
A Graph-based Language for Specifying Security Policies

James A. Hoagland, Raju Pandey, Karl N. Levitt1

Department of Computer Science
University of California, Davis

{hoagland,pandey,levitt}@cs.ucdavis.edu

Abstract
A security policy states the acceptable actions of an information sys-
tem, as the actions bear on security. There is a pressing need for or-
ganizations to declare their security policies, even informal
statements would be better than the current practice. But, formal pol-
icy statements are preferable to support (1) reasoning about policies,
e.g., for consistency and completeness, (2) automated enforcement
of the policy, and (3) other formal operations on policies, e.g., the
composition of policies. We present LaSCO, the Language for Secu-
rity Constraints on Objects, in which a policy and a system descrip-
tion are independently specified. LaSCO policies are specified as
expressions in a quantifier-free logic, but also, to provide visualiza-
tion, as directed graphs. Formal semantics have been defined. LaS-
CO can be used for policy requirements that conform to its very
general object-based system model. The implementation of LaSCO
is in Java, and automatically generates wrappers to check Java pro-
gram executions with respect to a policy.

Keywords: computer security, security policies, access control, formal policy specification

1.0 Introduction

Security forms a core component of many systems. Traditionally, what is meant
by security has been formally described for certain interpretations of confidential-
ity, integrity, but less precisely for availability. However, what is realistically

meant by security for a particular system2 varies from system to system, and possi-
bly depending on the interaction of the system with its environment. The military
would likely have a different definition of security than a bank, a university, or a

1. We gratefully acknowledge the support for this research by DARPA under contract XXX-XXX and the Intel
Research Council under contract XXX-XXX.

2. We use “system” generally here, to include any computational entity. In particular we can model a program
execution, a file system, an operating system, a workgroup, and a network of hosts.

2 James A. Hoagland, Raju Pandey, Karl N. Levitt

home user would. They each have their own needs that should be reflected when
securing their systems. In addition, one can describe security at various system
levels. A security policy is a description of the security goals for a system and how
a system should behave in order to meet these goals. An example policy is that the
request for a purchase and its approval must be from different users, each autho-
rized for the particular operation.

Since the security goals for a system effect, among other things, how the secu-
rity mechanisms on the system are configured, it is important for the security pol-
icy to be stated clearly and precisely. Additional benefits accrue from the precise
formulation of a policy that can be directly used to configure the security mecha-
nisms or can be used to formally reason about the effect of the policy. A common
security need is to restrict access to the resources on a system. This is reflected in a

constraint security policy3. These constraints describe, in general terms, restric-
tions on how the system should behave. We focus on constraint security policies in
this paper.

It is inadequate to formulate policy just in terms of operating system objects
such as files and network connections. For some situations, we need to state policy
at a level beyond which an operating system has good knowledge, for example at
the application level. To an operating system, an object in an application is not
necessarily visible and the operating system would in any case have minimal
knowledge of the semantics of an object - what it means and represents. Thus, it is
important to state policy at the application level and lower levels.

Our view of policy is object-based. Typically a system would contain one or
more objects that do not exist in isolation. They interact through events such as
accesses and communication. Policy places constraints on the events that interre-
late the objects and on the objects themselves. A particular policy is in effect over
a domain. This domain determines when the policy is relevant. This might reflect
the state of an object, that a particular event has occurred, or that some set of
events has occurred. Once we have stated where the policy is relevant, therequire-
ment of the policy becomes applicable. The requirement might place a restriction
on the events such as requiring a certain type of event to be used or restricting cer-
tain events, it might place a restriction on the state of an object, or some combina-
tion of these.

In this paper, we define a language that we call LaSCO (the Language for Secu-
rity Constraints on Objects) which represents policy as a directed graph with anno-
tations. We believe this visual form of policy formulation is convenient, and show
the relevant graph operations to policy manipulation. LaSCO can be used to state
policies for many types of systems, including operating systems and programming
languages, particularly if they are object oriented. The policy is specified sepa-
rately from a program. The language is not tied to any particular enforcement
mechanism and the policies so stated may be used in different ways. For example,

3. Other types of security policies are ones that describe how trust is managed, describe how to choose the
security options in setting up a network connection, and ones that describe how to respond to a security
violation.

A Graph-based Language for Specifying Security Policies 3

policies may be compiled into a program, used by a reference monitor [1] or wrap-
per to mediate access to system objects, or to check an audit trail off-line.

We can state policies that apply whenever a certain pattern of accesses is
encountered. This can be seen as a template for a general policy rather than config-
uration details that an access control matrix describes. The language can describe
policies that span events over a period of time and can describe policies that
depend on conditions other than the state at the time of check.

The language is visual which might make it easier for humans to cope with, a
serious issue since policy specification will be human intensive. At the same time,
our language has a formal basis. Having a formal basis and a formal semantics
promotes our ability to reason about policies themselves, and about system with
respect to a policy.

This paper is organized as follows: Section 2.0 presents an overview of our
approach. In Section 3.0 we present our model of the system to which a LaSCO
policy is separately applied, and in Section 4.0 we present the LaSCO language
and its semantics. We present several examples of LaSCO policies in Section 5.0.
Section 6.0 presents ways of using LaSCO for particular system such as programs
and file systems. In Section 7.0 we discuss the expressiveness of the language and
Section 8.0 presents a comparison of our work with related work. Section 9.0 con-
cludes and discusses future work.

2.0 Overview

This section provides a brief overview of two aspects of our approach: the type
of system that we can model, and the LaSCO policy language. We expand on this
description in the subsequent two sections.

We describe security policies using a formal language based on directed graphs.
The system to which the policy is applied consists of a series of events, each
occurring between a pair of objects, some of which can be viewed as a subject. We
apply the policy by identifying portions of a system to which the policy applies
and checking the requirement part of the policy on that portion of the system.

2.1 System model overview

We first describe how systems are modeled. A system denotes an execution of
the environment (system) upon which policy is applied. During this execution,
computation events occur among active objects. We can thus model a variety of
systems including programs, operating systems, file systems, and networks.

An object is a system entity that has state and that might invoke or be the target
of an event. An event is an access or communication (signal) between a pair of
objects at a particular time. A system is, thus, an ordered set of temporal instances.
A system instance is a snapshot of the system at a moment in time; it contains a set
of active objects and a set of pending events.

4 James A. Hoagland, Raju Pandey, Karl N. Levitt

We present an example system in Figure 1 in which there are four objects and

three events. Each object has a set of attribute-and-value pairs that represents its
current state. For example, the user objects have three attributes each. Thetype
attribute denotes the type of the object, the value of thename attribute is the name
of the user, andsec_level represents the clearance level of the user. Similarly,
events have a set of parameter and value pairs that denote the details of its invoca-
tion. In this simple example, each event has only two parameters:name, whose
value is the name of the event andtime, whose value is the time of its execution.
This denotes three events that occur between four objects; whether these events are
allowed is defined in the policy.

2.2 Policy language overview

A constraint policy language describes constraints on a system that must hold
when the system is in specific states. This state may include events that have
occurred on the system. We use a policy graph to represent both the situation under
which a policy applies (thedomain) and the constraint that must hold for the policy
to be upheld (therequirement). A security policy is stated by asserting that if a part
of the system is in a specific state, the events and objects in that part must satisfy a
set of properties.

 The simple (access control) security property of Bell-LaPadula [2] specifies
that if a user is reading a file, the security level of the user must be at least as great
at that of the file. We introduce our policy language by depicting this policy as a
LaSCO policy graph in Figure 2.

name: read, time: 2

type: user
name: john

sec_level: unclassified
type: file
name: a
sec_level: unclassified

name: write,
type: user
name: jane

sec_level: unclassified

type: file
name: b
sec_level: secret

Figure 1. Example system depicted as a graph. The nodes represent objects and
the edges events.

name: read,

Figure 2. Policy graph for the simple security property

name=“read”

type=“file” &&
sec_level=$FL

$UL ≥ $FL

type=“user” &&
sec_level=$UL

A Graph-based Language for Specifying Security Policies 5

Policy graphs are annotated directed graphs. Thebold text associated with
(and depicted near) a node in the graph describes the particular kind of object the
node represents. The formal annotation can be viewed as a boolean test for
whether an object fits the policy, evaluating to true if the attribute values for the
object permit it to be satisfied. For example, the right node in the policy graph rep-
resents a user with a particular clearance level, the test evaluating to true for an
object if itstype attribute has the value “user” and if itssec_level attribute has the
same value as the variable UL (whose value is bound by this reference). Thebold
text associated with an edge describes the particular kind of event the edge rep-
resents and is a boolean test for whether an event fits the policy. The annotation
evaluates to true if the parameter values for the event permit it to be satisfied. The
edge in Figure 2 represents aread event and matches a event when the value of the
name event parameter is “read.” Thestandard text annotation is the require-
ment for the policy. Here it is a simple test of whether the variable UL is greater
than or equal to the variable FL. Given the prior use of these variables, this is
effectively a test of whether the usersec_level attribute value is at least as high as
the filesec_level attribute value. If this is true, the requirement is satisfied and the
policy upheld for that part of the system. Otherwise the policy has been violated.

Let us now consider this policy in the context of the example system depicted in
Figure 1. We depict this linkage in Figure 3. When the domain of the policy is

applied to the system, the policy graph matches in two locations, indicated by the
① and the② and the thick lines. The policy requirement is satisfied by① but not
②. In the first case, the binding of the variables from the domain is that UL and FL
both have the value “unclassified”. This meets the requirement for the policy.
However in the second case, UL has the value “unclassified” and FL has the value
“secret”, which causes the requirement test to evaluate to false, signalling the fail-
ure of the requirement to be satisfied.

type: user
name: john

sec_level: unclassified
type: file
name: a
sec_level: unclassified

type: user
name: jane

sec_level: unclassified

type: file
name: b
sec_level: secret

Figure 3. Depiction of simple security property applied to the example system.
The two places where the domain applies is noted along with the necessary

variable bindings.

$UL: unclassified
$FL: unclassified
① ✔

$UL: unclassified
$FL: secret

② ✘

name: read, time: 2

name: read,

name: write,

6 James A. Hoagland, Raju Pandey, Karl N. Levitt

3.0 The system basis for LaSCO

Policies are in effect over some system. We model the system upon which a pol-
icy is applied so that we have a construct upon which the definition of LaSCO is
based. With a system model, we can define the meaning of LaSCO as it applies to
an arbitrary system that fits the system model.

The LaSCO system model is object-based. It consists of a set of objects and a
set of events that occur between the objects. Events have unchanging named
parameters associated with them. Objects consist of a fixed set of named attributes
which describe the security-relevant state of the object. The values of these
attributes may vary over time. However there is an unique ‘id’ attribute associated
with each object that does not change.

We assume that events and changes to object attribute values occur at discrete
time steps and that multiple events can be happening simultaneously. This allows
us to view our system as a sequence of system instances, each representing the sys-
tem at a particular time. In addition to a set of objects, each system instance con-
tains a set of pending events, events that are intended to execute, but which are
awaiting approval. It is at this point where policy is considered for a system. We
denote the time of a system instance in each of its events using atime parameter.

4.0 Access control policy language

In LaSCO, policies are represented visually by apolicy graph. In this section,
we discuss the syntax of LaSCO and its informal semantics. For a formal treatment
of the language, including its formal semantics in first order logic, see [10].

4.1 Predicates

The text annotations we introduced in Section 2.2 are termedpredicates. There
is adomain predicate and arequirement predicate for each node and edge in the
policy graph. (Nodes and edges without an explicit domain or requirement predi-
cate have a default “True” predicate.) Although they serve different roles, with
domain predicates describing the object or event that is relevant to a part of the
policy and requirement predicates describing what must hold if the domain is satis-
fied, they are evaluated in the same way. In either case predicates are patterns for
the attributes of an object or the parameters of an event. For the moment, let us
consider only predicates without variables, which we will termsimple predicates.

A simple predicate is a boolean expression formed from attribute or parameter
names and constants combined by operators from a certain set of various logical,
comparison, set, and mathematical operators. Parentheses may be used to nest sub-
expression. Predicates are evaluated in the context of attributes or parameters;
applying the predicate consists of substituting in the corresponding value for each

name and resolving the resulting constant expression to be true or false.4

A Graph-based Language for Specifying Security Policies 7

4.2 Domain and requirement

As represented in the policy graph, the domain of the policy (a pattern for where
the policy applies) is the set of domain predicates and the nodes and edges. The
requirement (restrictions to check then) is the set of requirement predicates. To use
the policy, we find the locations in the system where the domain matches, then
check the requirement for each of these cases.

4.3 Domain matching

Let us now consider the process of matching the domain of a policy to a part of
the system. We address this for simple domain predicates.

The domain pattern is satisfied (it matches) when each node and edge in the pol-
icy is satisfied by part of a system. As demonstrated in Figure 3, a part of the sys-
tem that matches the policy consists of an object for each node and an event for
each edge. Each of these objects and events is part of a one-to-one map between
nodes and events and objects and events. In the simple predicate case, this map-
ping constitutes what we term apolicy to system match (match for short).

The objects and events in a match are related in a particular way. The objects
matching the nodes at the ends of each edge must be those that are at the same end
of the event that matches the edge. Specifically, the source node of an edge must
match the source object of the event the edge matches and the destination node of
an edge must match the target of the matching edge for the event. As the value of
an object’s attributes might change between system instances, we require that an
edge’s incident nodes must match their system objects in the same instance that the
edge matches an event. As a node might be incident to multiple edges, this means
that nodes must match their object’s attribute values in each instance that an inci-
dent edge matches an event. In the case of isolated nodes that have no incident
edges, they can match an object in an instance.

As the domain may apply in several ways in the system or not at all, applying
the domain to the system produces a set of matches.

4.4 Variables

LaSCO policies make use of a set of a policy variables to relate different
attribute values and parameter values of different objects and events. The scope of
variables is a single LaSCO policy graph and each variable has a certain value in
that scope, for a particular match. Variables may appear as operands in domain and
requirement predicates and are denoted by a “$” prefix.

Variable bindings represent a set of policy variables that have values bound
(assigned) to each of them. Predicates are evaluated in the context of a set of vari-

4. In the case that an attribute or parameter name appears in a predicate but not in the object or event, the most
immediate boolean expression in which the name appears evaluates to false, regardless of any other part of
that expression. This implies that, unless that boolean expression is within a disjunct expression, the predi-
cate will not to be satisfied by the object or event.

8 James A. Hoagland, Raju Pandey, Karl N. Levitt

able bindings. This is in addition to the attributes or parameters mentioned in
Section 4.1. To evaluate the variables in a predicate, we substitute the value of a
variable in the bindings for its name. We demonstrate predicate evaluation here.
Figure 4 presents several example pattern nodes, system objects, and variable

bindings. The table in Figure 5 uses these to give examples of evaluating a predi-
cate on a domain pattern node in the context of a system object and particular vari-
able bindings.

We mention now two restrictions on what may and may not be found in predi-
cates. Each variable present in the policy must be in some subexpression of some
domain predicate as <variable>=<value> (or <value>=<variable>) where <value>
is a (possibly derived) single value. This subexpression may not be part of a dis-
junction. This ensures that all variables have a single value for the domain. The
second restriction is that node requirement predicates may not contain any

attribute references5.
The domain is satisfied when all of its nodes and edges can simultaneously be

satisfied by a set of variable bindings. When a policy is being applied to a system,
it is the mechanism doing this application that determines the variable bindings.
We can now observe that a policy to system match, in addition to containing map-

5. The values of an attribute might change during the events that are incident to the object. This would lead to
ambiguity if the attribute is mentioned in a requirement predicate. Thus, we impose this restriction to alle-
viate this ambiguity. Variables may be bound to an attribute value in the domain and referred to in the
requirement, which ensures that the significant attributes only match the policy in one particular way while
holding a particular value. This restriction could be narrowed to nodes that have more than one incident
edges without ambiguity arising.

(type=“file”) &&
(owner=“bill”)

(type=“file”) &&
(owner=$U)

(name=“secretfile”)

 || ($C ∈ labels)

P1:

P2:

P3:

type: file
owner: bill
name: x
labels: {blue,green}

O1:

type: file
owner: jan
name: secretfile
labels: {brown}

O2:

B1:
C: brown
U: bill

B2:
C: green
U: chris

Figure 4. Example pattern nodes, system objects, and variable bindings. P1, P2,
and P3 are pattern nodes, O1 and O2 are system objects, and B1 and B2 are

variable bindings.

P1

P2

P3

O1 O2

satisfied with any

satisfied by B1 but not B2 not satisfied by B1 nor B2

variable bindings
not satisfiable by any

variable bindings

satisfied by B2 but not B1 satisfied by either B1 or B2

Figure 5. Predicate evaluation example. The table depicts
which variable bindings satisfy each pattern node’s predicate

A Graph-based Language for Specifying Security Policies 9

pings between nodes and edges and objects and events, also contains the set of
variable bindings that enable the mapping.

4.5 Requirement checking

We check the requirement of a policy against a match by evaluating each
requirement predicate. A node requirement predicate is evaluated with the
attributes of the object that matched the node in the domain and the variable bind-
ings from the match. Edge requirement predicates are likewise evaluated in the
context of the parameters of the event that matched the edge and the same variable
bindings. If each of the requirement predicates evaluates to true, the policy has
been upheld, otherwise the policy has been violated. The result of applying a pol-
icy to the system will return how the system violates policy; the implementation
entity doing this checking may use this knowledge as appropriate for its situation.

4.6 Policy composition and operations

We have defined some operations on policies in [10], which we summarize here.
Policies can be composed throughconjunction. Each constraint policy must be
upheld for the composed policy to be upheld. If any of the policies are violated in
the system, the set of policies has been violated.Disjunction between a pair of pol-
icies implies that in cases where both policies’ domains apply, only one of the
requirements need be met. Otherwise the policies may be considered separately.

The nullification of a policy takes it out of effect, forcing its requirement to
always be satisfied.Reversing the requirement of a policy negates (reverses) the
requirement of policy, while leaving the domain unchanged. In the general case, to
express the result in terms of LaSCO policies requires a set of conjuncted policy
graphs. A policycontains another policy if it is the case that the first policy
enforces the constraints of the second policy in all situations.

5.0 Examples

This section presents several examples of using LaSCO to describe different
kinds of policies.

Policies involving just a single event and its associated objects correspond to a
LaSCO policy graph containing a single edge and adjacent nodes. One example of
this was the simple security property in Figure 2. Access control lists (see [5]) and
access control matrices [11] can be represented in LaSCO with one or more single-
edge policies. For example, Figure 6 depicts the following policy: if subject “sam”

is accessing an object incategory 4, then the access must be a read.

Figure 6. Policy graph for attribute ACL example

type=“object” &&
catagory=4

method=“read”

type=“subject”
&& name=“sam”

10 James A. Hoagland, Raju Pandey, Karl N. Levitt

Role-based access control (RBAC) (Sandhu,et.al. [14]) can also be represented
in LasCO, as it is similar in form to access matrix constraints, with the main differ-
ence being that the subject is a role and not a user. In modeling the system, one can
denote the roles a user currently has active by aroles set attribute on objects that
are of the type subject. Figure 7 denotes the RBAC policy that only subjects that

have the role of paymaster, can issue a object of document type paycheck.
We can also state policies where we need to check a requirement when we have

multiple events seen together in a certain pattern through LaSCO policies with
multiple edges. Consider the Chinese Wall policy [3]. The idea behind the Chinese
Wall policy is to prevent conflict of interest situations by consultants that may be
employed by a number of parties with competing interests. The policy achieves
this by forbidding someone from accessing data from different parties where the
parties are in the same conflict on interest class. This is depicted in LaSCO by a
node with two edges originating from it as shown in Figure 8. The middle node is

a “consultant” whose accesses are limited by the Chinese wall policy. The edges
from the consultant node represent accesses to sensitive objects with different
owners that are subject to Chinese Wall. The constraint is that the owners of these
objects cannot be in the same conflict of interest class, stored in the attribute
“COI_class”.

Separation of duty policies can be depicted in LaSCO. An example is shown in
Figure 9. This depicts a policy for a system where there is a separate function for

requesting policies and getting them approved. The policy states the restriction that

Figure 7. Policy graph for payroll RBAC example

type=”object” &&
doc_type=”paycheck”

method=“issue”

type=“subject”
&& $R=roles

“paymaster” ∈ $R

Figure 8. Policy graph for the Chinese Wall policy

“CW” ∈ policies
&& owner=$O &&
COI_class=$C1

type=“user” &&
“CW” ∈ policies

type=“access”

“CW” ∈ policies
&& owner ≠ $O &&

COI_class=$C2

$C1 ≠ $C2

type=“access”

Figure 9. Policy graph for purchase request and approval separation of duty

method=“request”

$A != $R

method=“approve”

class=”user”
&& name=$R

class=”purchase”

class=”user”
&& name=$A

A Graph-based Language for Specifying Security Policies 11

the “request” user must be different than the “approve” user. Time-ordered access
restrictions can be represented similarly.

LaSCO can be used to impose a maximum number of accesses of a particular
type that are allowed. As an example of this, consider the LaSCO policy depiction
in Figure 10, where we show a policy that might be relevant to a program that

accesses images from a database. The restriction is that, for a customer with
assigned service level less than 6 and for images that are not free, the image cannot
be retrieved by the customer more than three times. For this policy the domain
matches on the fourth retrieve and these is no way to uphold the policy at that
point. (As syntactic sugar, we have considered an extension to LaSCO that adds an
iteration count to edges.)

LaSCO states restrictions just on objects in form of policy graphs that contain
one or more isolated nodes. We present an example of this in Figure 10. The policy

in this figure states that the “/etc/passwd” file should never be world writable.

6.0 Applying LaSCO to real systems

In order to put into effect a policy described in LaSCO, we need to translate the
policy into enforcement mechanisms. This can be automated and we discuss
applying LaSCO to programs and to file systems as examples of this.

6.1 Using LaSCO to enforce policy on a program

We may use LaSCO to describe policies to be enforced on the execution of an
object-oriented program. In the system being represented, objects are instantiated
and methods are invoked to perform computations. Access control, thus, involves
establishing constraints on object instantiations and method invocations. For this
type of system, program objects are the objects for the system model and method
invocations are the events.

Note that most traditional programming languages do specify mechanisms (such
as types and public/private methods and variables) for controlling accesses to

False

method=“retrieve”

Figure 10. Policy graph for image retrieval quantity restriction

class=“customer”
&& service_level < 6

class=“image” &&
type != “free”method=“retrieve”

method=“retrieve”

method=“retrieve”

world_writable=false

Figure 11. Policy graph for password file restriction

type=“file” &&
name=“/etc/passwd”

12 James A. Hoagland, Raju Pandey, Karl N. Levitt

object states and methods. However, this is not dynamic or dependent on the state
of an application. Note that while it may be possible to add constraint checks
directly in a program, for example, while writing the program, there is added bene-
fit from stating the policies separately using a formal method. These include allow-
ing some degree of independence between the program and the policy, facilitating
better understanding of the effect and intention of a constraint through a directed
language, and enabling reasoning about policies and interactions, independently of
a particular system.

We now describe the manner in which access control policies might be derived,
specified and enforced. In Figure 12, we show the steps that might be taken by a

user to specify access control policies:
• Schema Extraction: Given an arbitrary program, a schema extraction tool

constructs a program schema graph from the program. Nodes of the program
schema graph denote class definitions of the program, whereas edges
between the nodes represent method invocations or object instantiations
found in the program source. Edges, thus, capture the various access rela-
tionships.

• Security policy tool: The user selects a portion of the program schema graph
using a security policy tool. She then constructs a LaSCO policy graph by
adding constraints over the schema graph. In addition, the security policy
tool will provide a library of security policy graphs that the user can custom-
ize for the schema. This leads to the creation of a set of policy graphs.

• Compiler: A compiler takes the program, access control constraints repre-
sented in policy graphs, and a program schema graph and generates code for
both implementing the program and for enforcing the access constraints.

We have an implementation of this approach underway for Java, making use of
an existing Java parser. The graphical user interface is for X-windows. The
enforcement of policies is achieved through wrapping portions of code with policy

Figure 12. Access specification and control for policy application at the language
level.

program schema graph

policy graphs

schema
extraction

security

user

policy tool

compiler

code

A Graph-based Language for Specifying Security Policies 13

checks. Certain parts of the policy can be evaluated statically and are used to
reduce the amount of run-time checking needed.

6.2 Using LaSCO for file systems

We can describe access control policies for a file system using LaSCO. To do
this, we might model the file system as consisting of files and subjects (for exam-
ple, users or processes), both of which would be objects in the LaSCO system
model. Files objects would naturally have attributes such as its owner, type, size
and modification date, and the subject objects would have the appropriate security
relevant attributes for the system. The system events would include accesses by
subjects to the files on the system with the details of the access as parameters. Pol-
icies for this system thus might restrict access to files based on the details of the
access, what is being accessed, and what has previously occurred on the system.
Policies also might restrict the state of files.

The policy engine checking the LaSCO policies might be situated in different
ways with respect to the system. It could serve as a reference monitor, moderating
requests to the file system from applications. It might also be along side the file
system, being called when a policy decision is needed. A third possibility would
have the access checking done by an application such as an intrusion detection sys-
tem that scans over an audit log of accesses and object states, perhaps permitting
the use of LaSCO policies to be retrofitted onto a system.

7.0 Discussion

Though aimed at specifying security policies for access control, LaSCO has a
far more general model than traditional access control mechanisms. LaSCO can
specify general system constraint policies, such as access control, limiting the
actions of users, and system assertional checking, that impose a condition that may
be based the current state of the system and events that have occurred previously in
the system.

The system model employed by LaSCO is simple, very flexible, and we find it
adequate for modeling security aspects of systems. It fits the traditional notion of
security where subjects and objects interact through accesses and communication.
Single-edge LaSCO policies permit the specification of simple access control poli-
cies where all the information needed to make the decision is available in the cur-
rent system state and events. LaSCO policies that make reference to multiple
events permit access decisions to be based on what has previously occurred. Poli-
cies can also impose constraints on the state of an object. As a result of the flexibil-
ity of LaSCO, an application developer or site can create custom policies to fit
their needs. This ability promotes security and is in contrast to some policy mecha-
nisms which only allows a limited number of policies to be enforced.

Some constraint policies cannot be stated in the current LaSCO in part because
we wish to keep the language simple initially. This includes policies that impose
requirements to the effect that certain events are required to occur. This is the case
for the policy that employees must execute orders given by their supervisor and is

14 James A. Hoagland, Raju Pandey, Karl N. Levitt

also the case when we require a minimum number of events to occur. Another type
of constraint policy that cannot be stated is when the policy refers to an object hav-
ing to be in two or more distinct states through the system. We have not seen a nat-
ural instance of this sort of policy though. In LaSCO, it is not possible to express
the fact that in order for the policy to be applicable certain events should have not
occurred. An example of this is policies that refer to events that occur without
other events having occurred. While LaSCO policies state what a policy violation
is, they do not state the response to take when a policy violation occurs. This might
be an important part of enforcing the policy. We have considered several exten-
sions to LaSCO to address these limitations [10].

8.0 Comparisons with other work

The work of this paper most closely resembles the Miró work of Heydon, Tygar,
Wing, et. al. at Carnegie Mellon University. Miró consists of two languages, an
instance language and a constraint language [9], both of which are based on
Harel’s hierarchical graphs [8]. The instance language’s formal semantics is
defined in [12] and is analogous to our graphical depiction of the system that we
formally define in [10]. It describes a file system access control matrix. The con-
straint language, which describes security constraints on the file system, contains a
domain part (called an antecedent) and a requirement part (called a consequent)
and has a predicate on nodes which is similar to LaSCO’s predicates. Miró can
only express allowable states (a snapshot of a dynamic system), whereas LaSCO is
more flexible. Also, LaSCO can be applied to systems other than file systems and
has simpler semantics.

Access matrices [11] and the related access control lists and capabilities (see
[5]) are a traditional means of specifying security permissions. LaSCO can repre-
sent this type of security constraint, but overcomes some of its limitations. In stat-
ing a policy, LaSCO can denote a specific kind of objects and event by their
(dynamic) attribute value, whereas the granularity of access matrices is specific
subjects and objects. LaSCO can include historical context in its access control
which access matrices cannot do due to their static nature. Other approaches based
on access matrices aim to overcome some of its limitations. TAM [15] introduces
safety properties into an access control matrix through the use of object typing and
defined sets of operations to execute under different conditions. BEE [13] is an
access control mechanism where decisions are based on the result of a boolean
expression evaluation for an access right. When making decisions, BEE cannot
make reference to other events that have occurred. A goal BEE shares with LaSCO
is to allow users to think at a policy level when implementing restrictions. The
Authorization Specification Language is a similar approach [7] that expresses the
desired authorizations regarding user access to objects in logic and has conflict res-
olution rules defined in the language. The goal with this is to enforce varying secu-
rity policies without changing the security server. This more structured approach
towards overall site policies than LaSCO currently defines is useful in certain situ-
ations.

A Graph-based Language for Specifying Security Policies 15

Cholvy and Cuppens [4] express the policies on a site in terms of deontic logic,
which states what is obliged to occur, what is permitted to occur, and what is for-
bidden to occur and how to deal with inconsistencies. This seems to be a more
general approach than in LaSCO (in which what is obliged is found in the require-
ment). However, the approach is limited to expressing policies for agents in terms
of what they the obliged, permitted, and forbidden from doing. An approach
towards specifying authorizations for subjects over objects that is thoroughly for-
mal is presented in Woo and Lam [17]. Precise semantics, allowing for inconsis-
tency and incompleteness in specification, and distributed specification for their
logical language are present there. However for this, it is not as clear how to imple-
ment the policies, for example, for an application. Logic-based approaches, while
strong in some ways such as the ability to reason about problems, are often weak
in terms of the ability of the user to effectively interact with policies so stated due
in part to the background in logic that is needed and the sometimes difficult intu-
ition. With LaSCO, we address this limitation through a visual presentation.

The Adage architecture [16], developed at the OG Research Institute, focuses on
creating and deploying security policies stating access control on roles in a distrib-
uted environment. The developers argue that security products that user can not
understand will not be used and focus on usability through enabling the user to
build policy from pieces that the user understands. We believe LaSCO can express
any Adage policy, but offers the additional benefits of application to different
kinds of systems, direct linking to an application program, and formal semantics.

Deeds, developed by Edjlali, Acharya, and Chaudhary [6], is a history-based
access control mechanism for Java whose goal is to mediate accesses to critical
resources by mobile code. LaSCO can also be used for this purpose. As we plan to
do, they insert code into Java programs. However, whereas their basis for access
control decisions is the result of dynamically executing Java code provided by the
user, our basis is clearly stated policies. We find our approach appealing since it
permits conceptual understanding of the access restriction and formal reasoning
about the policy.

9.0 Conclusion and future work

In this paper, we have presented a formal policy language based on graphs. Sep-
arately specifying a system and a policy is possible in LaSCO, where, one can
specify constraint policies which constrain accesses, communication, and object
state on a system under given circumstances. The specific constraint might depend
on the context in which an access occurs. Though designed for security policies for
access control, LaSCO may also be useful for other environments such as software
development where behavioral assertions might be checked at run time. The lan-
guage can be used on any system that conforms to our system model (most of
which do), and we presented means of using LaSCO to specify policies in an
object-oriented program and a file system. The language and system model was
described, its semantics presented, several examples shown, and we discussed
what it could and could not specify.

16 James A. Hoagland, Raju Pandey, Karl N. Levitt

LaSCO has the benefits of allowing policies to be stated separately from the sys-
tem, of being enforcement mechanism independent, and allowing policies to be
specified using flexible patterns that might include multiple events. It is a formal
language with formal semantics and allows reasoning about policies in the lan-
guage and the system they are enforced on. Its visual basis might make it easier for
users to specify policies in LaSCO.

Though we have omitted the details from this paper due to space considerations,
we have developed a formal semantics of LaSCO and operations on policies [10].
We are implementing LaSCO in Java programs through instrumenting the pro-
grams with policy statements checked at run time. In this environment, we can
take advantage of restrictions on classes of objects and on the particular event that
is involved for the policy. We will continue our implementation as future work. We
will also study LaSCO further, especially in the area of policy composition and
operations and policy conflicts.

10.0 References

[1] Anderson, J.P., “Computer Security Technology Planning Study,” ESD-TR-73-51, Vols. I and
II, USAF Electronic Systems Division, Bedford, Mass., October 1972.

[2] Bell, D.E. and L.J. LaPadula, “Secure Computer Systems: Mathematical Foundations and
Model,” M74-244, The MITRE Corp., Bedford, Mass., May 1973.

[3] Brewer, D.F.C., and M.J. Nash, “The Chinese Wall Security Policy,” InProceedings of the
1989 IEEE Symposium on Security and Privacy, Oakland, CA, USA: IEEE Press, 1989.

[4] Cholvy, Laurence and Frederic Cuppens, “Analyzing Consistency of Security Policies.” In
Proceedings of the 1997 IEEE Symposium on Security and Privacy. Oakland, CA, USA: IEEE
Press, 1997. p. 103-112.

[5] Denning, Dorothy,Cryptography and Data Security. Addison-Wesley, Reading, Mass. 1982.
[6] Edjlali, Guy, Anurag Acharya, and Vipin Chaudhary, "History-based Access-control for

Mobile Code." To appear inProceedings of the Fifth ACM Conference on Computer and
Communications Security. San Francisco, CA, USA. November 1998.

[7] Jajodia, Sushil, Pierangela Samarati, and V.S. Subrahmanian, “A Logical Language for
Expressing Authorizations.” InProceedings of the 1997 IEEE Symposium on Security and
Privacy. Oakland, CA, USA: IEEE Press, 1997. p. 31-42.

[8] Harel, David, “On Visual Formalisms.”Communications of the ACM, 31(5):514-530, May
1988.

[9] Heydon, Allan, Mark W. Maimone, J.D Tygar, Jeannette M. Wing, and Amy Moormann Zar-
emski, “Miró: Visual Specification of Security.” InIEEE Transactions on Software Engineer-
ing, 6(10):1185-1197, October 1990.

[10] Hoagland, James, Raju Pandey, and Karl Levitt, “Security Policy Specification Using a
Graphical Approach.” Technical report CSE-98-3, The University of California, Davis
Department of Computer Science. July 1998.

[11] Lampson, B.W., “Protection,” InProceedings of the 5th Symposium on Information Sciences
and Systems, Princeton University, March 1971.

[12] Maimone, M.W., J.D. Tygar, and J.M. Wing, “Miró Semantics for Security.” InProceedings
of the 1988 Workshop on Visual Languages, Oct 1988. pp. 45-51.

[13] Miller, D.V. and R.W. Baldwin, “Access control by Boolean Expression Evaluation.” InPro-
ceedings Fifth Annual Computer Security Applications Conference. Tucson, AZ, USA: IEEE
Computer Society Press, 1990. p.131-139.

[14] Sandhu, R.S., E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role-based access control: a
multi-dimensional view.” InProceedings of the 10th Annual Computer Security Applications

A Graph-based Language for Specifying Security Policies 17

Conference, Orlando, FL, USA: IEEE Press, 1994.
[15] Sandhu, Ravi S., “The Typed Access Matrix Model.” InProceedings of the 1992 IEEE Sym-

posium on Security and Privacy. Oakland, CA, USA: IEEE Press, 1992. p. 122-136.
[16] Simon, Rich and Mary Ellen Zurko. “Adage: An architecture for distributed authorization.”

Technical report, Open Group Research Institute, 1997. http://www.opengroup.org/www/
adage/adage-arch-draft/adage-arch-draft.ps

[17] Woo, Thomas Y.C., Simon S. Lam, “Authorization in Distributed Systems: A Formal
Approach.” InProceedings of the 1992 IEEE Symposium on Security and Privacy. Oakland,
CA, USA: IEEE Press, 1992. p.33-50.

