can also be extended to include background knowledge to

detect more inferences. Most existing inference detection systems are designed for multi-

level database system. Our detection system is used in both multilevel and discretionary

database systems.

3.2 The Policy

A database contains information about the existences of data values, and the

associations among data values. Consider the following relational database about employee

salaries,

Name Salary

Tom 45K

Ann 60K

The existence of the four data values provides the following information,

� there is an employee named Tom

� there is an employee named Ann

� there is an employee who earns 45K

� there is an employee who earns 60K
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With the semantics of the relational data model, data values appear in the same tuple

belong to the same entity. Hence, we have two additional pieces of information about this

database,

� Tom earns 45K

� Ann earns 60K

This illustrates that there are two types of information stored in a database: the data values,

and the associations among the data values. Therefore, there are two aspects in protecting

the con�dentiality of data in a database: the protection of the existences of data values,

and the protection of the associations among the data values.

The protection of the existences of data values can be done on a query-by-query

basis. For example, if we want to protect the information about the fact that there is an

employee who earns 45K, then we can simply reject any query that accesses the data value

45K. The protection of the associations is more subtle. Obviously, one should reject any

query that directly accesses a protected association. However, it is insu�cient, as users can

make use of inference to infer associations.

The goal of our data level inference detection system is to detect if a user can use

a series of queries to infer associations in the database. The associations to be protected

are speci�ed in a policy. A policy is a list of statements, each of which is a 3-tuple of the

following form:

(U; A1, ..., An; E)

U is the user that the policy statement applies to. A1; : : : ; An, where n > 1, are the

attributes of the associations to be protected. E is a logical expression that selects the

tuples whose associations are to be protected. For example, consider a simple personnel

database with the following schema,

(Name, Job, Salary)

.

If we want to detect if a user U can infer the salaries of managers, the policy is speci�ed as

follows:

(U; Salary, Job; Job = `manager')

The policy to detect if a user U can infer the salary of a particular manager called Tom is

speci�ed as follows,
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(U; Salary, Job; Job = `manager' ^ Name = `Tom')

A policy statement is similar to a query to the database. In fact, the policy de�nes a view

on the associations to be protected. This is similar to view based access control systems

[GW77, Qia96].

The policy can be extended to handle aggregation problems. For example, we can

attach a threshold number, N , to a policy statement as follows.

(U; A1, ..., An; E[N])

When the number of protected tuples that are revealed is greater than N , a policy violation

occurs. For example, the following policy,

(U; Name, Phone number; Department = `Intelligence'[50])

states that the user U cannot know more than 50 phone numbers in the Intelligence De-

partment. This is similar to the National Security Agency phone book problem where a

user can learn about a few phone numbers in the phone book, but a signi�cant number of

phone numbers in the phone book.

The policy statement can also be applied in role-based system where accesses are

determined based on the roles taken by users. In such a system, we replace the user �eld

with a role �eld, and the policy statement is applied to users taking on that role. For

example, this policy,

(bank-teller; Customer id, Loan info; true)

states that any user taking the role of a bank teller cannot access loan information of

customers.

3.3 An Overview of the Data Level Inference Detection Sys-

tem

Figure 3.1 shows the overall system architecture of the data level inference de-

tection system. The system can be deployed in real-time or post-mortem manner. In a

real-time inference detection system, each user query and its return result are captured by

the detection system. The system determines if the user query together with previously

issued queries can access sensitive information as speci�ed in the security policy. Any in-

ference detected may result in real-time responses, for example, withholding return result

from users. For a post-mortem inference detected system, a batch of user queries are input
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to the detection system. It then determines if together they lead to any inference.

Query Results
Database 
System
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Engine

Inference Detection System

Figure 3.1: Overall System Architecture.

We have developed six inference rules that users can use to draw inferences. Each

query result is a set of return tuples. Unless otherwise stated, a set of return tuples is indeed

a multiset of return tuples. That is, duplicated return tuples are not removed. Each query

and its set of return tuples allow users to learn about a part of the database. Users can

learn more about the database by relating the return tuples from di�erent queries. Consider

the following database called personnel,

Name Age Salary Job

Albert 28 50K Receptionist

Betty 25 60K Engineer

Calvin 35 70K Engineer

Suppose a user issues the following SQL query,

select Name, Age

from Personnel

where Age < 30;

which returns two tuples: (Albert, 28) and (Betty, 25). Users can learn that there are two

employees who are younger than 30. One is Albert who is 28 and the other one is Betty

who is 25. Suppose another query is issued as follows,
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select Age, Salary

from Personnel

where Age = 28;

which returns a single tuple: (28, 50K). By knowing that Albert is the only employee who is

age 28 (from the �rst query), and that the employee who is 28 earns 50K (from the second

query), users can infer that Albert earns 50K. We say that the tuple (Albert, 28) relates to

the tuple (28, 50K), as the two tuples are projected from the same tuple in the database.

If we want to protect the information about the associations between employee names and

salaries, users should not be allowed to access the results of both queries.

In the remainder of this section, we provide the intuition behind �ve inference

rules: split query, unique characteristic, subsume, overlapping, and complementary. The

functional dependency inference rule is introduced to simulate the schema-based approach.

We do not discuss it in this section. Each tuple in a database represents information about

an entity in the application domain. Without background knowledge, users cannot identify

the entities to which the return tuples of a query belong when 1) the query does not project

the unique identi�cations, for example the primary key, of the selected entities, or 2) the

query does not speci�cally select certain entities. For example, consider the following query

to the above personnel database,

select Job, Age

from Personnel

where Age > 24;

which returns three tuples (`Receptionist', 28), (`Engineer', 25), (`Engineer', 35). Without

other information about the employees in the database, users cannot determine the employ-

ees that the return tuples belong to. However, if a return tuple contains some information

that is known to be unique to an entity, users can make use of this information to draw

inference. Continuing with the above example, if a user knows that there is only one re-

ceptionist in the company, then the user can infer that the receptionist is 28 year old. The

unique characteristic inference rule handles this situation.

There are two possible relationships between two sets of return tuples. One possible

relationship is that for each return tuple t1 of a query, there is a return tuple t2 of the other

query, such that t1 relates to t2. The subsume inference rule handles this situation. For

example, a user �nds out that there are two consultants who work in the San Jose o�ce of

a company. Their information is shown as follows,
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Name Department

Bill Production

Jack Research

Also, the user �nds out that there are three consultants who work in California, and their

information is shown as follows,

Department Salary

Production 80

Research 70

Research 60

By knowing that any employee who works in San Jose also works in California (San Jose is

a city in California), the user can infer that each tuple in the �rst query relates to a tuple in

the second query. In particular, as Bill's information can only be related to the �rst return

tuple of the second query, the user can infer that Bill earns 80K.

The other possible relationships between two sets of return tuples is that only

some return tuples of a query relate to some return tuples of another query. The split query

and overlapping inference rules handle this situation by identifying the return tuples that

are selected by both queries. For example, a user �nds out the following information about

a company,

1. John and Dan are the only two employees who are younger than 25.

2. The three employees who work in the Research Department earn 40K, 50K, or 60K.

3. There is only one employee who is younger than 25 and works in the Research De-

partment.

The last piece of information implies that either John or Dan works in the Research De-

partment, and hence either one of them earns 40K, 50K, or 60K.

If two sets of return tuples have a set-subset relationship between them, then by

removing the same number of tuples from these two sets, the set-subset relationship still

hold between them. The complementary inference rule handles this situation. For example,

a user issues four queries and �nds out the following information,

1. John and Bill are the two consultants who work in San Jose
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2. There are three consultants who work in California; one of them earns 50K, one of

them earns 60K, and one of them earns 70K.

3. Bill and Cathy are the two consultants who are younger than 30 and work in either

San Jose or Austin.

4. There are two consultants who are younger than 30 and work in California or Texas;

one of them earns 60K, and the other one earns 65K.

The �rst two queries imply that John and Bill earn 50K, 60K, or 70K. The third and fourth

query imply that Bill and Cathy earn 60K or 65K (note that Austin is a city in Texas).

Since 60K is the only value that appears in both results of the second and fourth queries,

the user can conclude that Bill earns 60K. The user can further infer from the �rst two

queries that John earns either 50K or 70K.

Once the related return tuples between two queries are identi�ed, a user can gen-

erate inferred queries. An inferred query is a query whose return tuples can be determined

by users without directly issuing the query to the database. For example, the user can

infer a new query with returns tuples that are selected by two queries, or infer a new query

that returns tuples from one query but not from another query. The user can also combine

several queries into a single query. Essentially, the inference rules identify the set-subset,

intersection, di�erence, and union relationships among return tuples of queries.

When a user issues a query, the inference detection system compares it with pre-

viously queries issued by the user, and applies inference rules to them when appropriate.

The results of an application of the inference rules include: 1) modi�cations of the ex-

isting queries, for example by combining two related return tuples; and 2) generations of

new inferred queries. The changes may trigger further applications of other inference rules.

Hence, the inference rules are applied repeatedly until there is no new inference. This is a

terminating process as the number of inferences that can occur is bounded by the size of the

database. When two users are suspected of cooperating in drawing inference, we can run

the inference detection system against their combined set of queries. For example, two users

who issue queries in an interleaving manner are suspicious in collaborating in performing

inference.
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3.4 Preliminaries

We consider inference detection in a relational database with a single table. A

database with multiple tables can be transformed into a universal relation as suggested in

[Mar96]. We further discuss the issues of detecting inference in multiple tables in Chapter

5. We assume that the only way users learn about the data in the database is by issuing

queries to it. That is, users do not rely on real-world knowledge to draw inference. Such

knowledge might be added to the database as `catalytic relation' as suggested in [Hin88].

Given a relational table, Ai denotes an attribute in the table, and ai denotes an

attribute value from the domain of Ai. t[Ai] denotes the attribute value of a single tuple

t over the attribute Ai. A query is represented by a 2-tuple: (attribute-set; selection-

criterion), where attribute-set is the set of attributes projected by the query, and selection-

criterion is the logical expression that is satis�ed by each return tuple of the query. No

aggregation function (for example, maximum and average) is allowed in the attribute-set.

In general, Qi refers to the query (ASi; SCi). jQij denotes the number of return tuples of

Qi. fQig denotes the set of return tuples of Qi. For each query Qi, ASi is expanded with

an attribute Ai when `Ai = ai' appears in SCi as a conjunct. A query Q is a `partial query'

if the user can determine jQj, but not all return tuples of Q. `\', `[', and `n' stand for the

set intersection, union, and di�erence operation respectively.

We introduce several notions that are used throughout this dissertation.

De�nition 2 A tuple t over a set of attributes AS `satis�es' a logical expression E if E is

evaluated to true when each occurrence of Ai in E is instantiated with t[Ai], for all Ai in

AS. t `contradicts' with E if E is evaluated to false.

For example, the tuple (35, 60K) that is projected over the attributes Age and Salary

satis�es E = (Age > 30 ^ Salary < 70K); while the tuple (25, 50K) projected over the

same set of attributes contradicts with E. The tuple (45K, Manager) projected over the

attributes Salary and Job neither satis�es nor contradicts E. This is because after the

instantiation, E becomes (Salary < 70K) whose truth value is undetermined.

De�nition 3 Given two queries, Q1 and Q2, we say that Q1 is `subsumed' by Q2, denoted

as Q1 < Q2, if and only if

1. SC1 ) SC2; or
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2. for each tuple t1 in fQ1g, t1 satis�es SC2.

where) is the logical implication. `<' is a reexive, anti-symmetric, and transitive relation.

A return tuple t1 `relates' to another return tuple t2 if the two tuples are selected from the

same tuple in the database. Hence, Q1 < Q2 implies that for each return tuple t1 of Q1,

there is a return tuple t2 of Q2, such that t1 relates to t2.

When evaluating a logical implication, we need to consider the integrity constraints

that hold in the database. Consider the following implication,

(age > 18 ^ age < 35) ) (age > 20 ^ age < 50),

which is false. Suppose the youngest person in the database is 22 years old. By adding this

constraint to both sides of the implication, it becomes,

((age > 18 ^ age < 35) ^ (age � 22)) ) ((age > 20 ^ age < 50) ^ (age � 22)) �

(age � 22 ^ age < 35) ) (age � 22 ^ age < 50),

which is true. The user could issue queries to reveal integrity constraints. For example, if

a query Qi returns no tuple, then :SCi is an integrity constraint satis�ed by each tuple in

the database. For the simplicity of the presentation, we do not include integrity constraints

in checking logical implications.

We introduce the notion of `indistinguishable' as follows.

De�nition 4 A return tuple t1 of Q1 is `indistinguishable' from a return tuple t2 of Q2 if

and only if

1. for all Ai in (AS1 \ AS2), t1[Ai] = t2[Ai];

2. t1 does not contradict with SC2; and

3. t2 does not contradict with SC1.

t1 is `distinguishable' from t2 if t1 is not indistinguishable from t2.

Intuitively, t1 is indistinguishable from t2 if it is not possible to conclude that t1 and t2 are

selected from two di�erent tuples in the database. Two tuples that relate to each other

are indistinguishable from each other, while two tuples that are indistinguishable from each

other does not imply that they relate to each other.

The attributes that are equivalent in semantics should be treated as the same

attributes. For example, if the relational table contains two attributes: `Salary' and
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`Monthly Salary' which are semantically equivalent, then for each tuple t in the table,

t[Salary] = t[Monthly Salary]. Also, users can make inference based on the algebraic

relationships among attributes. For example, consider these three attributes: Total salary,

Basic salary, and Commission. If for each tuple t, t[Basic salary] + t[Commission] =

t[Total salary], then when the user reveals the Basic salary and the Commission of a tuple,

the user can reveal the Total salary of the tuple. In this case, we can develop an infer-

ence rule saying that whenever a user knows the attribute values of any two of the three

attributes of a tuple, the user knows the attribute values of the other attribute of the tuple.

Our system detects inference of the \correct" instances of the data. Consider the

following table,

Name Job Age Salary

John Engineer 29 60K

Paul Engineer 31 60K

Suppose a user knows that John is an engineer, and that there is an engineer who is 31

years old and earns 60K. A naive user may conclude that John earns 60K, assuming that

John's age is 31. Although the user correctly infers the salary of John, this is not the correct

instance of the salary of John. In fact, when the user learns that John is indeed 29 years

old, the user will revoke this inference. In our system, we assume users are skeptical and

do not make such hasty inferences.

Name Job Age Salary Department O�ce

Alice Manager 35 60K Marketing 2nd Floor

Bob Secretary 35 45K Marketing 2nd Floor

Charles Secretary 40 40K Production 1st Floor

Denise Manager 45 65K Sales 2nd Floor

Figure 3.2: A Sample database.

3.5 Inference Rules

In this section, we present the six inference rules. We illustrate the inference rules

using the sample database as shown in Figure 3.2. This database contains data about the

names, job titles, ages, salaries, departments, and o�ce locations of four employees. Name

is the primary key in the database. The security policy is as follows,
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(*; Name, Salary; true)

That is, no one (except, of course, privileged users) is allowed to �nd out the association

between attributes Name and Salary for any tuple in the database. Any query that retrieve

data about both name and salary is rejected. However, users are still allowed to access

the name and salary data if the users cannot infer the association among them. Unless

otherwise stated, all queries appear in the inference rules are not partial queries.

3.5.1 Split Queries

In this section, we discuss the situation where a query can be split into two smaller

inferred queries with respect to another query. A query Qi can be split into two smaller

queries when the user can identify the return tuples of Qi that relate to some other query.

Inference Rule 1 (Split Queries) Given two queries Q1 and Q2. Express SC2 in dis-

junctive normal form. If there exists a disjunct of SC2 such that the set of attributes

appear in the disjunct is a subset of AS1, then generate two inferred queries: 1) Q11 =

(AS1;SC1 ^ SC2); and 2) Q12 = (AS1;SC1 ^ :SC2). The return tuples of Q11 are the

return tuples of Q1 that also satisfy SC2. The return tuples of Q12 are the return tuples of

Q1 that do not satisfy SC2.

Q2

t21

t22

...

...

t11

t12

...

...

Q1

Figure 3.3: An example on splitting query.

When Q1 projects attributes that appear in a conjunct of SC2, a user is able to determine

the return tuples of Q1 that satisfy SC2. Hence, the user is able to divide the return tuples

of Q1 into two sets: those that satisfy both SC1 and SC2, and those that satisfy SC1 but not

SC2. Note that when no return tuple of Q1 relates to the return tuples of Q2, no inferred

query is generated. Figure 3.3 illustrates the splitting of queries in a graphical form. Each

rectangle represents a set of return tuples of a query. The rectangles are drawn in such a
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way that return tuples that are selected from the same tuple in the database are aligned

horizontally. For example, t11 and t21 correspond to the same tuple in the database, so do

t12, and t22.

Example 1 Consider the following two queries.

Q1 = (Name; Age = 35), and

Q2 = (Age; Job = `Secretary').

Q1 returns two tuples (Alice), and (Bob). Q2 returns two tuples (35), and (40). As the

attribute Age in SC1 is in AS2, we generate two inferred queries from Q2: 1) Q21 = (Age;

Job = `Secretary' ^ Age = 35) which has the return tuple (35); and 2) Q22 = (Age; Job =

`Secretary' ^ Age 6= 35) which has the return tuple (40). Note that Q21 < Q1. When the

subsume inference rule in Section 3.5.2 is applied, the user can infer that the Secretary who

is 35 years old is either Alice or Bob.

3.5.2 Subsume Inference

In this section, we describe inferences resulted from the `<' relationships among

queries.

Inference Rule 2 (Subsume) Given two queries Q1 and Q2, such that Q1 < Q2.

SI1 If there is an attribute A in (AS2 n AS1), such that all return tuples of Q2 take the

same attribute value a over A, then for each return tuple t1 of Q1, t1[A] = a. Q1 may

be a partial query.

SI2 If a return tuple t1 of Q1 is indistinguishable from exactly one return tuple t2 of Q2,

then t1 relates to t2. Q1 may be a partial query.

SI3 Let S be the set of return tuples of Q2 that are distinguishable from the return tuples

of Q1. If jSj = (jQ2j � jQ1j), generate two inferred queries from Q2: 1) Q21 = (AS2;

SC2 ^ : SC1) with S as the set of return tuples; and 2) Q22 = (AS2; SC2 ^ SC1)

with (fQ2g n S) as the set of return tuples. If jSj < (jQ2j� jQ1j), generate an inferred

partial query: Q23 = (AS2; SC2 ^ : SC1) with S as the partial set of return tuples,

and jQ23j = (jQ2j � jQ1j).

Figure 3.4 illustrates the subsume inference rule in a graphical form.
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...Q1

Q2

t11 t21

t12 t22

......

Figure 3.4: An example on subsume inference.

Q1 < Q2 implies that for each return tuple t1 of Q1, there is a return tuple t2 of

Q2 such that t1 relates to t2. SI1 says that when all return tuples of Q2 share a common

attribute value, say a, over an attribute A, the user can infer that each return tuple of Q1

also takes the attribute value a over the attribute A. This is because for each return tuple

t1 of Q1, no matter which return tuple t2 of Q2 that relates to t1, t2[A] = a. Hence, t1[A]

must be equal to a.

Example 2 Consider the following two queries.

Q1 = (Age; Name = `Alice'),

Q2 = (Department; Age < 40).

Q1 returns a single tuple (35) which says that Alice is 35 years old. Q2 returns two tuples

(`Marketing') and (`Marketing') which say that all employees at the age less than 40 work

in the Marketing department. By SI1, Alice works in the Marketing department.

SI2 says that if a return tuple t1 of Q1 is indistinguishable from exactly one return

tuple t2 of Q2, then t1 relates to t2. This is because Q1 < Q2 implies that there is at least

one return tuple of Q2 that is indistinguishable from each return tuple of Q2. Now, if t1 of

Q1 is indistinguishable from one and only one tuple t2 of Q2, then we can conclude that t1

relates to t2.

Example 3 Consider the following two queries.

Q3 = (Age; Name = `Charles'),

Q4 = (Age, Salary; Age � 40).

Q3 returns a single tuple t3 = (40) which says that Charles is 40 years old. Q4 returns two

tuples (40, 40K) and (45, 65K) which say that there are only two employees who are at the

age greater than or equal to 40. As Q3 < Q4 (since (40) satis�es SC4) and (40, 40K) is the

only return tuple of Q4 that is indistinguishable from t3, by SI2, Charles earns 40K.
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SI3 says that if a user identi�es all the return tuples of Q2 that relate to the return

tuples of Q1, then the user can infer these two queries from Q2: (AS2; SC1 ^ SC2) which

includes return tuples of Q2 that relate to the return tuples of Q1, and (AS2; SC2 ^ :

SC1) which includes return tuples of Q2 that do not relate to the return tuples of Q1.

Example 4 Continue from Example 3. After the application of SI2, the user can generate

the following two inferred queries:

Q21 = (Age, Salary; Name = `Charles' ^ Age � 40),

Q22 = (Age, Salary; Name 6= `Charles' ^ Age � 40).

Q21 returns a single tuple (40, 40K), and Q22 returns a single tuple (45, 65K). The two

inferred queries together contains more information than Q2. In particular, Q22 says that

the employee who is at the age of 45 and earns 65K must be someone other than Charles.

3.5.3 Unique Characteristic Inference

A logical expression E is a unique characteristic of a tuple t if and only if t is the

only tuple in the database that satis�es E. For example, if Alice is the only manager at the

age of 35, then (Job = `Manager' ^ Age = 35) is the unique characteristic of Alice in the

database.

Inference Rule 3 (Unique Characteristic)

UC1 Given a tuple t1 with unique characteristic C1, and another tuple t2 with unique

characteristic C2. If C1 ) C2, C2 ) C1, or C1 , C2 (that is C1 ) C2 and C2 ) C1),

then t1 relates to t2.

UC2 Given there is a tuple with unique characteristic C. If both t1 and t2 satisfy C, then

t1 relates to t2.

For example, the query

(Salary; Job = `Manager' ^ Age � 40)

returns a single tuple (60K). This query together with the above unique characteristic of

Alice implies Alice earns 60K. UC1 is a special case of the subsume inference. Suppose

(AS1; UC1) returns a single tuple t1, and (AS2; UC2) returns a single tuple t2. Then, UC1

is the unique characteristic of t1, and UC2 is the unique characteristic of t2. If UC1 ) UC2,

UC2 ) UC1, or UC1 , UC2 holds, then by SI2, t1 relates to t2.
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Denote sum(A;SC) as the sum of t[A], for each tuple t that satis�es SC; and

sum(A; true) as the sum of t[A], for each tuple t in the database. When all inferred queries

are identi�ed, unique characteristics are determined as follows.

1. if Qi returns all but one tuple t in the database, then the unique characteristic of

t is (:SCi). For each attribute A 2 ASi, if sum(A; true) is known, then t[A] =

sum(A; true) { sum(A;SCi).

2. if Qi has only one return tuple t that relates to a return tuple of Qj, then t has the

unique characteristic (SCi ^ SCj).

3. if Qi returns one more tuple t than Qj , then the unique characteristic of t is (SCi ^

:SCj). For each attribute A 2 ASi \ASj, t[A] = sum(A;SCi) { sum(A;SCj).

where both Qi and Qj are not partial queries. When the tuple t is not identi�ed, the user

can still conclude that there exists a tuple that has the mentioned unique characteristic.

This conclusion can be used in UC2 to draw inference. Determination of the overlapping

tuples among queries is discussed in the Section 3.5.4.

3.5.4 Overlapping Inference

In this section, we describe the overlapping inference rule.

Inference Rule 4 (Overlapping)

OI1 Given Q1 < Q2, and Q1 < Q3. Let S2 be the set of return tuples of Q2 that are

indistinguishable from the return tuples of Q3. If jS2j = jQ1j, and a return tuple t2 of

Q2 is indistinguishable from exactly one return tuple t3 of Q3, then t2 relates to t3.

Similarly, let S3 be the set of return tuples of Q3 that are indistinguishable from the

return tuples of Q2. If jS3j = jQ1j, and a return tuple t3 of Q3 is indistinguishable

from exactly one tuple t2 of Q2, then t3 relates to t2. Note the related return tuples

between Q1 and Q2, and between Q1 and Q3 can be identi�ed using the subsume

inference rule. Q1 may be a partial query.

OI2 Given a query Q1, and a set of queries, QS = fQ2, : : :, Qng, where n � 3. If 1) for

each Qi in QS, Qi < Q1; and 2) the number of distinguishable tuples in QS = jQ1j,

then any pair of indistinguishable tuples in QS relate to each other.
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OI3 When OI1 is applied with jS2j = jQ1j, generate the following two inferred queries:

1) Q21 = (AS2;SC2 ^ :SC3 ^ :SC1) with fQ2gnS2 as the set of return tuples; and

2) Q22 = (AS2;SC2 ^ SC3 ^ SC1) with S2 as the set of return tuples. When OI1

is applied with jS3j = jQ1j, generate the following two inferred queries: 1) Q31 =

(AS3;SC3 ^ :SC2 ^ :SC1) with fQ3gnS3 as the set of return tuples; and 2) Q32 =

(AS3;SC3 ^ SC2 ^ SC1) with S3 as the set of return tuples. If jS2j > jQ1j, generate

this inferred partial query: (AS2;SC2 ^ :SC3). If jS3j > jQ1j, generate this inferred

partial query: (AS3;SC3 ^ :SC2). Similarly, when OI2 is applied, generate inferred

queries for each pair of queries that have overlapping return tuples.

(b)

...

Q1

...

Q2

Q3

t32

...

t31t21

t22

t11

Q1

Q3

Q2

T1t12

(a)

Figure 3.5: Examples on overlapping inference.

Figure 3.5(a) illustrates OI1. Given that Q1 < Q2 and Q1 < Q3, the number of return

tuples of Q2 that relate to return tuples of Q3 must be at least jQ1j. OI1 identi�es the

cases where the user can infer the related return tuples among the three queries. When Q1

implies three or more queries, OI1 is applied to Q1 and two of them at a time.

Example 5 We illustrate OI1 using the following three queries,

Q1 = (Name; Job = `Manager' ^ Age = 35),

Q2 = (Salary; Job = `Manager'),

Q3 = (Salary; Age = 35).

Q1 returns a single tuple (Alice) which says that Alice is the only manager at the age of 35.

Q2 returns two tuples (60K) and (65K). Q1 and Q2 together implies that the salary of Alice

is either 60K or 65K. Q3 returns two tuples (60K) and (45K). Q1 and Q3 together implies

that the salary of Alice is either 60K or 45K. As Q1 < Q2 and Q1 < Q3, and there is only
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one return tuple of Q2 that is indistinguishable from the return tuples of Q3, namely the

tuple (60K). Hence, by OI1, Alice earns 60K.

Figure 3.5(b) illustrates OI2 using three queries, Q1, Q2, and Q3, where Q1 < Q3

and Q2 < Q3. T1 is the set of return tuples of Q1 that relate to returns tuples in Q2. We

show by contradiction the correctness of OI2 for these three queries as follows. Let N be

the number of distinguishable tuples in Q1 and Q2. That is, all return tuples of Q1 and

Q2 are selected from N tuples in the database. As Q1 < Q3 and Q2 < Q3, each return

tuple of Q1 or Q2 relates to a return tuple of Q3. Hence, N � jQ3j. When the number

of distinguishable tuples in Q1 and Q2 equals jQ3j, each distinguishable tuple of Q1 and

Q2 relates to a return tuple of Q3, and vice versa. Suppose there are two return tuples,

t1 of Q1 and t2 of Q2, such that t1 is indistinguishable from t2, but t1 does not relate to

t2. As t1 does not relate to t2, there must exist two return tuples of Q3, say t31 and t32,

such that t1 relates to t31 and t2 relates to t32. However, this contradicts with the above

implication that each distinguishable tuple relates to one return tuple of Q3. Therefore, all

indistinguishable tuples relate to each other. That is, users can infer that for each return

tuple t1 of Q1 that is indistinguishable from a return tuple t2 of Q2, t1 relates to t2.

Example 6 We illustrate OI2 using the following three queries,

Q1 = (Salary; Department = `Marketing' ^ O�ce = `2nd Floor'),

Q2 = (Salary; Job = `Manager' ^ O�ce = `2nd Floor'),

Q3 = (Name; O�ce = `2nd Floor').

Q1 returns two tuples (60K) and (45K) which say that the two employees who work in

the Marketing department on the 2nd oor earn either 60K or 45K. Q2 returns two tuples

(60K) and (65K) which say that the two managers who work on the 2nd oor earn either

60K or 65K. Q3 returns three tuples (Alice), (Bob), and (Denise) which say that Alice, Bob

and Denise all work on the 2nd Floor. We have 1) Q1 < Q3; 2) Q2 < Q3; and 3) there is

only one return tuple of Q1 that is indistinguishable from a return tuple of Q2, namely the

tuple (60K); that is, the number of indistinguishable tuples in both Q1 and Q2 is 3 = jQ3j.

By OI2, the tuple (60K) of Q1 relates to the tuple (60K) of Q2. That is, the user can infer

that the marketing manager who works on the 2nd oor earns 60K.

We show by construction that the two conditions in OI2 are necessary. Without

loss of generality, we consider three queries Q1, Q2, and Q3. We list the two conditions as

follows:
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Figure 3.6: Counter examples on overlapping inference.

1. Q1 < Q3 and Q2 < Q3.

2. the number of distinguishable tuples in Q1 and Q2 equals jQ3j.

Figure 3.6(a) shows an example where condition (1) does not hold, as Q2 6< Q3.

Suppose tuple t11 is indistinguishable from tuple t21, and the number of indistinguishable

tuples in Q1 and Q2 is 4 which is equal to jQ3j; that is, condition (2) holds. In this example,

there is a pair of indistinguishable tuples that are not related to each other, namely t11 and

t21. Therefore, OI2 cannot be applied.

Figure 3.6(b) shows an example where condition (1) holds. Suppose tuple t12 is

indistinguishable from tuple t21, and the number of distinguishable tuples is 3 which is less

than jQ3j; that is, condition (2) does not hold. OI2 cannot be applied as t11 and t21 is a

pair of indistinguishable tuples that are not related to each other.

3.5.5 Complementary Inference

The complementary inference rule allows a user to draw inference by eliminating

tuples that do not relate to one another.

Inference Rule 5 (Complementary Inference) Given four queries, Q1, Q2, Q3, and

Q4, where Q1 < Q2, and Q3 < Q4. Also, the return tuples of Q1 that relate to the return

tuples of Q3 are identi�ed (for example using the overlapping inference rule), and the return

tuples of Q2 that relate to the return tuples of Q4 are identi�ed. If one of the following

three conditions holds,

1. for each return tuple t1 of Q1 that does not relate to any return tuple of Q3, t1 is

distinguishable from all return tuples of Q4,
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2. Q4 < Q3, or

3. jQ3j = jQ4j,

then Q0
1 < Q0

2, where Q
0
1 = (AS1; SC1 ^ : SC3), and Q0

2 = (AS2; SC2 ^ : SC4). The

return tuples of Q0
1 is the set of return tuples of Q1 that do not relate to any return tuple

of Q3, and the return tuples of Q0
2 is the set of return tuples of Q2 that do not relate to

any return tuple of Q4.

(a)

Q1

Q3
T2

Q2

Q4T1

Q1

T1 Q3

Q2

T2
Q4

(b)

Figure 3.7: Examples on complementary inference.

Figure 3.7(a) illustrates the case where condition (1) holds. Let T1 be the set of return

tuples of Q1 that do not relate to any return tuple of Q3, and T2 be the set of return tuples

of Q2 that do not relate to any return tuple of Q4. As Q1 < Q2 and fQ0
1g � fQ1g, each

return tuple of Q0
1 relates to a return tuple of Q2. Condition (1) says that each return tuple

of Q0
1 does not relate to any return tuple of Q4. Hence, each return tuple of Q0

1 relates to

a return tuple of Q0
2. Figure 3.7(b) illustrates the case where condition (2) or (3) holds.

Condition (2) or (3) implies that Q3 < Q4 and Q4 < Q3. By removing from Q1 and Q2 the

\same" set of return tuples, we have Q0
1 < Q0

2.

Example 7 Consider the following four queries,

Q1 = (Name; Department = `Marketing'),

Q2 = (Salary; Department = `Marketing' _ O�ce = `2nd Floor'),

Q3 = (Name; Job = `Secretary'),

Q4 = (Salary; Job = `Secretary').
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Q1 returns two tuples (Alice) and (Bob). Q2 returns three tuples (60K), (45K), and (65K).

As Q1 < Q2, both Alice and Bob earn either 60K, 45K, or 65K. Q3 returns two tuples

(Bob) and (Charles). Q4 returns two tuples (45K) and (40K). As SC3 = SC4, both Bob

and Charles earn either 45K or 40K. We have Q1 < Q2, Q3 < Q4, and Q4 < Q3, (Bob)

is the only related tuple between Q1 and Q3, (45K) is the only related tuple between Q2

and Q4 (it is the only indistinguishable tuple between Q2 and Q4). By the complementary

inference rule, Q0
1 < Q0

2, where

Q0
1 = (Name; Department = `Marketing' ^ Job 6= `Secretary')

Q0
2 = (Salary; (Department = `Marketing' _O�ce = `2nd Floor') ^ Job 6= `Secretary')

Q0
1 returns a single tuple (Alice), as it is the tuple returned by Q1 but not by Q3. Q0

2

returns two tuples (60K) and (65K), as they are the tuples returned by Q2 but not by Q4.

Therefore, the user can infer that Alice earns either 60K or 65K.

It should be noted that in some cases, an inference as obtained from the com-

plementary inference rule can also be obtained from the overlapping inference rule. For

example, consider the four queries Q1, Q2, Q3, and Q4 as shown in Figure 3.7(a), where

Q1 < Q2, and Q3 < Q4. Suppose the overlapping inference rule can be applied to identify

the related tuples between Q1 and Q3, and between Q2 and Q4. These result in the genera-

tion of two inferred queries: 1) Q0
1 = (AS1;SC1^:SC3); and 2) Q

0
2 = (AS2;SC2^:SC4). If

SC1^:SC3 ) SC2^:SC4, then we have Q0
1 < Q0

2 which is the same result as obtained by

applying the complementary inference rule to the four queries. However, SC1 ) SC2 and

SC3 ) SC4 does not necessarily imply SC1^:SC3 ) SC2^:SC4. When this implication

does not hold, the complementary inference rule is needed to obtain the inference.

3.5.6 Functional Dependency Inference

The functional dependency inference rule employs the functional dependencies

among the attributes to draw inference. It simulates the uses of functional dependencies in

schema-based inference detection systems. A similar rule can be constructed for multivalue

functional dependencies.

Inference Rule 6 (Functional Dependency) Given that attribute A1 functional deter-

mines attribute A2, and there exists a tuple t, such that t[A1] = a1 and t[A2] = a2. If there

is a tuple ti, such that ti[A1] = a1, then ti[A2] = a2. The same applies when A1 or A2 is a

composite attribute (that is, a group of attributes).
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Example 8 If it is known that the attribute Department functionally determines the at-

tribute O�ce, and in particular the Marketing department is located on the 2nd Floor.

Then, whenever a user knows a person works in the Marketing department, the user knows

the o�ce of that person is located on the 2nd Floor.

3.6 Inference with Union Queries

In this section, we discuss the use of a union of queries in inference. Consider the

following three queries,

Q1 = (Job; Age < 50 ^ Age > 40),

Q2 = (Job; Age > 45 ^ Age < 60), and

Q3 = (Job; Age > 30 ^ Age � 45).

since the following implication holds,

(Age < 50 ^ Age > 40) ) ((Age > 45 ^ Age < 60) _ (Age > 30 ^ Age � 45)),

Q1 < (Q2 [Q3) holds. The inference rules can be applied by treating (Q2 [Q3) as a single

user query. We call such a union of queries a `union query'. A user query is called a `simple

query'. If Qu is a union query that consists Qi, : : :, and Qj, then ASu = (ASi \ : : : \ASj),

and SCu = (SCi _ : : : _ SCj). Note that ASu can equal ;. Any overlapping tuple among

the simple queries in a union query should have been identi�ed. The applications of the

unique characteristic and functional dependency inference rules on a union query are similar

to their applications on the simple queries of the union query. Hereafter, we only discuss

the applications of the subsume, overlapping, and complementary inference rules on union

queries.

3.6.1 Subsume Inference Rule on Union Queries

Consider the applications of the subsume inference rule on union queries when the

union queries are subsumed by other queries. Let Qu = fQi; : : : ; Qjg be a union query,

and Qu < Q1. We show that inference obtained by applying the subsume inference rule on

(Qi [ : : : [Qj) < Q1 can also be obtained by applying the subsume inference rule on Qi <

Q1, : : :, and Qj < Q1.

Consider the applications of SI1. If there is an attribute A in (AS1nASu), such

that all return tuples of Q1 take the same attribute value a over A, then for each return

tuple tu of Qu, tu[A] = a. This implies that for each return tuple t of a simple query of



40

Qu, t[A] = a. This is the same as if SI1 is applied to Qi and Q1, where Qi < Q1, for each

simple query Qi of Qu.

Consider the applications of SI2. If there exists a tuple tu in Qu that is indistin-

guishable from exactly one return tuple t1 of Q1, there exists at least one simple query Qi

of Qu such that tu relates to a return tuple ti of Qi. Now, ti is indistinguishable from t1

of Q1. Hence, when SI2 is applicable to infer that tu of Qu relates to t1 of Q1, it is also

applicable to infer that ti of Qi relates to t1 of Q1.

Consider the applications of SI3. When all the related tuples between Qu and Q1

are identi�ed, two inferred queries are generated from Q1: 1) Qu1 = (AS1;SC1 ^ :SCu);

and 2) Qu2 = (AS1;SC1 ^ SCu). We show that these two queries can also be generated

from the simple queries of Qu and Q1. Note that when all the related tuples between Qu

and Q1 have been identi�ed, all related tuples among the simple queries of Qu are also

identi�ed. Without loss of generality, suppose Qu = fQ2; Q3g. The application of SI3 on

Q1 and Q2 generates two inferred queries: 1) Q21 = (AS1;SC1 ^ :SC2); and 2) Q22 =

(AS1;SC1 ^ SC2). Similarly, the application of SI3 on Q1 and Q3 generates two inferred

queries: 1) Q31 = (AS1;SC1 ^ :SC3); and 2) Q32 = (AS1;SC1 ^ SC3). Now, Q21 and

Q31 are both generated from Q1, and we can generate the following inferred query for

their related tuples: (AS1;SC1 ^ :SC2 ^ :SC3) which equals Qu1. Q22 and Q32 are both

generated from Q1, and we can identify the related tuple between them. The union of these

two queries is (AS1;SC1 ^ (SC2 _ SC3)) which equals Qu2. Therefore, we do not need to

consider the applications of the subsume inference rule when the union query is subsumed

by other queries.

Consider the case where union queries subsume other queries, say Q1 < Qu. SI1

is applied as follows. If for each return tuple t of any simple query of Qu, t[A] = a, then

t1[A] = a for each return tuple t1 of Q1. SI2 is applied as follows. If there is a return tuple

t1 of Q1 that is indistinguishable from a set of return tuples S from the simple queries of

Qu, where all tuples in S relate to one another, then t1 relates to each tuple in S. SI3 is

applied similarly. Note that the subsume inference rule can still be applied when the simple

queries of Qu have no common projected attribute.
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3.6.2 Overlapping and Complementary Inference Rule on Union Queries

Consider the applications of OI1. Given three queries, Q1, Q2, and Qu, where

Qu is a union query. Suppose Qu < Q1 and Qu < Q2. If OI1 is to be applied to identify

the related return tuples among Q2 and Q3, jQuj must be known. That is, the number

of related tuples, if any, among the simple queries are identi�ed. Suppose Q1 < Qu and

Q1 < Q2. If OI1 is to be applied to identify the related return tuples between Qu and Q2,

then the user must has already identi�ed those related tuples among the simple queries in

Qu. Also, the user has to identify the return tuples of Qu that are indistinguishable from

the return tuples of Q2, and the number of these return tuples equals jQ1j.

Consider the applications of OI2. Suppose there is a set of queries QS = fQ2; : : : ;

Qn; Qug such that for each query Qi 2 QS, Qi < Q1. OI2 is applicable when the related

tuples among the queries in QS are identi�ed. That is, the related return tuples, if any,

between Qu and other queries in QS have to be identi�ed. OI3 is applied similar to the

case with simple queries. Note that the overlapping inference rule can still be applied when

ASu = ;. For example, let Qu = fQu1; Qu2g. If SCu1^SCu2 = false, the user can conclude

that there is no related return tuple between Qu1 and Qu2, and jQuj = jQu1j+ jQu2j.

Consider the applications of the complementary inference rule on the union queries.

Suppose there are four queries Q1, Q2, Q3, and Qu, where Qu is a union query, Q1 < Q2,

and Q3 < Qu. To apply the complementary inference rule on these four queries, the related

return tuples among the simple queries in Qu that also relate to return tuples of Q2 must

have been identi�ed. Similarly for the case when Q1, Q2, or Q3 is a union query.

3.7 Detection of Tracker Attacks

We illustrate the e�ectiveness of our detection system by detecting the Tracker, a

known inference attack method that has driven research in the statistical database security

community [DDS79, DS80]. As our system does not allow queries with statistical functions,

we replace the statistical functions by general queries. Let count(SC) be the function

that counts the number of tuples satisfying the condition SC, and sum(A;SC) be the

sum over an attribute A for all tuples satisfying the condition SC. In our system, these

two functions are transformed into the query (A; SC). We consider three types of tracker

attacks: individual, general and double tracker attacks.
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3.7.1 Individual Tracker Attack

Suppose a tuple t is known to have a unique characteristic C. Let C = C1 ^ C2,

and T = C1 ^ :C2. The following individual tracker can determine if the tuple t also has

the unique characteristic D.

count(C ^D) = count(T _ C1 ^D)� count(T )

Note that `^' takes precedence over `_'. If count(C ^D) = 0, there is no tuple that satis�es

the condition C ^D, and hence the tuple t does not have the unique characteristic D. If

count(C ^D) = 1, then there is one and only one tuple, namely t, that satis�es both C and

D, and the tuple t also has a unique characteristic D. We transform the two count queries

into the following two queries,

Q1: (AS1;T _C1 ^D) and

Q2: (AS2;T ).

where AS1 and AS2 are arbitrary sets of attributes. They do not necessarily have set-subset

or intersection relationships. As T ) (T _C1^D), we have Q2 < Q1. Q1 returns one more

tuple than Q2 which implies that there is a tuple, say t1, with the unique characteristic

(SC1 ^ :SC2). Now,

(T _ C1 ^D) ^ :T

= C1 ^D ^ :T

= C1 ^D ^ :(C1 ^ :C2)

= C1 ^D ^ C2 = C ^D.

As (C ^D) ) C, by the unique characteristic inference rule, t relates to t1; that is, t has

the unique characteristic C ^D. Hence, t also has the unique characteristic D.

The individual tracker can also employ sum functions to �nd out attribute values of

individual tuples. The attribute value over A of the tuple t that has the unique characteristic

C is found as follows,

sum(A;C) = sum(A;C1)� sum(A;C1 ^ :C2)

The two sum functions are transformed into the following two queries,

Q3: (A;C1) and

Q4: (A;C1 ^ :C2).

As C1 ^C2 ) C1, we have Q4 < Q3. jQ3j = jQ4j+ 1 implies that there is a tuple returned

by Q3 but not by Q4. Hence, there is a tuple with the unique characteristic (SC3 ^ :SC4)

which equals (C1 ^ C2) = C. That is Q3 returns only one tuple more than those returned
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by Q4. Therefore, users are able to obtain the value of t[A].

3.7.2 General Tracker

The general tracker can be used to determine the existence of a tuple with certain

unique characteristic. Suppose a user wants to �nd out if there exists a tuple having the

unique characteristic C. The user can do this by using three count functions as follows,

count(C) = count(C _ T ) + count(C _ :T )� count(true).

If count(C) = 1, then there is a tuple having the unique characteristic C. If cond(C) =

0, then no such tuple exists. The three count functions are transformed into the following

general queries,

Q1 : (AS1;C _ T ),

Q2 : (AS2;C _ :T ), and

Q3 : (AS3; true).

AS1, AS2, and AS3 do not necessarily have any set-subset or intersection relationships.

Q3 selects all tuples in the database. Q3 can be replaced by several smaller queries, for

example, by these two queries: (AS3;E) and (AS3;:E) for any logical expression E. As

Q1 < Q3, Q2 < Q3, ((C _ T ) _ (C _ :T )) , SC3, and jQ1j + jQ2j = jQ3j + 1, a user can

conclude that there is only one overlapping tuple between Q1 and Q2 and the tuple has the

unique characteristic of ((C _ T ) ^ (C _ :T )) = C.

Another form of general tracker is shown as follows,

count(C) = 2count(true)� count(:C _ T )� count(:C _ :T ).

If count(C) = 1, then there is a tuple with the unique characteristic C. If count(C) = 0,

there is no tuple satis�es C. The three count functions are transformed as follows,

Q1 : (AS1;:C _ T ),

Q2 : (AS2;:C _ :T ), and

Q3 : (AS3; true).

Suppose the tuple that satis�es C also satis�es T . In this case, Q1 returns all tuples from

the database, and Q2 returns all but one tuples from the database. Hence, a user can

infer that the tuple that is not returned by Q2 has unique characteristic :(SC1 ^ SC2)

= :((:C _ T ) ^ (:C _ :T )) = :(:C) = C. Similarly for the case where the tuple that

satis�es C does not satisfy T . In this case, Q1 returns all but one tuples from the database,

and Q2 returns all tuples from the database. A user can infer the existence of a unique
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characteristic C.

3.7.3 Double Tracker

The general form of a double tracker is as follows, where T and U are logical

expressions, and T ) U ,

count(C) = count(U) + count(C _ T )� count(T )� count(:(C ^ T ) ^ U)

If count(C) = 1, then there is a tuple, say t, having the unique characteristic C. If count(C)

= 0, then there is no tuple satis�es C. Users can determine t[A] using the following expres-

sion,

sum(A;C) = sum(A;U) + sum(A;C _ T )� sum(A;T )� sum(A;:(C ^ T ) ^ U)

The four count functions are transformed into the following four queries,

Q1 : (AS1;U),

Q2 : (AS2;C _ T ),

Q3 : (AS3;T ), and

Q4 : (AS4;:(C ^ T ) ^ U).

(a)

Q1 Q2 Q3 Q4

(b)

Q1 Q2 Q3 Q4

Figure 3.8: An Example on Double Tracker Attack.

Let t be the tuple that satis�es C. There are two cases to be considered: t satis�es T or t

does not satisfy T . Suppose t satis�es T . Figure 3.8(a) shows four sample queries in this

case. Q2 and Q3 return the same number of tuples. As T ) (C _ T ), a user can infer

that any tuple satis�es C also satis�es T . As T ) U , any tuple satis�es C also satis�es U .

Now, SC4 ) SC1, and Q1 returns one more tuple than Q4. This implies that there exists

a tuple with the unique characteristic SC1 ^ :SC4 = U ^ :(:(C ^ T ) ^ U) = U ^ T ^ C.

As shown above, any tuple that satis�es C also satis�es both U and T . That is, U ^ T ^C

= C. Hence, there is a tuple with unique characteristic C.

Consider the case where t does not satisfy T . Figure 3.8(b) shows four sample

queries in this case. Q1 and Q4 return the same number of tuples. This is because (C ^ T )
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becomes false, and hence SC4 = :(C ^ T ) ^ U = U = SC1. SC4 ) SC1 and jQ1j = jQ4j

imply that any tuple that satis�es U also satis�es (:C_:T ). As T ) U , any tuple satis�es

T also satis�es (:C _:T ). Obviously, a tuple that satis�es T does not satis�es :T . Hence,

any tuple that satis�es T also satis�es :C. That is, any tuple satis�es C also satis�es :T .

Now, SC3 ) SC2, and Q2 returns one tuple more than Q3 which imply that there is a

tuple with unique characteristic ((C _ T ) ^ :T ) = (C ^ :T ). As any tuple satis�es C also

satis�es :T , C ^ :T = C. This is, the user can conclude that there is a tuple with the

unique characteristic C.

Another form of a double tracker is shown as follows,

count(C) = count(:U)� count(:C _ T ) + count(T ) + count(:(:C ^ T ) ^ U)

If count(C) = 1, then there is a tuple with the unique characteristic C. If count(C) = 0, no

such tuple exists. The four count functions are transformed into the following four queries,

Q1 : (AS1;:U),

Q2 : (AS2;:C _ T ),

Q3 : (AS3;T ), and

Q4 : (AS4;:(:C ^ T ) ^ U).

(b)

Q1 Q2 Q3 Q4

(a)

Q1 Q2 Q3 Q4

Figure 3.9: Another Example on Double Tracker Attack.

There are three cases to be considered: C logically implies T , C logically implies :T , and

C does not logically imply T or :T . Suppose C logically implies T ; that is, C ) T .

Figure 3.9(a) shows four sample queries in this case. That is, :C _ T = true, hence Q2

returns all tuples from the database. Now, SC1_SC3_SC4 = (:U)_T _ (:(:C ^T )^U)

= T _ :U _ :T _ C = true implies that Q1, Q3, and Q4 together returns all tuples from

the database. (SC1 ^ SC4) = :U ^ (:(:C ^ T ) ^ U) = false implies that there is no

return tuple of Q1 that relates to a return tuple of Q4. Similarly, (SC1 ^ SC3) = (:U ^ T )

= false implies that there is no return tuple of Q1 that relates to a return tuple of Q3.

jQ1j + jQ3j + jQ4j = jQ2j + 1 implies that Q3 and Q4 have one overlapping return tuple.
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Hence, there is a tuple with the unique characteristic (SC3 ^ SC4) = T ^ (:(:C ^ T )^ U)

= T ^ (C _ :T ) = T ^C = C.

Suppose C logically implies :T ; that is, C ) :T . Figure 3.9(b) shows four sample

queries in this case. SC1 _ SC3 _ SC4 = (:U _ T _ (:(:C ^ T ) ^ U)) = true implies that

Q1, Q3, and Q4 together returns all tuples from the database. As T ) U , SC3 ^ SC1 =

T ^:U = false, and hence no return tuple of Q1 relates to a return tuple of Q3. SC1 ^SC4

= :U ^ :(:C ^ T ) ^ U = false, hence no return tuple of Q1 relates to a return tuple of

Q4. As C ) :T , SC3 ^ SC4 = T ^ (C _ :T ) ^ U = T ^ :T ^ U = false, and hence no

return tuple of Q3 relates to a return tuple of Q4. Therefore, Q1, Q3, and Q4 partition the

database. As jQ2j = jQ1j+ jQ3j+ jQ4j - 1, Q2 returns all but one tuple. Hence, there is a

tuple with the unique characteristic :(:C _ T ) = (C ^ :T ) = C.

Suppose C does not logically imply T or :T . SC1 _ SC3 _ SC4 = true implies

that Q1, Q3, and Q4 together returns all tuples from the database. There are two cases to

be considered: Q1, Q3, and Q4 partition the database, and they do not. First, consider the

case where the three queries partition the database. As jQ2j + 1 = jQ1j + jQ3j + jQ4j, Q2

returns all but one tuples from the database, and hence there is a tuple with the unique

characteristic :SC2 = :(:C_T ) = C^:T . Since the three queries partition the database,

no tuple satis�es SC3 ^ SC4 = T ^ (C _ :T ) ^ U = T ^ (C _ :T ) = T ^ C. That is, any

tuple satis�es C does not satisfy T . Therefore, the unique characteristic C ^:T is reduced

to C. Now, consider the case where Q1, Q3, and Q4 do not partition the database. That

is, there is at least one overlapping return tuple among the three queries. Two queries

have an overlapping return tuple if there is a return tuple of one query relates to a return

tuple of another query. Let N be the number of tuples in the database. N � jQ2j, and

N < jQ1j + jQ3j + jQ4j. As jQ2j + 1 = jQ1j + jQ3j + jQ4j, we have N = jQ2j. Hence, the

number of overlapping return tuple among the three queries is exactly one. SC1 ^ SC3 =

false, hence Q1 and Q3 do not have overlapping return tuple. SC1^SC4 = false, hence Q1

and Q4 do not have overlapping return tuple. Therefore, Q3 and Q4 have one overlapping

return tuple which satis�es SC3 ^ SC4 = T ^ (C _ :T ) ^ U = T ^ C. As Q2 returns all

tuples from the database, any tuple that satis�es C also satis�es T . Therefore the unique

characteristic T ^ C is reduced to C.
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3.8 Summary

In this chapter, we present the six inference rules that we have developed based

on a set-theoretic approach to the inference problem. They are the split query, subsume,

unique characteristic, overlapping, complementary, and functional dependency inference

rules. Each query returns a set of tuples. The possible relationships among them are set-

subset, intersection, di�erence, and union. We develop the inference rules to simulate the

use of these set relationships among query results to infer data. All the inference rules are

sound. However, more research is needed to determine if they are complete. We can achieve

completeness if we strictly limit the release of any part of sensitive information as suggested

by Marks [Mar96], but at a cost of decreasing the accessibility of the database. We have

shown that our inference rules can detect the known database inference attacks called the

Tracker. This further assures the e�ectiveness of our detection system.
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Chapter 4

Inference Detection Algorithms

and Implementation

In this chapter, we present the inference detection algorithms, provide complexity

analysis on them, and describe a prototype of the data level inference detection system.

We carried out experiments to evaluate the performance of the inference detection system.

Although in theory the detection algorithms are NP-complete, our experimental results show

that the system could be practical for databases and user queries with certain characteristics.

Some of the results in this chapter have been reported in [YL98b]

4.1 Data Structures

The detection algorithms maintain a data structure called USER VIEW(U). It

represents the set of data that a user U learns about the database. USER VIEW(U) is

represented by a set of tables. Whenever a user U issues a query, the result of the query

is added into USER VIEW(U). Also, any data that the user U can infer are added into

USER VIEW(U) as well. We illustrate the construction of a USER VIEW by an example.

Consider the following sample database as used in Chapter 3.

Name Job Age Salary Department O�ce

Alice Manager 35 60K Marketing 2nd Floor

Bob Secretary 35 45K Marketing 2nd Floor

Charles Secretary 40 40K Production 1st Floor

Denise Manager 45 65K Sales 2nd Floor
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Suppose Bill issues the following query to the sample database,

Q1: (Name, Job; Name = `Alice')

which returns a single tuple (`Alice', `Manager'). Assuming Bill has not accessed any data

from the database before, USER VIEW(Bill) contains a single table as follows,

Name Job

Alice Manager

which indicates that Bill only knows about the result of Q1. Then, Bill issues the second

query as follows,

Q2: (Job, Salary: Job = `Manager')

which returns two tuples (`Manager', 60K) and (`Manager', 65K). Bill does not know the

employees to which these two tuples belong to, hence there is no inference among the �rst

two queries. USER VIEW(Bill) now contains the following two tables,

Name Job

Alice Manager

Job Salary

Manager 60K

Manager 65K

Note that SC1 ) SC2 (that is, SC1 logically implies SC2), and hence Q1 < Q2. That is,

Bill can tell that one of the two return tuples from Q2 belongs to Alice. Bill issues the third

query as follows,

Q3: (Name, Job, Age: Name = `Denise')

which returns this tuple (`Denise', `Manager', 45). Again no inference occurs. USER VIEW(Bill)

is expanded with the third table as follows,

Name Job

Alice Manager

Job Salary

Manager 60K

Manager 65K

Name Job Age

Denise Manager 45

Also note that the return tuple of Q3 satis�es SC2, hence Q3 < Q2. That is, one of the two

return tuples of Q2 belongs to Denise. Bill issues the fourth query,

Q4: (Age, Salary: Age = 45)

which returns a single tuple (45, 65K). As there is only one return tuple, Bill can infer that
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(Age = 45) is a unique characteristic of a tuple in the database. From Q3, Bill knows that

Denise is 45 years old, hence Bill can infer that the tuple (45, 65K) relates to the return

tuple of Q3. The tuple (`Denise', `Manager', 45) is expanded with the tuple (45, 65K).

USER VIEW(Bill) is updated accordingly as follows,

Name Job

Alice Manager

Job Salary

Manager 60K

Manager 65K

Name Job Age Salary

Denise Manager 45 65K

As Q3 < Q2, and the tuple (`Denise', `Manager', 45, 65K) is indistinguishable from exactly

one return tuple of Q2, namely (`Manager', 65K), the two tuples relate to each other. The

tuple (`Manager', 65K) is then expanded with the tuple (`Denise', `Manager', 45, 65K).

After the expansion, the table that contains the single tuple (`Denise', `Manager', 45, 65K)

can be removed. USER VIEW(Bill) becomes,

Name Job

Alice Manager

Name Job Age Salary

Manager 60K

Denise Manager 45 65K

Also, as Q1 < Q2 and the return tuple (`Alice', `Manager') of Q1 is indistinguishable from

the return tuple (`Manager', 60K) of Q2 only, these two tuples relate to each other. The

tuple (`Manager', 60K) is expanded with the tuple (`Alice', `Manager'). USER VIEW(Bill)

becomes,

Name Job Age Salary

Alice Manager 60K

Denise Manager 45 65K

From the USER VIEW(Bill), we can conclude that Bill can infer both Alice's and Denise's

salaries.

We formally de�ne a USER VIEW(U) for a user U as follows:

� a USER VIEW(U) is a set of tuples. Each tuple t is associated with a selection

criterion SC, such that t satis�es SC.

� for each return tuple t of a query Qi issued by the user U , t is a tuple in the
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USER VIEW(U). Set the selection criterion of t as SCi.

� Given two tuples t1 and t2 in a USER VIEW(U). If t1 and t2 relate to each other,

then expand t1 using t2 and vice versa. Let the selection criterion of t1 be SC1 before

the expansion, and that of t2 be SC2. After the expansion, the selection criteria of t1

and t2 are both SC1 ^ SC2.

The USER VIEW(U) is used to determine if the user U violates a policy. Recall

in Chapter 3 that a policy is expressed as a 3-tuple as follows,

(U; A1, ..., An; E)

which says that the user U is not allowed to access the association among attributes A1,

: : :, and An for tuples satisfying the logical expression E. The user U violates this policy

if there exists a tuple ti in the USER V IEW (U) with selection criterion SCi, such that ti

satis�es E or SCi ) E, and ti projects all the attributes A1, : : :, and An. For example,

consider the following policy,

(Bill; Name, Salary; Job = `Manager')

which says that Bill is not allowed to access salaries of managers. With respect to the

USER VIEW(Bill) after Q4 is processed, both tuples in the USER VIEW(Bill) satisfy the

expression (Job = `Manager'), and they both project the attributes Name and Salary.

Therefore, we can conclude that Bill violates the policy.

As the inference rules are sound, any inference detected using the inference rules

is correct and will not be revoked afterwards. In other words, any information added into

a USER VIEW is not removed. Hence, a USER VIEW has a monotonic property which is

stated as follows. The information content of a USER VIEW(U) is monotonically increasing

as the user U accesses the database and performs inference using the sound inference rules

as presented in Chapter 3.

An implication of this monotonic property of the USER VIEW is that if an infer-

ence rule is applicable at a state of the USER VIEW, the rule is also applicable in successive

states of the USER VIEW. It is stated as follows. Given two states of a USER VIEW, S1

and S2. If state S2 is a superset of the state S1, then any inference rule that is applicable

at state S1 is also applicable at state S2.

We can treat an inference rule as a function that maps from a state of a USER VIEW

to another state of the USER VIEW. That is,

R : S1 ! S2
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where R is an inference rule, and S1 and S2 are states of a USER VIEW. Sound inference

rules have the following properties:

� idempotent: R1(R1(S)) = R1(S)

� commutative: R2(R1(S)) = R1(R2(S))

� associative: R3(R2(R1(S))) = R1(R3(R2(S)))

where R1, R2, and R3 are inference rules, and S is a state of a USER VIEW. These prop-

erties simplify the design of the detection algorithms, as we do not need to maintain any

order of applications of inference rules.

4.2 Inference Detection Algorithms

In this section, we present the inference detection algorithms, and provide com-

plexity analysis for them. The basic operation in the complexity analysis is the comparison

operation between two attribute values in the database. In the algorithms, query and infer-

ence results for a user U are added to USER VIEW(U), as discussed in the above section.

For simplicity, we omit the updating of the USER VIEW(U) in the algorithms.

4.2.1 Function INFERENCE

Figure 4.1 shows the main function INFERENCE(U, Qi), which is called each time

a user U issues a query Qi to the database. The function maintains two data structures:

GEN and EXP . GEN is initialized with the user issued query Qi, and is subsequently

added with inferred queries generated by the inference rules, at lines 16, 19-21, and 24-

27. Note that the unique characteristic inference rule does not generate an inferred query.

From lines 15 through 26, each query in GEN is compared with queries previously issued

or inferred by user U (denoted as PREV QUERY(U)) to determine if inference rules are

applicable to them. EXP is the set of tuples that are expanded during the applications of

the inference rules. After a tuple is expanded, the query that returns the expanded tuple

might trigger further applications of inference rules. The query is identi�ed at line 11, and

is processed as other queries in GEN .

In each call to the INFERENCE function, all queries in GEN are processed before

the expanded tuples in EXP . This avoids repeatedly processing the same tuple which is
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INFERENCE (U , Qi):
1. initialize GEN with Qi;
2. EXP  ;;
3. GEN Q  ;;
4. EXP Q  ;;
5. while (GEN 6= ; or EXP 6= ;) do
6. if GEN 6= ; then
7. Qj  a query in GEN ;
8. remove Qj from GEN

9. GEN Q  GEN Q [ fQjg;
10. else if EXP 6= ; then
11. Qj  a query that returns a tuple in EXP ;
12. EXP Q  EXP Q [ fQjg;
13. ts  return tuples of Qj in EXP ;
14. remove return tuples of Qj from EXP ;
15. for each Qk 2 PREV QUERY (U) do
16. GEN  SPLIT QUERY(Qj , Qk, GEN);
17. if Qj < Qk then

18. EXP  UNIQUE(Qj , Qk, ts, EXP );
19. (GEN , EXP )  SUBSUME(Qj , Qk, GEN , EXP );
20. (GEN , EXP )  OVERLAP(U , Qj , Qk, GEN , EXP );
21. GEN  COMPLEMENTARY(U , Qj, Qk, GEN);
22. else if Qk < Qj then

23. EXP  UNIQUE(Qk, Qj , ts, EXP );
24. (GEN , EXP )  SUBSUME(Qk , Qj, GEN , EXP );
25. (GEN , EXP )  OVERLAP(U , Qk, Qj , GEN , EXP );
26. GEN  COMPLEMENTARY(U , Qk, Qj , GEN);
27. (GEN , EXP )  UNION QUERIES(U , GEN Q, EXP Q);

Figure 4.1: The function INFERENCE.

expanded when processing di�erent queries in GEN . For example, there is a query Qj in

GEN , and a return tuple tj of Qj is in EXP . Suppose after Qj is processed, tj is expanded.

If the system processes tj in EXP before the Qj in GEN , then tj is inserted into EXP

after the Qj is processed. This means that the system needs to process the tuple tj twice.

On the other hand, if the Qj in GEN is processed before tj in EXP , then the system

only needs to process the tuple tj once. At the end of the function, the UNION QUERIES

function is called to handle inference involving union queries.
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SPLIT QUERY(Qi, Qj, GEN):
1. if Qi and Qj have no related return tuples then
2. return GEN ;
3. if the attributes in a conjunct of SCj is a subset of ASi,

and Qi is not a partial inferred query then
4. generate an inferred query (ASi;SCi ^ SCj) for return tuples of Qi that

also relate to return tuples of Qj ;
5. generate an inferred query (ASi;SCi ^ :SCj) for return tuples of Qi that

do not relate to return tuples of Qj;
6. else if the attributes in a conjunct of SCi is a subset of ASj,

and Qj is not a partial inferred query then
7. generate an inferred query (ASj ;SCj ^ SCi) for return tuples of Qj that

also relate to return tuples of Qi;
8. generate an inferred query (ASj ;SCj ^ :SCi) for return tuples of Qj that

do not relate to return tuples of Qi;
9. return GEN [ fnewly generated inferred queriesg;

Figure 4.2: The function SPLIT QUERY.

4.2.2 Function SPLIT QUERY

Figure 4.2 shows the function SPLIT QUERY. It splits a query Qi if there exists

another query Qj such that some tuples from Qi must also be returned by Qj. This occurs

when the set of attributes in a conjunct of SCj is a subset of ASi. This function only

generates inferred queries for future applications of the inference rules. Note that the system

does not generate an inferred query that is equivalent to a query in PREV QUERY (U)

to avoid duplication. Once an inferred query Q1 is generated from another query Q2, a

link is maintained between the two queries. Whenever a tuple in Q1 is expanded, the

corresponding related tuple in Q2 is also expanded. Let N be the number of tuples in the

database, and A be the number of attributes in the database. Line 1 runs in O(N) time

by checking for each return tuple of Qi if there is a related tuple returned by Qj, assuming

that it takes a single step to determine if a query returns a particular tuple. The generation

of inferred queries, that is line 4, 5, 7, or 8, runs in O(N) time. The running time for line 3

or 6 is O(A), assuming it takes a single step to �nd out if an attribute appears in a selection

criterion. Hence, the SPLIT QUERY function runs in O(A+N) time.
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UNIQUE(Qi, Qj , ts, EXP )
1. if jQij = 1 then
2. let ti be the tuple returned by Qi;
3. ti has the unique characteristic of SCi;
4. else if jQij = N � 1, where N is the number of records in the database then
5. there is a tuple with unique characteristic of :SCi;
6. if jQj j = jQij+ 1 then
7. there is a tuple with unique characteristic of SCj ^ :SCi;
8. for each tuple ti 2 ts do
9. for each unique characteristic, uc do
10. if ti satis�es uc then
11. for each tuple tj that has the unique characteristic uc do
12. EXPAND(ti, tj);
13. return EXP [ fnewly expanded return tuplesg;

Figure 4.3: The unique function.

4.2.3 Function UNIQUE

Figure 4.3 shows the function UNIQUE. It checks if a user can identify unique

characteristics in the database. Lines 1 through 3 check if the input query Qi, which is

either a user issued query or an inferred query, returns a single tuple; and lines 4 through

5 check if Qi returns all but one tuple. If this is the case, the only returned tuple of Qi or

the only tuple not returned by Qi has a unique characteristic. Lines 6 through 7 check if

Qj returns one more tuple than Qi. As Qi < Qj, the tuple that is returned by Qj but not

by Qi has the unique characteristic SCj ^ :SCi. Note that the existence of a tuple having

a unique characteristic is useful in inference. For example, it is known that there exists a

tuple t1 that has the unique characteristic UC. If there is another tuple t2 that also has

the unique characteristic UC, then t1 and t2 relate to each other. Note that both Qi and

Qj can be partial inferred queries.

The UNIQUE function is also input with a set of expanded tuples resulting from

applications of inference rules, denoted as ts. If a tuple t in ts satis�es a unique charac-

teristic UC, then t is expanded with any other tuple that also satis�es UC. The function

EXPAND(t1, t2) performs the following operation, for each attribute A projected by t2 but

not by t1, set t1[A] to be t2[A], and for each attribute A0 projected by t1 but not by t2, set

t2[A0] to be t1[A0].

We provide the complexity analysis of the UNIQUE function. Lines 1 through

7 run in O(1) time. ts is the set of tuples returned by a query, hence, the number of



56

tuples in ts is bound by N , where N is the number of tuples in the database. That is, the

number of iterations at line 8 is O(N). Lines 9 through 11 can be optimized as follows.

Suppose the auditing system can identify the tuples that are related to each other. For each

tuple ti that is identi�ed at line 8, we only consider its related tuple tj which has a unique

characteristic uc. If ti satis�es uc, then expand ti with tj. Hence, the number of iterations

runs from lines 9 through 11 is bound by the maximum number of unique characteristic of

a tuple, which is 2A, where A is the number of attributes in the database. This is because

each unique characteristic consists a subset of the A attributes. The running time for the

EXPAND function is O(A), assuming it takes a single step to determine if a query projects

a certain attribute. That is, the running time from lines 8 through 12 is O(NA2A). Hence,

the complexity of the UNIQUE function is O(NA2A). Although in theory the function

runs in exponential time of the number of attributes, in practice, there are a few unique

characteristics identi�ed for each tuple. This is supported by the results of the experiments

that we have carried out. Let U be the maximum number of unique characteristic identi�ed

for a tuple in the database. The running time of the function is O(NAU), and U is expected

to be a small number.

4.2.4 Function SUBSUME

Figure 4.4 shows the function SUBSUME. Given that Qi < Qj, this function

performs two checks. First, it checks if all return tuples of Qj project the same attribute

value aj over some attribute Aj . If this is the case, each return tuple ti of Qi is expanded

with the attribute Aj and ti[Aj ] is set to be aj. Second, the function checks if a return

tuple of Qi is indistinguishable from only one return tuple of Qj . If this is the case, the two

return tuples are expanded with each other. The number of projected attributes is bound

by A, hence the number of iterations at line 2 is bound by O(A). Line 3 runs in O(N) time,

as the number of tuples of each query is bound by N . Line 4 runs in O(N) time. Hence,

the running time from lines 2 through 5 is O(AN). The number of iterations at line 6 is

O(N). Line 7 runs in O(NA) time. Line 8 runs in O(A) time. Hence, lines 6 through 8

run in O(N(NA+A)) = O(N2A) time. Each inferred query is generated using O(N) time.

The running time from lines 9 through 13 is O(N). Hence, the total running time of the

SUBSUME function is O(AN2).
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SUBSUME(Qi, Qj , GEN , EXP ):
1. return if Qj is a partial inferred query;
2. for each attribute A of ASj do
3. if tj [A] = a for all return tuples tj of Qj then

4. for each return tuple ti of Qi do

5. ti[A]  a;
6. for each return tuple ti of Qi do

7. if ti is indistinguishable from exactly one return tuple, tj, of Qj only then
8. EXPAND(ti, tj);
9. if all tuples in Qj that relate to Qi are identi�ed then
10. generate an inferred query (ASj ;SCj ^ SCi) for tuples returned by both

Qj and Qi;
11. generate an inferred query (ASj ;SCj ^ :SCi) for tuples returned by

qj but not Qi;
12. else

13. generate a partial inferred query (ASj ;SCj ^:SCi) for those return tuples of Qj

that are distinguishable from return tuples of Qi;
14. return GEN [ fnewly inferred queriesg, EXP [ fnewly expanded return tuplesg;

Figure 4.4: The function SUBSUME.

4.2.5 Function OVERLAP

Figure 4.5 shows the function OVERLAP. It checks if the overlapping inference

rule is applicable. It consists two parts. The �rst part, from lines 1 through 19, detect

inference using OI1. Given three queries, Qi, Qj, and Qk, where Qi < Qj and Qi < Qk,

the function checks if the overlapping tuples between Qj and Qk can be identi�ed. Lines 3

and 4 determine if the return tuples of Qj that overlap with Qk are identi�ed. If this is the

case, lines 5 and 6 expand the related tuples between Qj and Qk. Similarly, lines 7 and 8

determine if the return tuples of Qk that overlap with Qj are identi�ed. If this is the case,

lines 9 and 10 expand the related tuples between Qj and Qk. Lines 11 through 13 expand

the return tuples of Qi that relate to the overlapping return tuples of Qj or Qk. When jQij

= 1, a user can infer that there is a tuple with the unique characteristic of (SCj ^ SCk).

The second part of the function OVERLAP, from lines 20 through 29, detects

inference using OI2. That is, it �nds a set of queries SQ, such that each query in SQ is

subsumed by Qj, and the number of distinguishable return tuples in SQ equals jSQj. When

such a set of queries is found, any indistinguishable tuples among queries in SQ relate to one

another. When all the related tuples between two queries, Qj and Qk, in SQ are identi�ed,

at most four inferred queries can be generated: the set of return tuples of Qj that are not
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function OVERLAP(U , Qi, Qj, GEN , EXP ):
1. return GEN , EXP if Qj is a inferred partial query;
2. for each query Qk 2 PREV QUERY (U), where Qi < Qk, and Qk is not a

partial inferred query do
3. Sj  ftj : tj 2 fQjg, there exits a tk, tk 2 fQkg, tj is indistinguishable from tkg;
4. if jQij = jSj j then
5. for each return tuple tj of Qj that is indistinguishable from

tk of Qk do

6. EXPAND(tj , tk);
7. Sk  ftk: tk 2 fQkg, there exists a tj, tj 2 fQjg, tk is indistinguishable from tjg;
8. if jQij = jSkj then
9. for each return tuple tk of Qk that is indistinguishable from

tj of Qj do

10. EXPAND(tk, tj);
11. if jSj j = jSkj then
12. for each return tuple ti of Qi that is indistinguishable from

a return tuple tl of Qj or Qk do

13. EXPAND(ti, tl);
14. if all related tuples between Qj and Qk are identi�ed then
15. generate four inferred queries between Qj and Qk;
16. else
17. generate partial queries;
18. if jQij = 1 then
19. there is a tuple with unique characteristic (SCj ^ SCk);
20. SS  FIND OVERLAP SET(U , Qj);
21. for each set of queries SQ in SS do

22. if ti of a query in SQ is indistinguishable from a tuple tk of
another query SQ then

23. EXPAND(ti, tk);
24. if all indistinguishable tuples be between two queries are identi�ed then
25. generate four inferred queries between them;
26. else
27. generate partial queries;
28. if Qi has only one tuple indistinguishable with tuples of Qk then

29. there is a tuple with unique characteristic (SCi ^ SCk);
30. return GEN [ fnewly inferred queriesg, EXP [ fnewly expanded return tuplesg;

Figure 4.5: The function OVERLAP.
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returned by Qk, the set of return tuples of Qj that are also returned by Qk, the set of return

tuples of Qk that are not returned by Qj, and the set of return tuples of Qk that are also

returned by Qj .

function FIND OVERLAP SET(U , Qi):
1. S  ;;
2. for each query Qj 2 PREV QUERY(U), where Qj < Qi, and Qj is not a

partial inferred query do
3. S  S [ fQjg;
4. return fg if there exists a return tuple ti of Qi such that no return tuple of

queries of S relates to ti;
5. return fSg if the number of distinguishable return tuples in S = jQij;
6. SQ  ;;
7. for each subset S0 of S do

8. if the number of distinguishable tuples in S0 = jQij then
9. SQ  SQ [ fS0g;
10. return SQ;

Figure 4.6: The function FIND OVERLAP SET.

Figure 4.6 shows the function FIND OVERLAP SET which is called at line 20 of

the function OVERLAP. FIND OVERLAP SET �nd all the set of queries such that OI2 is

applicable. Lines 1 through 3 �nd a set of queries S such that for each query Q in S, Q is

subsumed by Qi. When there is a return tuple of Qi that does not relate to a return tuple

of queries in S, then the number of distinguishable return tuples in S must less than jQij.

For this case, at line 4, the function returns an empty set to indicate that OI2 cannot be

applied. At line 5, when the number of distinguishable return tuples in S equals jQij, the

function returns the set S to indicate that OI2 can be applied to queries in S and Qi. Note

that we do not need to apply OI2 to queries in a subset S0 of S. This is because overlapping

return tuples identi�ed in any pair of queries in S0 can also be identi�ed in S.

When the number of distinguishable return tuples in S is less than jQij, OI2 may

be applicable to a subset of S. Lines 6 through 9 �nd out all these subsets of S. The

algorithm is exponential in the number of queries in S. Figure 4.7 shows �ve queries, where

S = fQ2; Q3; Q4; Q5g, and each query in S is subsumed by Q1. We need to consider the

following subsets of S for possible applications of OI2: 1) Q2 and Q4; 2) Q2 and Q5; 3)

Q3 and Q4; and 4) Q3 and Q5. This example illustrates that in some cases the number of

subsets to be considered is at least O(2
n
2 ), where n is the number of queries in S. If n is

small, we can a�ord to search exhaustively for all possible subsets of S. When n is large,
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we might improve performance at the expense of accuracy. For example, we might report

any indistinguishable tuples as related tuples, which might lead to false positive reports.

Q3

Q4
Q5

Q1Q2

Figure 4.7: An Example on Finding Overlapping Set.

Consider the complexity of the function OVERLAP. Let Q be the number of

queries issued or inferred by a user, that is, the size of PREV QUERY(U). The num-

ber of iterations in line 2 is Q. Line 3 or 7 runs in O(N2A) time. Lines 5 and 6,

9 and 10, or 12 and 13 run in O(NA) time. Each inferred query is generated using

O(N) time. Hence, lines 2 through 19 run in O(QN2A) time. Consider the complexity

of the function FIND OVERLAP SET. Let the number of sets of queries found in function

FIND OVERLAP SET be S1, line 2 has O(Q) number of iterations. Line 4 runs in O(QN)

time by checking if each return tuple in S relates to a return tuple of Qi. Line 5 runs in

O(Q2N2A) time as it need to consider O(Q2) pairs of queries in S, and �nd out the number

of distinguishable tuples (in O(N2A) time) in each pair of them. Line 7 has O(2Q) number

of iterations, and line 8 runs in O(Q2N2A) time as in line 5. Hence, the running time of the

function FIND OVERLAP SET is O(Q2N22Q). Lines 21 and 22 in function OVERLAP

are similar to lines 7 and 8 in function FIND OVERLAP SET, and they both run in the

same time. Line 23 runs in O(A) time. Lines 25 and 27 both run in O(N) time. Hence,

the total running time of the function OVERLAP is O(Q2N2A2Q).

4.2.6 Function COMPLEMENTARY

Figure 4.8 shows the function complementary. It checks if the complementary

inference rule can be applied. If this is the case, it generates at most six inferred queries:

the set of tuples returned by Qi but not by Qk, the set of tuples by Qi and also by Qk,

the set of tuples returned by Qk but not by Qi, and similarly the three inferred queries

generated from Qj and Ql. Two of them have subsume relationships among each other.

There are O(Q2) pairs of queries that satisfy the < relations, hence line 1 runs in O(Q2)
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function COMPLEMENTARY(U , Qi, Qj):
1. for each pair of queries Qk and Ql in PREV QUERY(U), where Qk < Ql, the related
tuples among return tuples

of Qi and Qk, and Qj and Ql are identi�ed do
2. if (each ti of Qi that does not relate to Qk are distinguishable from

all tuples of Ql) or (Ql < Qk) or (jQkj = jQlj) then
3. generate an inferred query Q1 = (ASi; SCi ^ : SCk);
4. generate an inferred query Q2 = (ASj ; SCj ^ : SCl);
5. set Q1 < Q2;
6. generate possibly four inferred queries;
7. return GEN [ fnewly inferred queriesg;

Figure 4.8: The function COMPLEMENTARY

time. Line 2 runs in O(N2A) time. Line 3, 4 or 6 runs in O(N) time. Therefore, the

function total running time is O(Q2N2A).

4.2.7 Function UNION QUERIES

Figure 4.9 shows the functionUNION QUERIES. It begins with two sets of queries:

S1 and S2. S1 is the set of queries generated in the INFERENCE function. S2 is the set

of queries whose return tuples have been expanded in the INFERENCE function. For

each of these newly generated queries Qi, the function (from lines 2 through 14) checks if

there is a union query that subsumes or is subsumed by Qi. Also, the function checks if

there is a union query, including Qi, that subsumes or is subsumed by other queries. The

function maintains a data structure IMP which stores pairs of queries that have subsume

relationships. Lines 15 through 22 check if each query in S2 have subsume relationship with

some union queries. If this is the case, the pair of queries are added to IMP . As the queries

in S2 are not newly generated inferred queries, it is not necessary to create any new union

query that includes them. Lines 23 through 26 apply inference rules to each pair of queries

in IMP .

Figure 4.10 shows the function FIND SUBSUMED QUERY(U , Qi, Qj). It �nds

all the union queries, each of which includes Qi, that are subsumed by Qj. The run-

ning time of this algorithm is exponential in the size of the set S which is bound by

O(Q), as line 4 generates 2jSj number of union queries. Figure 4.11 shows the function

FIND SUBSUME QUERY(U , Qi, Qj). It �nds all union queries, each of which includes

Qi, that subsumes Qj. The running time of this algorithm is also exponential in jSj. For
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function UNION QUERIES(U , S1, S2):
1. IMP  ;;
2. for each query Qi 2 S1 do
3. for each query Qj in PREV QUERY (U) that has tuples relate to those of Qi do

4. if there is a union query UQ including Qj then

5. IMP  IMP [ (Qi, UQ) if Qi < UQ;
6. IMP  IMP [ (UQ, Qi) if QU < Qi;
7. SU  FIND SUBSUMED UNION(U;Qi; Qj);
8. for each union query UQ in SU do

9. create a new union query UQ if it does not exist;
10. IMP  IMP [ (UQ, Qj);
11. SU  FIND SUBSUM UNION(U;Qi; Qj);
12. for each union query UQ in SU do

13. create a new union query UQ if it does not exist;
14. IMP  IMP [ (Qj , UQ);
15. for each query Qi 2 S2 do
16. for each union query UQ do

17. IMP  IMP [ (Qi, UQ) if Qi < UQ;
18. IMP  IMP [ (UQ, Qi) if UQ < Qi;
19. for each union query that contains Qi do

20. for each query Qj 2 PREV QUERY (U) do
21. IMP  IMP [ (Qj , UQ) if Qj < UQ;
22. IMP  IMP [ (UQ, Qj) if UQ < Qj ;
23. for each (Qi, Qj) in IMP do

24. SUBSUME(Qi, Qj);
25. OVERLAP(U , Qi, Qj);
26. COMPLEMENTARY(U , Qi, Qj);
27. return inferred queries generated and expanded tuples;

Figure 4.9: The function UNION QUERIES.

example, let S be fQ1, Q2, : : :, Qng, that is, jSj = n. Suppose for each query Qk in S, there

is one and only one query Qk+1 in S such that Qk and Qk+1 do not have an overlapping

tuple that relates to return tuples of Qj . Then, a union query is formed by taking either Qk

or Qk+1, for k = 1, 3, 5, : : :, k
2 , Hence, the number of union queries is 2

jSj
2 . For example,

consider the �ve queries as shown in Figure 4.12. We want to �nd the union queries formed

from Q1, Q2, Q3, and Q4 that subsume Q0. Each of these four queries has two parts: the

one that overlaps with Q0, and the one that does not. From these four queries, we can form

the following union queries that subsume Q0: fQ1, Q3g, fQ1, Q4g, fQ2, Q3g, and fQ2,

Q4g. That is, the number of union queries found = 2
jSj
2 = 2

4

2 = 4. In our implementation,

we assume all union queries have at least one projected attributes. This reduces the num-
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function FIND SUBSUMED UNION(U , Qi, Qj):
1. S  ;;
2. foreach Qk in PREV QUERY (U), Qk < Qj, and Qk and Qi

do not have overlapping return tuple do
3. S  S [ Qk;
4. SS  ;;
5. for each subset S0 of the set of queries S, the queries in S0 is subsumed by Qj do

6. SS  SS [ S0;
7. return SS;

Figure 4.10: The function FIND SUBSUMED UNION.

function FIND SUBSUM UNION(U , Qi, Qj):
1. S  ;;
2. foreach Qk in PREV QUERY (U), Qk and Qj has related tuples, and related tuples
between Qk and Qi

do not have related return tuple in Qj do

3. S  S [ Qk;
4. return fgif all queries in S does not has a related tuple in Qj;
5. SS  ;;
6. for each subset S0 of the set of queries S, the queries in S0 subsums Qj do
7. SS  SS [ S0;
8. return SS;

Figure 4.11: The function FIND SUBSUM UNION.

ber of possible union queries, but it introduces false negative reports. Both the function

FIND SUBSUMED QUERY and FIND SUBSUME QUERY run in O(QN+2Q) time. The

function FIND UNION has O(Q2N +Q2Q)) running time.

Q4

Q0
Q1

Q2

Q3

Figure 4.12: An Example on Finding Union Queries.

The problem of �nding union queries that subsume another query can be trans-

formed into a graph problem. Given a set of queries S, where each query in S has a return

tuple related to a return tuple of Q0. We can form a graph such that each node in the graph
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Q4Q2

Q1 Q3

Figure 4.13: An Example on Using a Graph to Find Union Queries.

corresponds to a query in S. An edge connects a node A, corresponding to a query QA, to

another node B, corresponding to a query QB , if the related tuples between QA and QB

do not have related return tuples in Q0. Let V be the set of vertices in the graph such that

after removing all vertices in V from the graph, all edges in the graph are removed. Then,

the queries corresponding to the vertices in V form a union query. For example, Q1, Q2,

Q3, and Q4 in Figure 4.12 can be transformed into a graph as shown in Figure 4.13. The

nodes are named with their corresponding queries. A totally disconnect graph is formed

when any one of the following sets of vertices is removed from the graph fQ1, Q3g, fQ1,

Q4g, fQ2, Q3g, and fQ2, Q4g. We can form the four union queries as discussed above using

queries corresponding to the remaining vertices.

4.3 Implementation and Experimental Results

We have developed a prototype of the inference detection system in about 4,000

lines of Perl code. We have implemented the split query, subsume, unique characteristic,

overlapping (without OI2), and complementary inference rules. We have also implemented

the applications of the inference rules in union queries. We ran our experiments with

randomly generated tables and user queries. Each table has Nattr number of attributes,

and Nrec num number of records. The primary key of the table is a single attribute. All

attributes are of integer types. Each attribute value in the table is uniformly distributed

between 0 and (Ndata dist�Nrec num), where 0 < Ndata dist � 1. We also randomly generate

Nquery num number of user queries. Each query projects Nproj number of attributes from the

table. The selection criterion of each query is a conjunction of Ncond number of conjuncts.

Each conjunct is of the form `Ai op ai', where Ai is an attribute from the table, op is one

of the relational operations (>, �, �, <, and =), and ai is an attribute value. We only

consider queries in which the number of return tuples falls between (Nret tuple { 20) and
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(Nret tuple + 20). In our experiments, the average number of return tuples turned out to

fall between Nret tuple { 1 and Nret tuple + 1. Appendix A shows a sample database and

queries that are generated by our prototype.

The evaluation of an implication between two logical expression is an NP-hard

problem [SKN89]. We approximate the evaluation of a logical implication Ci ) Cj by

checking if the tuples selected by Ci is also selected by Cj , and that the set of attributes

appears in Cj is a subset of those appear in Ci. Also, we only consider those union queries

that have simple queries with at least one common projected attribute.

The prototype ran on a a Sun SPARC 20 workstation running Solaris. We collected

the following data to measure the system performance,

� average number of seconds used to process one query.

� number of inferred queries generated.

� number of times the inference rules are applied.

� percentage of database retrieved.

� percentage of database revealed.

The percentage of database retrieved is the percentage of the database that is retrieved by

queries in each experiment. In our experiments, we assume the policy is to protect the data

about individual records. We can specify the policy as follows,

(U; A1, *; true)

where A1 is the primary key of the database. With this policy, we de�ne the percentage of

database revealed as the ratio (expressed in percentage) between the number of attribute

values of individual tuples that have been revealed to a user (either by directly accessing

them using queries or by inference) and the total number of attribute values in the database.

For example, consider the following two queries that are issued to the sample database in

Figure 3.2, Chapter 3,

Q1 = (Age; Name = `Alice'),

Q2 = (Department; Age < 40).

Q1 returns a single tuple (35) which says that Alice is 35 years old. Q2 returns two tuples

(`Marketing') and (`Marketing') which say that all employees at the age less than 40 work in

the Marketing department. By subsume inference rule SI1, a user can infer that Alice works
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Avg. Query Number Percentage Number of Percentage Query
Nattr Processing of of DB Inferred of DB Overlapping

Time (sec.) Inferences Revealed Queries Retrieved Ratio

40 8.010 2697p, 41s 16.52 375 90.08 2.770

60 3.452 1839p, 2s 9.50 110 80.10 2.097

80 2.414 1060p 4.55 52 70.99 1.768

100 2.092 1156p 4.13 20 62.99 1.596

120 1.976 1036p 3.08 12 56.19 1.482

140 1.684 354p 0.98 4 51.11 1.406

Table 4.1: Experiment Results for Experiment 1 with Ndata dist = 50%.

in the Marketing department. Hence, the number of attribute values revealed to the user

is three, namely Alice's name, age, and department. Note that although Q2 returns two

tuples, the user cannot determine to which employees these two tuples belong; hence, they

are not included as the attribute values that are revealed to the user. The total number of

attribute values in the sample database is 24 | there are four records, each with 6 attribute

values. Hence, the percentage of database revealed by Q1 and Q2 with respect to the sample

database is (3 / 24) � 100%, or 12.5%.

We de�ne a query overlapping ratio to describe the amount of overlapping among

queries. It is de�ned as follows:

query overlapping ratio =

`total number of return tuples0 �Nproj

`percentage of database retrieved0 �Nrec num �Nattr

When the query overlapping ratio is 1, there is no overlapping among the queries. The

higher the ratio, the larger the amount of overlapping among queries. Appendix B shows a

sample session on a run of the prototype.

We ran six experiments to determine how the characteristics of the database and

the queries a�ect the system performance. For the database, we considered the following

characteristics: 1) the number of tuples in the database; 2) the number of attributes in the

database; and 3) the amount of duplication of the data values. For the queries, we considered

the following characteristics: 1) the number of attributes projected by the queries; 2) the

number of conjuncts in the selection conditions; 3) the number of queries being issued; and

4) the number of tuples returned by the queries.

Experiment 1 investigated the e�ect of the number of attributes in the database
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Figure 4.14: The E�ect of the Number of Attributes and Amount of Data Duplication on
System Performance.

on the system performance. We chose the following parameter values in this experiment:

Nrec num = 1000, Nret tuple = 50, Nproj = 4, Ncond = 3, Nquery num = 500. Nattr takes the

values of 40, 60, 80, 100, 120, and 140. Ndata dist takes the values of 25%, 50%, 75%, and

100%. Figure 4.14 shows the results in a graph plotted with the average query processing

time (in seconds) against the number of attributes in the database. The four lines in the

graph corresponds to di�erent values of Ndata dist.

Table 4.1 show the detail results of the experiment for Ndata dist = 50%. The third

column is the \Number of Inferences". The number before an `p' stands for the number

of times the unique characteristic inference rule is applied using the primary key of the

database as the unique characteristic. The number before an `s', an `o', and an `c' stand

for the number of times the subsume, overlapping, and complementary inference rules are

applied respectively. There was no overlapping or complementary inference detected in this

experiment.

Consider individual lines in Figure 4.14. It shows that the system in general runs

faster as Nattr increases from 40 to 140. The larger the number of attributes in the table,

the lesser the amount of overlapping among the return tuples of queries. This is reected
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Avg. Query Number Percentage Number of Percentage Query
Ndata dist Processing of of DB Inferred of DB Overlapping

Time (sec.) Inferences Revealed Queries Retrieved Ratio

25% 10.106 3546p, 34s, 1o 21.44 382 90.50 2.778

50% 8.010 2697p, 41s 16.52 375 90.08 2.770

75% 8.988 2660p, 24s 17.75 368 90.81 2.748

100% 7.368 2800p, 19s 17.49 314 90.37 2.759

Table 4.2: Experiment Results for Experiment 2 with Nattr = 40.

in Table 4.1 by the decreasing values of query overlapping ratios as Nattr increases. The

smaller amount of query overlapping results in a lesser chance that the subsume relationships

hold among queries, and hence the smaller number of inferences. This is also reected in

Table 4.1 by the decreasing number of inferences as Nattr increases. The system performance

reaches a plateau when Nattr � 100. When Nattr increases to a certain value, the amount of

overlapping among queries becomes steady. For Ndata dist = 50%, the percentage decreases

of the query overlapping ratio as Nattr increases are 24.3%, 15.7%, 9.7%, 7.1%, and 0.5%.

Similar pattern occurs for other values of Ndata dist.

Experiment 2 investigated the e�ect of the change of Ndata dist on the system

performance. Table 4.2 shows the results for Nattr = 40. In general, the system performs

better as Ndata dist increases. Intuitively, the lower the value of Ndata dist, the more the

amount of duplication among data in the database. This results in a lesser chance that a

return tuple is distinguishable from others, and hence the smaller number of occurrences of

inferences. This is reected in Table 4.2, where the number of subsume inferences decreases

as Ndata dist increases (with an exception when Ndata dist = 50%).

Experiment 3 investigated the e�ect of the number of return tuples of queries on

the system performance. Figure 4.15 shows the results for Nrec num = 1000, Ndata dist =

50%, Nproj = 4, Ncond = 3, and Nquery num = 500. Nret tuple takes the values of 50, 100,

150, 200, and 250. Nattr takes the values of 80 and 120. The result shows that the system

runs slower as Nret tuple increases. First of all, the larger the number of return tuples, the

longer it takes for the system to process them. Also, the more the number of tuples returned

by the queries, the larger the amount of overlapping among queries, and hence, the more

the number of occurrences of inferences. For Nattr = 80, the query overlapping ratios are

1.768, 2.740, 3.849, 5.052, 6.271 as Nret tuple increases from 50 to 250, and the total number
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Figure 4.15: The E�ect of the Number of Return tuples on System Performance.

of inferences are 1060, 2751, 3769, 6037, and 8091 as Nret tuple increases.

Experiment 4 investigated the e�ect of the number of projected attributes in

queries on the system performance. Figure 4.16 shows the results for Nrec num = 1000,

Nquery num = 500, Ndata dist = 50%, Nattr = 80, and Nret tuple = 50. Nproj takes the values

of 4, 5, 6, 7, and 8. Ncond takes the values of 4, 5, 6, and 7. Table 4.3 shows the result for

Ncond = 4. It shows that the system runs slower as Nproj increases. This is because the

higher the number of attributes projected by the queries, the larger the amount of overlap-

ping among the return tuples of queries, and hence the larger the number of inferences. As

Avg. Query Number Percentage Number of Percentage Query
Nproj Processing of of DB Inferred of DB Overlapping

Time (sec.) Inferences Revealed Queries Retrieved Ratio

4 2.066 1609p 8.82 4 80.63 2.062

5 3.158 2148p 14.81 24 87.01 2.380

6 3.182 2162p, 4s 17.42 26 91.25 2.767

7 4.422 2582p, 11s, 1c 22.73 57 93.69 3.091

8 8.894 4153p, 65s, 2c, 3o 36.47 167 95.18 3.489

Table 4.3: Experiment Results for Experiment 4 with Ncond = 4.
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Figure 4.16: The E�ect of the Number of Projected Attributes in Queries on System
Performance.

shown in Table 4.3, the query overlapping ratio and the number of inferences increase as

Nproj increases.

Experiment 5 investigated the e�ect of the number of conjuncts in the selection

criteria on the system performance. Figure 4.17 shows the results for Nrec num = 1000,

Nquery num = 500, Ndata dist = 50%, Nattr = 80, and Nret tuple = 50. Ncond takes the values

of 3, 4, 5, 6, and 7. Nproj takes the values of 4, 5, 6, and 7. Table 4.4 shows the results

for Nproj = 5. It shows that the system runs faster as Ncond increases. This is because

the larger the number of conjuncts in the selection criteria of the queries, the lesser the

Avg. Query Number Percentage Number of Percentage Query
Ncond Processing of of DB Inferred of DB Overlapping

Time (sec.) Inferences Revealed Queries Retrieved Ratio

3 6.270 2897p, 33s 13.39 242 87.16 2.416

4 3.158 2148p 14.81 24 87.01 2.380

5 2.628 2236p 15.35 0 86.87 2.366

6 2.74 2187p 15.00 0 87.05 2.366

7 2.658 2144p 14.79 0 87.23 2.364

Table 4.4: Experiment Results for Experiment 5 with Nproj = 5.
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Figure 4.17: The E�ect of the Number of Conjuncts in Selection Criteria on System
Performance.

chance that the subsume relationships hold among the queries, and hence the smaller the

number of occurrences of inferences. However, the e�ect is not signi�cant when Ncond � 4.

As shown in Table 4.4, although the query overlapping ratios and the number of inferences

decrease as Ncond increases, it becomes steady for Ncond � 4.

Experiment 6 investigated the e�ect of the number of tuples in the database on

the system performance. Figure 4.18 shows the results for Ndata dist = 50%, Nattr = 80,

Nret tuple = 50, Nquery num = 500, Nproj = 4, and Ncond = 3. Nrec num takes the following

values: 1000, 2500, 5000, 7500, and 10000. Table 4.5 shows the data of the experiment. It

Avg. Query Number Percentage Number of Percentage Query
Nrec num Processing of of DB Inferred of DB Overlapping

Time (sec.) Inferences Revealed Queries Retrieved Ratio

1000 2.414 1060p 4.55 52 70.99 1.768

2500 2.330 1889p 3.28 41 39.12 1.292

5000 1.912 1060p 0.99 18 21.93 1.141

7500 1.854 1108p 0.73 8 15.24 1.100

10000 1.988 1305p 0.64 17 11.70 1.073

Table 4.5: Experiment Results for Experiment 6.
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Figure 4.18: The E�ect of the Number of Tuples in Database on System Performance.

shows that the system runs faster as the number of tuples of the database increases. As

the size of the database increases, the possible amount of overlapping among the queries

decreases, and hence the lesser the number of inferences. This is reected by the decreasing

value of the query overlapping ratios as Nrec num increases. For Nret tuple = 10000, the

set of queries happen to generate more inferences and inferred queries than the case for

Nret tuple = 5000 or 7500, and this accounts for the longer running time.

Experiment 7 investigated the e�ect of the number of queries processed on the

system performance. Figure 4.19 shows the results for Nrec num = 1000, Ndata dist = 50%,

Nattr = 80, Nret tuple = 30, Nproj = 4, and Ncond = 3. Nrec number takes the values of

200, 400, 600, 800, 1000, and 1200. It shows that the system runs slower as the number of

queries to be processed increases. This is because the more the number of queries, the more

the number of inferences. Also, as each user query needs to be compared with previously

issued queries to determine their subsume relationships, the more the number of queries,

the longer it takes to determine all possible subsume relationships.

Figure 4.20 shows a graph plotted with the percentage of database revealed against

the average query processing time for all experiments we have carried out, except three

points, (30.9, 37.686), (21.39, 26.072), and (25.84, 29.232) that fall out of the graph. The

�gure shows that there is a correlation between the percentage of database revealed with
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Figure 4.19: The E�ect of the Number of Queries Processed on System Performance.

the system performance. The greater the amount of the database being revealed, the lower

the system performance. Except for the eight points that lie on the upper half of the graph,

most points on the graph lie on a straight line with a slope which increases about 1 second

in the average query processing time for every 10% increases in the percentage of database

revealed. Four of the eight points are obtained from experiment 1 with Nattr = 40. Two

of them are obtained from experiment 4 with Ncond = 3. One of them is obtained from

experiment 5 with Nproj = 8 and Ncond = 4. One of them is obtained from experiment 3

with Nret tuple = 150 and Nattr = 80. For the three excluded points, two of them obtained

from experiment 3 with Nattr = 80 and Nret tuple = 200 and 250, and one of them is

obtained from experiment 5 with Ncond = 3 and Nproj = 7. We can say that the eleven

points are obtained under the extreme conditions in the experiments, namely small values of

Nattr, small values of Ncond, high values of Nproj, and high values of Nret tuple. This suggests

that, other than in the extreme conditions, the system performance is rather predictable,

decreasing steadily with the increase of the amount of database revealed.

From the experimental results, we note that there is a high correlation between

the percentages of database revealed and the query overlapping ratios. In Figure 4.21 we

plot a graph with the percentage of database revealed against the query overlapping ratio

for all experiments that we have carried out. The eight points on the right lower half of the
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Figure 4.20: The Correlation between the Percentage of Database Revealed and System
Performance.

graph are obtained from experiment 3 with Nret tuple equals 100, 150, 200, and 250. The

query overlapping ratio is a statistic that can be easily calculated. Hence, one might use

the ratio as an indicator of the amount of data in the database that have been revealed

to users. The higher the value of the query overlapping ratio, the larger the amount of

data might have been revealed to users. Our experiment results show that the use of the

query overlapping ratios to estimate the amount of database revealed does not generate false

negative reports, though it does generate false positive reports. That is, with low values

of the query overlapping ratios, the values of percentages of database revealed are always

low. However, with high values of the query overlapping ratios, the values of percentages

of database revealed are high in most cases, but there are cases where the values are indeed

low (speci�cally, the eight points mentioned above). For nonextreme conditions, we expect

the query overlapping ratio to be a good indicator of the amount of database being revealed

to users.

The percentage of database retrieved is another easy calculated statistic that we

might use to estimate the amount of the database revealed. Figure 4.22 shows a graph plot-

ted with the percentage of database revealed against the percentage of database retrieved

for all experiments that we have carried out. Again, there are eight points on the lower

right hand side of the graph that correspond to results obtained under extreme conditions,
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Figure 4.21: The Correlation between the Percentages of Database Revealed and the
Amount of Query Overlapping.
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Figure 4.22: The Correlation between the Percentages of Database Revealed and the Per-
centage of Database Retrieved.
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namely in experiment 3 with Nret tuple equals 100, 150, 200, and 250. The graph also indi-

cates that there is a exponential relationship between the percentage of database revealed

and the percentage of database retrieved.

4.4 Summary

In this chapter, we present the data level inference detection algorithms. In theory,

the algorithms are exponential in the number of queries issued. For example, we found that

identifying the union queries that subsume or are subsumed by other queries, and the

evaluation of logical implications run in exponential time. In the former case, we assume all

simple queries in an union query share at least one projected attribute. This simpli�cation

generates false negative reports. In the latter case, we approximate the evaluation of the

implication C1 ) C2 by checking if the set of tuples selected by C1 is a subset of the set of

tuples selected by C2, and the set of attributes in SC2 is a subset of the set of attributes in

SC1. This approximation generates false positive reports.

We have developed a prototype to investigate the system performance under vari-

ous characteristics of the database and queries. The results show that, in general, the infer-

ence detection system performs better with a larger number of attributes in the database,

more amount of duplication of attribute values in the database, smaller number of tuples

returned by the queries, smaller number of attributes projected by the queries, and larger

number of conjuncts in the queries. Therefore, although the inference detection system

can be ine�cient (in fact, it is an NP-complete problem), in some cases, the system could

be practically employed. For example, the system performance decreases steadily with an

increasing amount of the database revealed to users. We also discovered that it is possible

to use the query overlapping ratio and percentage of database retrieved as indicators of the

amount of the database revealed to users. In general, the higher the values of the query

overlapping ratios or the percentage of database retrieved, the higher the amount of the

database revealed to users. These ratios can be easily calculated, and hence they can act

as a rough indicator of the amount of data revealed to users.
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Chapter 5

Towards a Realistic Inference

Detection System

In this chapter, we discuss several extensions to the data level inference detection

system described in Chapters 3 and 4. In particular, we discuss the detection of approximate

inferences, the e�ects of update operations on inference rules, the processing of nested

queries, and the uses of multiple tables in the database. The results from this chapter can

improve the performance of the detection system, and allow the system to be operated with

more realistic assumptions.

5.1 Approximate Inference

In chapters 3 and 4, we discussed the development of an exact inference detection

system. By exact inference, we mean that an inference occurs when a user can infer exactly

the protected associations. For example, if we want to protect the salaries of employees,

then an inference occurs only if a user can infer the exact salary of an employee. Even if

the user can deduce that an employee earns either 60K or 61K, we still say that no exact

inference has occurred. However, if the purpose of protecting this association is to protect

the privacy of employee personal information, we do not need to protect the exact salaries

of employees. A user knowing the salary of an employee is either 60K or 61K has more or

less deduced the salary of the employee. We can make the detection system more practical

by extending it to detect approximate inferences as well.

In approximate inference, an inference occurs when a user can infer protected
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associations within certain \deviations". The policy speci�es the conditions under which

approximate inferences are deemed to occur. We extend the policy as described in Chapter

3 as follows,

(U ;A1; : : : ; An;E;Eappr)

where U is a user, A1, : : :, An are the attributes of the protected association, E is a logical

expression that selects the tuples to be protected, and Eappr is a logical expression called the

approximate inference expression. We de�ne two tuple variables that are useful in specifying

the approximate inference expression. We de�ne a protected tuple variable to be a tuple

variable representing a tuple in the database that satis�es E. We also de�ne an inferred

tuple variable to be a tuple variable representing a tuple that a user infers about a tuple in

the database. For example, we want to protect John's salary which is 60K. We can create

a protected tuple variable tp to represent John's information, where tp[Name] = `John'

and tp[Salary] = 60K. Suppose a user can infer that John's salary is either 60K or 61K.

We can create two inferred tuple variables, ti1 and ti2, to represent this information, where

ti1[Name] = `John', ti1[Salary] = 60K, ti2[Name] = `John', and ti2[Salary] = 61K.

We de�ne formally the occurrences of approximate inferences with respect to the

above extended policy as follows,

De�nition 5 Given a policy (U ;A1; : : : ; An;E;Eappr), an approximate inference occurs if

there exists a tuple tp, tp satis�es E, and a set of inferred tuples S, such that there exists

an inferred tuple ti in S, ti relates to tp, and for each inferred tuple ti about tp, ti satis�es

Eappr.

Note that tp is a tuple from the database, while ti might not exist in the database. A user

might believe that an inferred tuple exists in the database based on information available

to the user. For example, from these two return tuples (`Bill', `Manager') and (`Manager',

60K), a user might believe that there exists a tuple (`Bill', `Manager', 60K) in the database,

although the two return tuples do not relate to each other. We discuss the speci�cation of

the approximate inference expression in the following section.

5.1.1 Specifying Approximate Inference Policies

There are various ways to specify the expression Eappr. The policy may specify

a range of values such that an approximate inference occurs when the inferred value falls

within the range. For example, consider the following policy,
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(U ;Name; Salary;Name =`John'; ti[Name] =`John'^ti[Salary] > 75K^ti[Salary] <
80K)

where ti is an inferred tuple variable. This policy says that an approximate inference occurs

when the user U can infer that John's salary is between 75K and 80K. The policy can also

specify the range using the protected attribute values. For example, the following policy,

(U ;Name; Salary; true;
jti[Salary]�tp[Salary]j

tp[Salary]
� 0:05)

speci�es that an approximate inference occurs when the user U can infer that an employee's

salary falls in the range [s � (1:05), s � (0:95)], where s is the salary of the employee. In

some cases, we might want to detect exact inference in one situation, and detect approximate

inference in another. For example, we want to protect information about the number of

felony charges that a person has. There is a signi�cant di�erence between knowing a person

has none or one felony charge; while there might not be a signi�cant di�erence between

knowing a person has ten or eleven felony charges. Hence, we might specify the policy as

follows,

(U ;Name; FC num; true; (ti[FC num] = tp[FC num] ^ tp[FC num] < 4) _
((jti[FC num]� tp[FC num]j) � 1 ^ tp[FC num] � 4)

where FC num stands for the attribute storing the number of felony charges of a person.

The policy says that if a person has less than four felony charges, then we detect if the user

U can infer the exact number of felony charges that the person has. However, if a person

has four or more felony charges, then the system detects if the user U can infer the number

of felony charges that the person has, with a plus or minus one unit of error.

For categorical data, data items can be classi�ed into categories. We can specify

a policy such that an approximate inference occurs if a user can infer that an attribute

value belongs to certain category. For example, there is a database containing information

about the cities and the counties where weapons are located. Suppose we need to protect

the information about the cities where the weapons are located, so as to avoid adversaries

from attacking the arsenal. In general, each county includes several cities, and letting a

user know the counties where the weapons are located does not give out enough information

about which cities they are located in. However, for counties that cover a small area, the

counties that the weapons are located should also be protected. We can specify the policy

as follows,
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(U ;Weapon id; city; true; ti[County] = tp[County] ^ City num(County) � 2)

where City num is a function that maps a county name to the number of cities in the county.

The policy says that an approximate inference occurs when the user U knows about a county

where the weapons are located if the county has two or fewer cities.

Consider the speci�cations of approximate inferences in protecting one-to-many

associations. Two attributes A1 and A2 have an one-to-many association among them if,

given one attribute value of, say, A1, there can be zero, one, or more than one associated

attribute values of A2. Given an association (A1; : : : ; An), each tuple from the database

that is projected over these n attributes is an instance of the association. We can protect

an instance of an association between A1 and A2 using the following policy,

(U ;A1; A2; true)

For example, we can protect employees' children information using this policy,

(U ;Employee name;Child name; true)

which says that the user cannot �nd out any child's name of an employee. However, in some

cases, we allow a user to know some instances of an association, but we want to prohibit the

user from knowing all instances of the association. For example, consider the association

between product name and ingredients. Given one product name, there are several product

ingredients. It is not suspicious that a user might infer a small number of ingredients of a

product, but it becomes suspicious when the user can infer most of the ingredients. We can

specify the following policy to protect such an association,

(U ;Product; Ingredients;Product = X[count(Product = X)];

jcount(ti[Product]=X^defined(ti[Ingredients]))�count(tp[Product]=X)
count(tp[Product]=X) � 80%)

where X is a variable storing a product name, and count(E) is a function returning the

number of tuples that satisfy the expression E. Recall from Chapter 3 that a number n

in a square bracket indicates that an inference occurs when the user can infer n number

of protected tuples. The function defined(ti[Ingredients]) is a boolean function which

returns a true value if ti[Ingredients] is instantiated with a value. Hence, the function

count(ti[Product] = X ^ defined(ti[Ingredients])) returns the number of ingredients that

a user can infer about the product X. The policy says that an exact inference occurs when

the user U can infer all ingredients of a product, and an approximate inference occurs when

the user can infer more than 80% of the ingredients of a product.
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The protection of a many-to-many association is equivalent to the protection of

two one-to-many associations. Suppose we want to protect the association between projects

and the employees who work on the projects. This is a many-to-many association. That

is, each project has one or more project members, and each employee works in one or more

projects. The protection of this many-to-many association can be achieved by protecting

the two one-to-many associations: the one from projects to employees, and the other from

employees to projects.

5.1.2 Enforcement of Approximate Inference Policies

To determine if an approximate inference occurs with respect to a policy, we need

to perform the following two tasks:

1. For each protected tuple, determine the set of inferred tuples S such that the protected

tuple must relate to an inferred tuple in S.

2. Determine if the set of inferred tuples satisfy the approximate inference expression

Eappr of the policy.

The �rst task can be done by keeping track of the subsume relationships among queries.

This is because if Q1 < Q2, each return tuple t1 of Q1 relates to a return tuple t2 of Q2.

Hence, for each attribute A1 in AS1 and attribute A2 in AS2, the set of associated attribute

values for t1[A1] is ft2[A2]: t2 is a return tuple of Q2g. For example, consider the following

policy,

(U ;Name; Salary;Name = John; jti[Salary]� tp[Salary]j � 2K)

which says that we need to protect John's salary within a 2K error. Suppose the user issues

the following two queries,

Q1 : (Name;Age;Age � 30)

Q2 : (Age; Salary;Age � 35)

The results to these two queries are as follows,

Name Age

John 30

Bill 29

Salary

45K

43K

46K
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Suppose the protected tuple is (`John', 45K); that is, John earns 45K. As Q1 < Q2, the user

can infer that John's salary is either 43K, 45K or 46K. That is, the set of inferred tuples

for this protected tuple is f(`John', 45K), (`John', 43K), (`John', 46K)g. Task 1 as stated

above is achieved, as one of these three inferred tuples must relate to the protected tuple

(`John', 45K). Task 2 checks if any of these three inferred tuples satis�es Eappr. As the three

inferred salaries of John fall between the range [43, 47], we conclude that an approximate

inference occurs.

t42
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b2

c1

c2
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c4

a1

Q1
Q2
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t22

t21

t31
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t41

Figure 5.1: An Example on the Propagation of Approximate Inference.

The set of inferred tuples can be obtained through propagation along the subsume

relationships. For example, consider the four queries shown in Figure 5.1. Q1 < Q2.

Suppose t1[A] = a1 for the return tuple t1 of Q1. Also, t21[B] = b1 and t22[B] = b2 for the

two return tuples t21 and t22 of Q2. That is, fb1; b2g is the set of associated attribute values

over attribute B for the attribute values a1. Further, suppose that t21 relates to one of the

two return tuples, t31 and t32, of Q3, and t22 relates to one of the two return tuples, t41 and

t42, of Q4. If t31[C] = c1, t32[C] = c2, t41[C] = c3, and t42[C] = c4, then we can conclude

that fc1; c2; c3; c4g is the set of associated attribute values over attribute C for the attribute

value a1.

In general, when we need to detect approximate inferences for an association be-

tween attribute A1 and An, we need to �nd out if there exists a sets of associated attribute

values, S1, : : :, Sn, such that an attribute value a1 of A1 has a set of associated attribute

values in S1 (over certain attributes), and the attribute values in S1 have a set of associated

attribute values in S2, and so forth. Hence, a1 has a set of associated attribute values in

Sn. This is shown in Figure 5.2. Note that for each pair of consecutive sets Si and Si+1,

where 1 � i � n � 1, each attribute value in Si must associate with one of the attribute

values in Si+1. For example, refer to the previous example as shown in Figure 5.1. If the
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Figure 5.2: An Example on the General Propagation of Approximate Inference.

user cannot determine b2's associated attribute values over attribute C is fc3; c4g, then the

user would not conclude that the set of associated attribute values of a1 is simply fc1; c2g.

5.2 E�ects of Updating on Inference Rules

The inference rules that we developed in Chapter 3 assume the database instances

(or contents) and schema do not change while users perform inference. However, this may

not be a practical assumption. The database instances and schema can be changed due to

normal operations on the database, or the users might intentionally make changes to the

database in order to perform inference. Suppose a user has already found out the following

information about the database,

Name Age

John 40

Bill 40

Age Salary

40 50K

40 60K

That is, both John and Bill are 40 year old, and the two employees who are at the age of

40 earn either 50K or 60K. Suppose the user is authorized to remove an employee's record

from the database. The user can infer the salaries of John and Bill as follows. The user

�rst removes Bill's record from the database. After Bill's record is removed, (Age = 40)

becomes a unique characteristic in the database. The user can then issue a query to ask for

the salary of the employee whose age is 40. If this query returns 50K, then the user can infer

that John earns 50K, and hence Bill earns 60K. Note that in case the user does not have

the authority to remove the record, the user might trick other authorized users to perform

the deletion. For example, the user might produce a false report so that an authorized user
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thinks that Bill's record should be removed. In the following sections, we discuss the e�ects

of modi�cations of the database on the inference rules.

5.2.1 E�ects of Modi�cations of Database Schema on Inference Rules

First, we discuss the e�ects of modifying the database schema on the subsume,

overlapping, and complementary inference rules; that is, determining whether these infer-

ence rules can still be applied after the database schema is modi�ed. Changing the database

schema by adding or remove attributes does not a�ect the subsume relationships among

queries. A subsume relationship holds between two queries as long as the tuples in the

two queries remain the same. The subsume relationships among queries are essential in

determining if the subsume, overlapping, and complementary inference rules are applicable.

Hence, if these three rules are applicable before a modi�cation of the database schema, they

are still applicable after the change.

However, the results of the applications of these three inference rules can be af-

fected by modi�cations of the database schema. In particular, determining if two tuples are

distinguishable can be a�ected by deleting or inserting attributes into the database schema.

For example, a database contains the following information about two tuples,

Age Sex Department

35 Male Marketing

35 Male Sales

These two tuples are distinguishable. However, if the attribute Department is removed

from the database, the two tuples become indistinguishable. If a user learns about these two

tuples before the deletion of the attribute Department, then the user can distinguish between

the two tuples, which might lead to inference. On the other hand, if the user learns about

these two tuples after the deletion of the attribute, the user cannot distinguish between

them. Similarly, after inserting new attributes into the database, two indistinguishable

tuples may become distinguishable.

Changing the database schema a�ects applications of the unique characteristics

inference rule. For example, a tuple t has this unique characteristic (Age = 30 ^ Sex =

`Female' ^ Department = `Sales'). Suppose the attribute Sex is removed, and there are

more than one employees in the sales department who are 30 year old. Then, (Age = 30 ^

Department = `Sales') is no longer a unique characteristic of the tuple t. Similarly, inserting
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new attributes may introduce new unique characteristics in the database.

Modi�cation of the database schema has an e�ect on applications of the split

query inference rule. Suppose there is a query Q1 with the selection criteria SC1 = (A1 =

a1 ^ A2 = a2). If the attribute A1 is removed from the database, then it is impossible to

determine if some return tuples of a newly issued query, say Q2, satisfy SC1, as Q2 cannot

project the attribute A1. Hence, the split query inference rule cannot be applied to split

Q2 with respect to Q1. Modi�cation of the database schema also a�ect applications of the

functional dependency inference rule, as they may remove existing functional dependencies

or introduce new functional dependencies.

Therefore, in general, inserting attributes into the database schema might lead

to more inferences, while deleting attributes from the database schema might result in a

smaller number of inferences.

5.2.2 E�ects of Modi�cations of Database Instances on Inference Rules

In this section, we discuss the e�ects of changing database instances on the appli-

cations of inference rules. The database instances are changed using the insertion, deletion,

and updating operations on tuples. Changing the database instances has no e�ect on the

applications of the functional dependency inference rule. Functional dependencies are deter-

mined by the semantics of the application domains, and not by the contents of the database.

If job title functionally determines salary, then this dependency holds no matter what kind

of data are stored in the database. Hence, in the following sections, we only consider the

e�ects of changing database instances on the applications of other inference rules.

Suppose an update operation is performed on a database. If a user is not aware

of the update operation, the user might fail to apply inference rules to perform inference.

However, if the inference detection system assumes the user is aware of the existence of

the update operation, the detection system might produce false positive reports. Also, it is

possible that if a user is not aware of the existence of an update operation, the user might

falsely apply inference rules that are not applicable, hence introducing a false inference.

The false inference might be revoked later as the user learns more about the database.

This shows that it is necessary for the detection system to determine if a user is

able to identify update operations. Note that a user who can insert or delete a tuple does

not imply the user can also access all attribute values of the tuple. It is possible that a
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user is authorized to delete a tuple based on, say, the primary key of the tuple, while the

user is not allowed to access other attribute values of the tuple. Similarly, a user might be

granted the right to insert a tuple with primary key value provided. Other attributes could

be inserted later by other users.

Given two queries Q1 and Q2, where Q1 is issued to the database before Q2.

Suppose there is an insert, delete or update operation executed between the issues of these

two queries. We can divide the tuples in these two queries into four groups:

1. tuples that are returned by both Q1 and Q2.

2. tuples that are returned by Q1 but not by Q2.

3. tuples that are returned by Q2 but not by Q1.

4. tuples that are not returned by Q1 or by Q2.

A new tuple can be inserted into one of these four groups of tuples. A tuple can be deleted

from one of these four groups of tuples. A tuple can be modi�ed so that it moves from

one of these four groups to another, or the modi�ed tuple might remain in the same group

before or after the modi�cation. We discuss each of these cases in the following sections.

Modifying a tuple t into t0 is equivalent to deleting the tuple t and inserting the tuple t0.

Hence, we only discuss the e�ects of insertions and deletions of tuples.

The applications of the subsume, overlapping and complementary inference rules

depend on the subsume relationships among queries. Hence, we only consider the e�ects

of modifying database instances on the applications of the subsume inference rule. The

e�ects of updating on the unique characteristic inference rule is simple. Suppose a tuple t1

has a unique characteristic C1. If an inserted tuple t also satis�es C1, t1 no longer has the

unique characteristic C1. If t1 and t2 are the only two tuples that satisfy the condition C,

then after t1 is deleted, t2 has the unique characteristic C. The e�ects of updating on the

split query inference rule is similar the e�ects on the subsume inference rule. We omit the

discussion of the e�ects on the split query inference rule.

E�ects of Insertion on Subsume Inference Rule

In this section, we consider the e�ects of inserting a new tuple t on the applications

of the subsume inference rule. Note that if no subsume relationship holds between Q1 and
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Q2 before the insertion of a tuple t, the subsume relationship does not hold after the insertion

of t. This is because if, for example Q1 6< Q2 holds before the insertion of the tuple t, then

there exists a return tuple t0 of Q1 and a return tuple t00 of Q2, such that t0 and t00 do not

relate to each other. After the insertion of t, the tuples t0 and t00 still exist, and hence Q1

6< Q2 still holds. That is, the subsume inference cannot be applied to these two queries

before or after the insertion of t. Hereafter, we only consider the cases where the subsume

relationship holds between two queries before the insertion of a tuple.

Q21

Q2

(a) (b)

t
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Q1

S1 S2

Q1 Q2
t

t t

Q22

Figure 5.3: An Example on the E�ect of Insertion on Subsume Inference Rule. The inserted
tuple satis�es both SC1 and SC2.

Suppose the inserted tuple t satis�es both SC1 and SC2. As t is inserted after Q1

is issued, t is returned by Q2 but not by Q1. There are two cases to be considered. In the

�rst case, as shown in Figure 5.3(a), Q1 < Q2 holds before the insertion of t. The dotted

box in the �gure indicates the inserted tuple that should be returned by Q1 if it is issued

after t is inserted. After the insertion of t, Q1 < Q2 still holds, and the user can apply the

subsume inference rule to identify the related tuples between Q1 and Q2. However, if the

user does not notice that t should also be one of the return tuples of Q1, the user might

generate incorrect inferred queries. Speci�cally, the user might generate the following two

inferred queries: 1) Q21 = (AS2;SC1 ^ SC2) which does not include the inserted tuple t

when it should; and 2) Q22 = (AS2;SC2 ^:SC1) which includes the inserted tuple t when

it should not. Unless the system detects that the user has identi�ed the inserted tuple, the

detection system should not generate these two incorrect inferred queries.

In the other case, as shown in Figure 5.3(b), Q2 < Q1 holds before the insertion

of t. After the insertion of t, Q2 < Q1 does not hold. However, if a user is not aware of

the insertion of t, the user might still apply the subsume inference rule to Q1 and Q2. This

might result in false inference. For example, if the inserted tuple t of Q2 is indistinguishable
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from a return tuple t1 of Q1, then the user might falsely conclude that the two tuples relate

to each other. Other than this possible false inference, the user can still apply the subsume

inference rule to identify the related tuples between Q1 and Q2, that is, between the sets of

tuples as indicated by S1 and S2 in Figure 5.3(b).

Q22

Q2

t

t

Q1 Q2 Q1

(a) (b)

Q21

Figure 5.4: An Example on the E�ect of Insertion on Subsume Inference Rule. The inserted
tuple satis�es SC2 but not SC1.

Suppose the inserted tuple t does not satisfy SC1, but satis�es SC2. If Q1 < Q2

holds before the insertion of t, as shown in Figure 5.4(a), then Q1 < Q2 still holds after the

insertion of the tuple t. The user can apply the subsume inference rule to these two queries.

Consider the case where Q2 < Q1 holds before the insertion of t, as shown in Figure 5.4(b).

If SC2 ) SC1, then it is impossible to have such an inserted tuple t that satis�es SC2, but

not SC1. If Q2 < Q1 holds because each return tuple of Q2 satis�es SC1, then it is possible

to have such an inserted tuple t. In this case, the user can use the split query inference

rule to generate two inferred queries: 1) Q21 which includes all return tuples of Q2 except

t; and 2) Q22 which includes t only. Now, Q21 < Q1, and the user can apply the subsume

inference rule to Q1 and Q21 to �nd out the related tuples among them.
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Figure 5.5: An Example on the E�ect of Insertion on Subsume Inference Rule. The inserted
tuple satis�es SC1 but not SC2.
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Consider the case where the inserted tuple t satis�es SC1, but does not satisfy

SC2. Suppose Q1 < Q2 holds before the insertion of t. After the insertion of t, Q1 < Q2

does not hold as there is a return tuple t of Q1 that does not satisfy SC2. This is shown in

Figure 5.5(a). However, whether a user can identify the inserted tuple or not, the user can

apply the subsume inference rule to Q1 (without the inserted tuple t) and Q2 to identify the

related tuples between the return tuples of Q1 (except t) and the return tuples of Q2; that

is, between the sets of tuples S1 of Q1 and S2 of Q2, as indicated in Figure 5.5(a). If Q2 <

Q1 holds before the insertion of t, Q2 < Q1 still holds after the insertion. This is shown in

Figure 5.5(b). The subsume inference rule can be applied as usual. However, if a user does

not identify the tuple inserted to Q1, the user might generate this incorrect inferred query

Q22 = (AS1;SC1 ^ :SC2) which does not include the inserted tuple t when it should be

included.

For the case where t does not satisfy both SC1 and SC2, it does not a�ect the

subsume relationship between Q1 and Q2, and hence there is no e�ect on the application

of the subsume inference rule on them.

In summary, no matter how a tuple is inserted into a database, we can still apply

the subsume inference rule to the queries issued before or after the insertion of the tuple.

However, if the user does not identify the existence of the inserted tuple, the user might

generate incorrect inferred queries.

E�ects of Deletion on Subsume Inference Rule

In this section, we discuss the cases where a tuple t is deleted between the issues

of two queries, Q1 and Q2.
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Figure 5.6: An Example on the E�ect of Deletion on Subsume Inference Rule. The deleted
tuple satis�es both SC2 and SC1.
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Suppose the deleted tuple t satis�es both SC1 and SC2. If Q1 < Q2 holds before

the deletion of t, Q1 < Q2 does not hold after t is deleted from Q2 only. This is shown in

Figure 5.6(a). The user needs to know that t should also be removed from the set of return

tuples of Q1, before the user can apply the subsume inference rule to the two queries. If Q2

< Q1 holds before the deletion of t, Q2 < Q1 still holds. This is shown in Figure 5.6(b).

In this case, the subsume inference rule can be applied to Q1 and Q2. However, if the user

does not identify the deleted tuple from Q1, then the user might generate this incorrect

inferred query Q11 = (AS1 : SC1 ^ SC2) which includes the deleted tuple t when it should

not.
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t
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Q11
t
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Figure 5.7: An Example on the E�ect of Deletion on Subsume Inference Rule. The deleted
tuple satis�es SC1 but not SC2.

Suppose the deleted tuple t satis�es SC1 but not SC2. If Q2 < Q1 holds before

the deletion of t, Q2 < Q1 still holds after the deletion of t, and the subsume inference

rule can be applied to Q1 and Q2. This is shown in Figure 5.7(a). However, if the user

does not identify that t should be removed from the set of return tuples of Q1, the user

might generate this incorrect inferred query Q11 = (AS1;SC1 ^ :SC2) which includes the

deleted tuple when it should not. When such a deleted tuple t exists, Q1 < Q2 can not be

held before the deletion of t. However, if the user can identify the deleted tuple in Q1, it

is possible to have a subsume relationship between the two queries. For example, consider

the two queries as shown in Figure 5.7(b). If the user can deduce that t is no longer a

return tuple of Q1 when Q2 is issued, Q1 < Q2 holds, and the user can apply the subsume

inference rule to Q1 and Q2.

Suppose the deleted tuple t satis�es SC2 but not SC1. When a user issues the

query Q2, t has already been removed from the database, and t is not returned by Q1.

Hence, the deletion of the tuple t has no e�ect on the application of the subsume inference
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rule to these two queries. If the deleted tuple t does not satisfy both SC1 and SC2, then

there is no e�ect on the application of the subsume inference rule on Q1 and Q2.

As discussed in the last two sections, the inference detection system needs to

detect if the user can identify the inserted or deleted tuple. There are several ways a user

can deduce if a tuple is deleted or inserted. The user can issue a query twice and compare

the results of the two queries. If at the �rst time the query returns a tuple that is not

returned the second time, the tuple is deleted. If at the �rst time the query does not return

a tuple that is returned at the second tiem, the tuple is inserted. Also, if a user knows that

some tuples satisfying a condition C are deleted, the user can deduce if a tuple t is deleted

by checking if t satis�es C. In a conservative approach, the detection system might assume

users are aware of all the insertions or deletions of tuples that have occurred, and generate

as many inferences as possible from a set of user queries.

5.3 Multiple Tables and Nested Queries

In the presentation of our inference rules in Chapter 3, we assume that there is

only a single table in the database. This simpli�es the development of the inference rules.

However, in practice, most databases consist several tables. In this section, we discuss the

modi�cation to the inference detection system when a query accesses more than one table

in the database. Queries access multiple tables using join operations or nested queries. In

the following discussion, we denote Ti as a table in the database.

5.3.1 Join Operations

In this section, we consider a query that joins two tables together using equijoin

operations. There are three cases to be considered: join columns from both tables are

projected by the query, no join column is projected by the query, and join columns from

one of the tables are projected by the query. Consider a query that performs an equijoin

operation on two tables, T1 and T2, as follows,

select T1.A11, T1.A12, T2.A22

from T1, T2

where T1.A11 = T2.A21

where both join columns, A11 and A21, are projected by the query. In this case, we can

treat the join query as two separate queries as follows,
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select A11, A12

from T1

where A11 IN (select A21

from T2);

and

select A21, A22

from T2

where A21 IN (select A11

from T1);

The inference detection system can then process these two queries separately. The return

tuples of the �rst query are added into a table, say Tu1, in USER VIEW, and the return

tuples of the second query are added into another table, say Tu1, in USER VIEW. As the

join column appears in both Tu1 and Tu1, we can determine the related tuples among the

tuples in the two tables, and, hence, reconstruct the tuples as returned by the original join

query.

Consider the case where no join column is projected by the query, as in the fol-

lowing query,

select T1.A12, T2.A23

from T1, T2

where T1.A11 = T2.A22

The inference detection system maintains a table, say Tu, in USER VIEW, storing the return

tuples of the query, together with the join condition of the query. With this information,

the detection system can make the following inference. Whenever it is known that a tuple,

say t, is found to be related to a tuple t1 in T1 with t1[A11] = a11, then t also relates to a

tuple t2 in T2 with t2[A22] = a11.

Consider the case where the join query projects attributes from one of the two join

tables, say T1. In this case, simply based on the return tuples of this join query, the user

cannot determine the tuples in T2 that relate to the return tuples of the query. However,

the user can deduce that there exist some tuples in T2 that satisfy the join condition in

the query and relate to the return tuples of the query. For example, consider the following

query,

select T1.A12, T1.A13

from T1, T2

where T1.A11 = T2.A21 and T2.A22 = 100, and T2.A23 = 50;
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For each return tuple t1 of this query, where t1[A11] = a, the user can infer that there exists

a tuple t2 in the table T2, such that t2[A21] = a, t2[A22] = 100, and t2[A23] = 50. The tuple

t2 is added into USER VIEW together with return tuples of the query. The existence of

a tuple is useful in inference. For example, suppose the user �nds out that there exists a

tuple t3 in T2, where t3[A22] = 100, and that (A22 = 100) is a unique characteristic in T2,

then the user can infer that t3[A23] = 50.

When a protected association includes attributes from multiple tables, the de-

tection system needs to determine if the user can deduce the related tuples among the

tables. This is done by checking if the protected association is revealed by joining the the

corresponding tables in USER VIEW. For example, consider this policy

(U ;Name; Salary; true)

where the salaries of employees are protected. Suppose the database has two tables with

the following schema: (Name, Job-title) and (Job-title, Salary). Let the USER VIEW(U)

be as follows,

Name Job-title

John Software Engineer

Bill Sales Representative

Job-title Salary

Software Engineer 60K

Administrative Assistant 40K

Suppose Job-title is the primary key in the table (Job-title, Salary). By joining these two

tables over the attribute Job-title, the system can determine that the policy is violated.

5.3.2 Nested Queries

A nested query is a query containing a subquery. The where clause of a nested

query is in the following BNF form,

expression [IN j NOT IN j EXISTS j op [ALL j ANY]]+ subquery

where op is one of the comparison operators `<', `�', `=', `�', `>', or `<>'. For nested

queries with the IN operators, they can be transformed into equijoin queries and can be

processed as discussed in the above section. For example, the following two queries are

equivalent [Kim82],

select A11

from T1

where A12 IN (select A21

from T2

where T1.A13 = T2.A22)
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and

select A11

from T1, T2

where T1.A12 = T2.A21 AND T1.13 = T2.A22

Nested queries with comparison operators can also be transformed into equijoin

queries. The following two queries are equivalent [Kim82]. Note that in this form of nested

queries, the subquery must return a single value.

select A11

from T1

where A12 op (select A21

from T2

where T1.A13 = T2.A22)

and

select A11

from T1, T2

where T1.A12 op T2.A21 AND T1.A13 = T2.A22

Consider a subquery with the EXISTS operator. First, consider a nested query

with no correlated conditions; that is, the subquery of the query does not refer the table in

the query. Consider the following query,

select A11

from T1

where EXISTS (select *

from T2

where A21 = 100);

If this query has one or more return tuples, then the user can infer that there is at least one

tuple in T1 that satis�es the condition in the subquery. In this example, we can create a

tuple in the USER VIEW to indicate that there is a tuple t, where t[A21] = 100. Note that

there may be more than one tuple in T2 that satis�es the subquery condition. If the query

returns no tuple, the user can deduce that there is no tuple in T2 that satis�es the where

condition of the subquery. Consider a correlated subquery with the EXISTS operator.

select A11

from T1

where EXISTS (select *

from T2

where T1.A12 op T2.A21);
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For each return tuple t1 of this query, the user can infer that there exists a tuple t2 from

T2 such that t1[A12] op t2[A21] holds. If there is no tuple returned by this query, then the

user can infer that for each tuple t1 of T1 and a tuple t2 of T2, t1[A12] :op t2[A21]. We can

update the USER VIEW accordingly.

Consider the following query without a correlated subquery, with an `> ANY'

operator in the where clause of the query,

select A11

from T1

where A12 > ANY (select A21

from T2

where A22 = 100);

If the user knows the results of the subquery, then the user can infer that for each return

tuple t1, t1[A12] is greater than the minimum of the set of return values of the subquery.

Suppose the result of the subquery is not know to the user. If t1[A12] is known for each

return tuple t1 of the query, then the user can infer that there is a return tuple t2 of the

subquery such that t2[A21] < t1[A12]. This information can be used to perform inference.

For example, if there are n number of return tuples of the subquery, and t2[A21] � t1[A12]

for each return tuple t2 of the subquery except t02, then the user can conclude that t02[A21]

< t1[A12] for each return tuple t1 of the query.

Consider the following query with correlated subquery, with an `> ANY' operator

in the where clause of the query,

select A11

from T1

where A12 > ANY (select A21

from T2

where T1.A13 = T2.A22);

For each return tuple t1 of this query, there exists a tuple t2 of T2, such that t1[A13] =

t2[A22] and t1[A12] > t2[A21]. If the user knows about the values of t1[A13] and t1[A12]

but not the subquery result, then the user can infer that there exists a tuple t2 of T2, such

that t1[A13] = t2[A22], and t1[A12] > t2[A21]. If the user knows about the value of t1[A13]

and the subquery result, then the user can infer that t1[A12] is greater than one of the

return values of the subquery. The cases are similar for subqueries with other comparison

operators together with the `ANY' operator.
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Consider the following query without correlated subquery, with an `> ALL' oper-

ator in the where clause of the query,

select A11

from T1

where A12 > ALL (select A21

from T2

where A22 = 100);

If the subquery result is known to the user, then the user can deduce that for each return

tuple t1 of the query, t1[A12] is greater than any return value of the subquery. On the other

hand, if the subquery result is not known to the user, but the user knows the value of t1[A12]

for some return tuple t1, then the user can deduce that t1[A12] is greater than all return

values of the subquery.

Consider the following query correlated subquery, with an `> ALL' operator in

the where clause of the query.

select A11

from T1

where A12 > ALL (select A21

from T2

where T1.A13 = T2.A22);

For each return tuple t1 of the query, if the user knows about the values of t1[A12] and

t1[A13], but not the subquery result, then the user can infer that for each tuple t2 in T2,

where t2[A22] = t1[A13], t2[A21] < t1[A12]. If the user knows about the value of t1[A13] and

the subquery result, then the user can infer t1[A12] is greater than all return values of the

subquery.

5.4 Summary

In this chapter, we extended the security policy to include the speci�cation of

approximate inference. We discussed the detection of dynamic inference by propagations

through subsume relationships. We investigated the e�ects of inserting and deleting tuples

during a course of an inference. We found out that the detection system needs to determine

if the user can identify the inserted or deleted tuples in order to detect all inferences. We

also discussed the extension of the detection system to allow more than one tables in the

database, and queries with subqueries.
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Chapter 6

Conclusions and Future Work

Inference is known as a way to defeat access control mechanisms in database

systems. It poses a con�dentiality threat, making it di�cult to control user accesses to

sensitive information. An inference detection system is needed to determine if users can use

legitimate data to infer sensitive information. The design of an inference detection system

is a trade-o� among soundness, completeness, accessibility of the database, and e�ciency.

Previous approaches have been developed to tackle the inference problem. Each approach is

designed to achieve one or two aspects of the four design criteria: completeness, soundness,

e�ciency, and accessibility of the database.

The schema-based approach uses an e�cient method to detect inference based on

functional dependencies among attributes in the database schema. Schema redesign can

be used to prevent inference, but it might decrease accessibility of the database because

of attribute overclassi�cation. The schema-based approach is not sound, as users might be

able to make use of the dependencies that although do not occur at the schema level do

occur among data in the database to perform inference. This de�ciency of the schema-based

approach is illustrated by the ability of our data level inference detection system to detect

inferences that cannot be detected using the schema-based approach. Other researchers

have investigated the extension of the database to include background knowledge in the

application domains, making the detection system more complete in detecting inference.

Marks [Mar96] developed an inference detection system that is complete. However, it is

achieved by reporting inferences whenever a query accesses any portion of sensitive asso-

ciations. Although the completeness is achieved, the system is not sound, and it leads to

lower accessibility of the database.
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Most existing inference detection systems are designed for multilevel database

systems, where maintaining data con�dentiality is important while providing discretionary

access control is desirable. Most researchers put emphasis on making the detection systems

complete in protecting sensitive information. However, in practice, most database systems

are not built using the multilevel secure model. A more important threat to these database

systems is the misuse of the database by insiders, that is, by the authorized users in the

database systems. A user misuses a database if the user accesses data not for the interests

of the organization. For example, a payroll clerk is allowed to access employee salaries in

order to generate paychecks for employees. If the clerk accesses salary data that are not for

the purposes of generating paychecks, the clerk is misusing the database.

Ideally, we should specify exactly the set of data that a user is authorized to

access. However, in most cases, it is almost impossible to specify exactly the set of data a

user needs. In commercial database systems, providing high accessibility to the database is

important, as unnecessary restrictions on the uses of the database might hinder the work

of users. At the same time, we also want to make sure that users are not misusing the

database. With such applications in mind, we develop an inference detection system to

determine if users have collected enough data to perform inference. Our detection system

is sound, and hence it provides high accessibility of the database to users. Our system

makes use of the data in the database to detect inferences, making it more complete than

the schema-based inference detection approach. In fact, our system can be extended to

include the schema-based inference detection approach. We have shown the e�ectiveness

of our data level inference detection system by using the inference rules to detect a known

inference attack called Tracker. Such an attack cannot be detected using the schema-based

inference inference detection approach.

The contributions we have made in this research include

1. Explored the uses of data in the database to detect subtle inference.

2. Developed sound inference rules to detect inference.

3. Developed inference detection algorithms for which we performed complexity analysis.

4. Implemented a prototype to prove the concept.

5. Identi�ed the characteristics of the databases and queries under which the inference

detection systems are practical.
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6. Extended the inference detection system to detect approximate inference.

7. Developed an initial solution to the detection of dynamic inference.

Our detection system can be ine�cient, as we need to keep track of all queries

issued by users, and perform inference detection using these queries. We have carried out

a performance evaluation on the prototype that we have developed. The experimental

results show that the system performance is a�ected by the characteristics of the databases

and queries. In general, the system runs faster with a larger number of attributes in the

database, a smaller number of return tuples of the queries, a larger amount of duplication

among data in the database, a smaller number of projected attributes from the queries,

and a larger number of conjuncts in the queries. Hence, it shows that the system would

be practically employed. We have also found out that it is possible to use simple statistics

to estimate the number of inferences drawn by users. The possible statistics include the

amount of overlapping among return data, and the number of database attributes that have

been retrieved by users.

Di�erent inference detection approaches solve di�erent aspects of the inference

problem. We might use di�erent approaches for di�erent security needs. For example,

we could use an inference detection system that is complete when protecting the sensitive

data is important, whereas we could use an inference detection system that is sound when

providing high accessibility of the database is important. Alternatively, we can develop a

system that has merits from all these approaches. Indeed our approach can be used together

with other approaches. For example, we �rst apply the schema-based approach to make

sure that all inferences detectable at the database schema are detected. Then, we extend

the database to include background knowledge in the application domains so as to detect

as many inferences as possible. After that, we can apply our data level inference detection

system to determine if a set of user queries can lead to inference.

6.1 Future Work

In this section, we discuss three possible directions to extend our work. We can

extend the inference detection system to perform misuse detection. For example, a user is

suspicious if he performs the following actions,

� Accesses a portion of a sensitive association in the database.
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� Accesses an area of the database which the user normally does not access.

� Accesses a large amount of data from the database.

� Issues the same query repeatedly, which might indicate that the user is interested in

observing changes to the database.

� Issues re�ned queries to request more speci�c information.

Our inference detection system maintains the data structure USER VIEW(U) to

represent the set of information that a user U can infer about the database. This data

structure can be used to detect the �rst three types of misuse behavior. We can check the

last two types of misuse behavior by determining if user queries signi�cantly overlap, or

they have a large number of subsume relationships among them.

In misuse detection, we need to de�ne the normal access pattern of users. This

access pattern can then be used to determine if users' actions deviate from the normal

behavior. The deviation might indicate that the user is intentionally misusing the database,

or the user account has been compromised and an attacker is masquerading as the user to

access the database. A way to obtain the normal access pattern is to have a supervised

session on the uses of the database for each user. We input this set of supervised user queries

into the inference detection system to generate a USER VIEW that represents the normal

access pattern of the user. During the normal operations of the database, we collect the

user queries and generate a new USER VIEW. A misuse might occur when the generated

USER VIEW is di�erent from the one that corresponds to the normal access pattern.

We can also use heuristic approaches to detect inference. From our experiments

we found that more inferences occur when the amount of duplication of the attribute values

decreases. We can preprocess the database and determine the area of the database where

the attribute values are relatively unique in the database. When a user accesses data in

such an area of the database, it might be an indication that the user is trying to perform

inference on those data. Suppose there are a few vice-presidents in a company. When

a user is accessing data about the vice-presidents, there is a good chance that the user

is attempting to infer information about the vice-presidents. The detection system might

generate a report to indicate that it is worth doing a more exhaustive detection of inference

using those suspicious user queries.
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Another possible extension is to explore parallelism in applying the inference rules.

We can speed up the detection system by parallelizing the inference detection process. Due

to their monotonic property, the inference rules can be applied in any order. Indeed, we can

apply the inference rules in parallel. In detecting inference, we need to apply repeatedly

the inference rules until no new inference occurs. This is illustrated in Figure 6.1.

...
R1

S11 S1nS0

Rn R1 R2

...
S21 S22

R2

S12

Figure 6.1: Applications of Inference Rules in Serial.

Si are the states of the USER VIEW. Ri are the inference rules. There are n inference

rules. At state S0, we apply the inference rule R1 to change the state to S11. R2 changes

the database state from S11 to S12, and so forth. As the inference rules can be applied in

any order, we can process them in parallel as shown in Figure 6.2.

S1

...

S1n

S12
R1

R2

Rn
S0

S11

R2

Rn

R1

S21

S22

S2n

...

...

Figure 6.2: Applications of Inference Rules in parallel.

R1 transforms the database from state S0 to S11. R2 transforms the database from state

S0 to S12, and so forth. After the n inference rules are applied to the state S0, we combine

all the resulting states S11, S12, : : :, and S1n into a single state S1. This is done by taking

a union of the USER VIEWs from these n states. If S1 is di�erent from S0, then the n

inference rules are applied again in parallel. This process is repeated until the new state is

the same as the previous state. Hence, there are two stages in this process: applications of

the inference rules, and synchronization of the states resulting from the applications of the

n inference rules.

The inference detection system that we have developed is designed for relational

database systems. We could extend the system to handle databases that are constructed
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using other data models such as hierarchical, network, and object-oriented data models. In

most data models, there is the concept of associations among data. For example, in object-

oriented data models, the attributes of an object associate with the unique identi�cation

of the object. Also, one object may have a domain-speci�c relationship with other objects.

Each query reveals certain amount of associations in the database. Hence, it is possible to

record the associations that each query reveals, and then determine the subsume relation-

ships among the query results. Another way to approach this problem is to transform other

data models into a relational model. We can transform both queries, and query results from

one data model into the relational data model. Then, we can apply our inference detection

system to the transformed data to detect inference.

Inference detection is a hard problem. On the one hand, it is di�cult to represent

all information available to users, and, on the other hand, it is di�cult to simulate the

complete reasoning strategies of users. However, this is an important problem as it defeats

the access control system of a database system. This research developed techniques to detect

subtle inferences using data in the database. More research is needed to develop, if possible,

a complete, sound, and e�cient detection system that also provides high accessibility of data

to users.
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Appendix A

Sample Experimental Database

and Queries

In this section, we show a sample database and sample queries that we used in

running our experiments. We generate the following database, called personnel, using these

three parameter values: Nrec num = 15, Nattr = 8, and Ndata dist = 50%.

SSN Dept Job Year Sale1 Sale2 Sale3 Sale4

1 3 6 2 2 1 6 6

2 3 4 0 0 4 5 0

3 1 6 6 5 2 3 0

4 4 4 3 2 2 5 5

5 3 0 6 0 6 2 5

6 3 3 2 4 0 4 4

7 5 0 4 6 2 2 6

8 5 5 4 0 0 0 0

9 3 2 4 6 0 5 0

10 1 1 1 5 0 1 2

11 2 4 1 2 1 0 3

12 1 0 7 6 3 2 3

13 6 4 7 2 0 0 6

14 2 6 4 7 2 1 0

15 7 6 3 6 5 6 3

Nrec num = 15 means that the database has 15 tuples. Nattr = 8 means that the database

has 8 attributes. and Ndata dist = 50% means that the data values (except the primary key

values) in the database are uniformly distributed between 0 and (Nrec num � Ndata dist) =
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(15 � 0.5) = 7.5. Hence, all data values in the database, except those for attribute SSN,

take values between 0 and 7. Note that all data values are of integer types. The data values

for the attribute SSN are assigned consecutively starting from 1.

We generate the following �ve queries using these three parameter values: Nret tuple

= 25, Nproj = 4, Ncond = 3.

SELECT Sale3, Year, Job, Sale2

FROM personnel

WHERE Dept <= 5 and Sale2 >= 0 and Sale3 >= 0;

SELECT Dept, Sale2, SSN, Sale1

FROM personnel

WHERE Sale4 <= 6 and Sale2 < 3 and Job >= 3;

SELECT Sale3, Sale4, Job, Sale1

FROM personnel

WHERE Year >= 3 and SSN <= 14 and Job >= 1;

SELECT Sale3, SSN, Sale1, Job

FROM personnel

WHERE SSN < 14 and Sale3 >= 0 and Sale3 < 3;

SELECT Sale3, SSN, Sale4, Dept

FROM personnel

WHERE Sale2 <= 7 and Dept >= 2 and SSN >= 6;

Nproj = 4 means that each query projects 4 attributes from the database. Ncond = 3 means

that the where clause of each query consists 3 conjuncts. Nret tuple = 25 means that the

number of return tuples of each query falls between (Nret tuple - 20) and (Nret tuple + 20),

or between 5 and 45. As Nrec num = 15, the range becomes between 5 and 15. The numbers

of tuples returned by these �ve queries are 13, 8, 6, 7, and 8.
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Appendix B

Sample Sessions with the Data

Level Inference Detection System

In this section, we present sample sessions on running the prototype of our data

level inference detection system. The queries in the sessions are issued to the following table

called personnel,

TID SSN Name Department Job Salary

1 10 John 3 10 86

2 20 Peter 2 20 80

3 30 Susan 1 20 80

4 40 Paul 2 40 89

5 50 Paul 1 40 86

6 60 Jack 2 50 82

7 70 Jenny 3 50 84

8 80 John 4 30 85

9 90 Dan 3 20 90

10 100 Susan 5 20 88

11 110 Je� 2 50 94

12 120 Hilary 2 40 96

The database contains the following information about employees: social security numbers

(SSN), names, departments (between 1 and 5), jobs between (10 and 50), and salaries. The

attribute TID is added in order to assign a unique identi�cation number to each tuple in

the database. The TID attribute values are also appended to the query results.
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B.1 Subsume Inference Rule

In this session, we illustrate the application of the subsume inference rule. Three

queries are issued.

Q1: SELECT SSN, Dept

FROM personnel

WHERE Salary >= 80 and Salary <= 82;

Q1 returns the following table,
TID SSN Dept

2 20 2

3 30 1

6 60 2

The user can identify the department information for the three employees returned by Q1.

Q2: SELECT Job, Dept

FROM personnel

WHERE Salary = 80;

Q2 returns the following table,
TID Job Dept

2 20 2

3 20 1

As SC2 ) SC1, the subsume inference rule can be applied to Q1 and Q2. Tuple 3 of Q2 is

indistinguishable from exactly one return tuple of Q1, that is tuple 3. Hence, the two return

tuples can be expanded with respect to each other. The user can infer that the employee

with SSN equals 30 has Job equals 20, and Salary equals 80.

Q3: SELECT Job

FROM personnel

WHERE SSN = 60;

Q3 returns the following table,
TID Job

6 50

The return tuple belongs to the employee with SSN equals 60. Since this employee's infor-

mation is also return in Q1, the two return tuples can be expanded with respect to each

other. That is, the user can infer that the employee with SSN equals 60 has Dept equals 2,
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and Job equals 50. After Q2 is issued, Q1 < Q2, and tuple 2 of Q2 is indistinguishable from

both tuple 2 and tuple 6 of Q2. After Q3 is issued, tuple 2 of Q2 becomes indistinguishable

from only tuple 2 of Q1. Hence, the two return tuples can be expanded with respect to each

other. That is, the user can infer that the employee with SSN equals 20 has Dept equals

2, Job equals 20, and Salary equals 80. In this session, there are four inferences using the

primary key (3 in Q1 and 1 in Q3), and two subsume inferences (1 after Q2 is issued, and

1 after Q3 is issued).

B.2 Unique Characteristic Inference Rule

In this session, we illustrate the application of the Unique Characteristic inference

rule. Four queries are issued.

Q1: SELECT SSN, Dept, Job

FROM personnel

WHERE Salary < 85;

Q1 returns the following table,
TID SSN Dept Job

2 20 2 20

3 30 1 20

6 60 2 50

7 70 3 50

From Q1, the user can identify the department and job information for the four employees.

Q2: SELECT SSN, Job, Dept

FROM personnel

WHERE Salary >= 92;

Q2 returns the following table,
TID SSN Job Dept

11 110 50 2

12 120 40 2

Q3: SELECT Dept, Job, Salary

FROM personnel

WHERE Dept >= 2 and Job = 20;
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Q3 returns the following table,
TID Dept Job Salary

2 2 20 80

9 3 20 90

10 5 20 88

tuple 2 has Salary equals 80 which satis�es SC1. That is, tuple 2 must also be selected by

Q1. Tuple 2 of Q3 is indistinguishable from tuple 2 of Q1. Hence, the two tuples relate to

each other. That is, the user can infer that the employee with SSN equals 20 has salary

equals 80.

Q4: SELECT SSN, Job, Dept

FROM personnel

WHERE Salary >= 84 and Salary < 93;

Q4 returns the following table,
TID SSN Job Dept

1 10 10 3

4 40 40 2

5 50 40 1

7 70 50 3

8 80 30 4

9 90 20 3

10 100 20 5

SC1 _ SC2 _ SC4 � true. That is, the three queries together retrieves all the tuples from

the database. All the three queries return the attributes Job and Dept. The user can infer

that (Job = 20 ^ Dept = 3) and (Job = 20 ^Dept = 5) are two unique characteristics in

the database. As tuple 9 of Q3 satis�es (Job = 20 ^Dept = 3), it relates to tuple 9 of Q4.

Also, tuple 10 of Q3 satis�es (Job = 20 ^Dept = 5), and, hence, it relates to tuple 10 of

Q4. Therefore, the user can infer that the employee with SSN equals 90 has salary equals

90, and the employee with SSN equals 100 has salary equals 88.

B.3 Overlapping Inference Rule

In this session, we illustrate the application of the overlapping inference rule. Three

queries are issued.

Q1: SELECT SSN
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FROM personnel

WHERE Salary = 84;

Q1 returns the following table,
TID SSN

7 70

SSN is the primary key in the database. Hence, the user knows that the employee with SSN

equals 70 has salary equals 84.

Q2: SELECT Name

FROM personnel

WHERE Salary >= 84 and Salary <= 86;

Q2 returns the following table,
TID Name

1 John

5 Paul

7 Jenny

8 John

Q3: SELECT Name

FROM personnel

WHERE Salary <= 84;

Although SC1 ) SC2, the return tuple of Q1 is indistinguishable from all return tuples of

Q2. Hence, there is no inference occurs. Q3 returns the following table,
TID name

2 Peter

3 Susan

6 Jack

7 Jenny

As SC1 ) SC2, and SC1 ) SC3, the only return tuple of Q1 must relate to a return

tuple of Q2, and a return tuple of Q3. As Q2 and Q3 both project the attribute Name, by

comparing the return values of Q2 and Q3 over Name, the user can determine that `Jenny'

must be the overlapping attribute value. Three queries are generated

Q4 : (Name;Salary � 84 ^ :(Salary = 84))

Q5 : (Name;Salary � 84 ^ Salary � 86 ^ :(Salary = 84))

Q6 : (Name;Salary � 84 ^ Salary = 84)
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Q4 returns tuples 2, 3, and 6. Q5 returns tuples 1, 5, and 8. Q6 returns tuples 7. As SC6

) SC1, and both queries return a single tuple, the return tuple of Q1 relates to the return

tuple of Q6. Expand the two return tuples with respect to each other. That is, the user

can infer that the person with SSN = 70 has the name Jenny, and salary equals 84. In this

session, there is one inference using the primary key (in Q1), one subsume inference, and

one overlapping inference.

B.4 Complementary Inference Rule

In this session, we illustrate the application of the complementary inference rule.

Four queries are issued.

Q1: SELECT SSN

FROM personnel

WHERE Name = Susan;

Q1 returns the following table,
TID SSN

3 30

10 100

The user can determine that the employee with SSN equal 30 and the employee with SSN

equals 100 are both called Susan.

Q2: SELECT Salary

FROM personnel

WHERE Name = Susan;

Q2 returns the following table,
TID Salary

3 80

10 88

As SC1 � SC2, the user can infer that the two employees who called Susan both have

salaries either 80 or 88.

Q3: SELECT SSN

FROM personnel

WHERE Dept = 1;
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Q3 returns the following table,
TID SSN

3 30

5 50

No new inference occurs after Q3 is issued.

Q4: SELECT Salary

FROM personnel

WHERE Dept = 1;

Q4 returns the following table,
TID Salary

3 80

5 86

The complementary inference rule can be applied to these four queries. This is because

1) Q1 < Q2; 2) Q3 < Q4; 3) Q1 and Q3 have common projected attribute, SSN, and the

overlapping tuple is identi�ed, namely tuple 3; and 4) Q2 and Q4 have common projected

attribute, Salary, and the overlapping tuple can be identi�ed, namely tuple 3. After the

complementary inference rule is applied, the following two inferred queries are generated,

Q5 : (SSN ;Dept = 1 ^ :(Name = Susan))

Q6 : (Salary;Dept = 1 ^ :(Name = Susan))

Q5 returns the tuple selected by Q3 but not by Q1; that is, tuple 5. Q6 returns the tuple

selected by Q4 but not by Q2; that is, tuple 5. SC5 � SC6, and both queries return a single

return tuple, hence the two return tuples relate to each other. The user can then infer that

the employee with SSN equals 50 has salary equals 86. After this inference, Q3 and Q4

become as follows, the table on the left represents Q3 and the one on the right represents

Q4,

TID SSN Salary

3 30

5 50 86

TID SSN Salary

3 80

5 50 86

As SC3 � SC4, tuple 3 of Q3 must relate to a return tuple of Q4. From the above two

tables, tuple 3 of Q4 is indistinguishable from tuple 3 of Q3, hence these two tuples relate

to each other. The user can infer that the employee with SSN equals 30 has salary equals

80. After this inference, Q1 and Q2 become as follows, the one on the left is Q1 and the

one on the right is Q2,
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TID SSN Salary

3 30 80

10 100

TID Salary

3 80

10 88

As SC1 � SC2, tuple 10 of Q2 must relate to a return tuple of Q1. Tuple 10 of Q2 is

indistinguishable with tuple 10 of Q1, hence the two return tuples relate to each other.

That is, the user can infer that the employee with SSN equals 100 has salary equals 88.


