
Antecedent and Consequent Semantics

When applying a policy to a system instance:

1. If the antecedent applies:

2. check the consequent to see if the policy was upheld

For the following:

❏ let S be a system instance

❏ let P be a policy in effect on that system

❏ let Ap(s) be true iff s satisfies the antecedent of p

❏ let Cp(s) be true iff s satisfies the consequent of p

Antecedent and Consequent Semantics [2]

❏ A policy is relevant to a system instance if the antecedent is satisfied.

• relevant(P,S) = Ap(S)

❏ A policy is upheld on a system instance if it is relevant to the instance
and if its consequent is satisfied.

• upheld(P,S) = relevant(P,S) ∧ CP(S) = AP(S) ∧ CP(S)

❏ A policy is not violated if it either is not relevant or is upheld.

• no_violation(P,S) = ¬relevant(P,S) ∨ upheld(P,S) =

¬AP(S) ∨ (AP(S) ∧ CP(S))= (¬AP(S) ∨ Ap(S)) ∧ (¬AP(S) ∨ CP(S))=

AP(S) ⇒ CP(S)

❏ A policy is considered to be violated if it is relevant but its consequent is
not satisfied.

• violation(P,S) = relevant(P,S) ∧ ¬CP(S) = ¬(¬AP(S) ∨ CP(S)) =

¬(AP(S) ⇒ CP(S)) = ¬no_violation(P,S)

Composing Policies

Composed policy:

❏ the policy consisting of the constraints enforced by two or more policies
that are in effect

❏ semantics of policy composition:

• a policy violation if and only if system instance violates any of the set
of policies

❏ S is a system instance and P is a set of policies:

• violation(P,S)= ∃ p ∈P: violation(p,S)

• no_violation(P,S)= ∀ p ∈P: no_violation(p,S)

Biba Integrity Policy Constraint Graphs

Two constraints for Biba Integrity policy:

❏ only a process with higher or equal integrity level can write to a file

❏ only a process with lower or equal integrity level can read a file

Blue lines and predicates are part of the antecedent

Red lines and predicates are part of the consequent

write

File: integrity_level=$Iintegrity_level ≥ $I

Process

read

File: integrity_level=$Iintegrity_level ≤ $I

Process

Chinese Wall A/C Constraint Graph

Chinese Wall: If a consultant has accessed protected data from two
companies, then one company cannot be in the same conflict of interest
class as the other.

Key: antecedent is blue ; consequent is red

access

Organization:
COI_class=$C

File: “CW” ∈
policies

owns

User:
“CW” ∈ policies

access

Organization

File: “CW”
∈ policies

owns

COI_class ≠
$C

Contradicting Policy Example

Here the contradiction is because:

❏ the antecedent can apply at same time

❏ the consequents are opposing

The contradiction could be more subtle, i.e., if the second policy had
consequent “transport_protocol=UDP”, which implies “protocol ≠ HTTP”, or
only contradict part of the time

Host
Host:

name=www.cs.ucdavis.edu

protocol=HTTP

connection

Host
Host:

name=*.cs.ucdavis.edu

protocol ≠ HTTP

connection

Advantages to this Approach

It is expressive:

❏ language is independent of the semantics of the entities and
relationships

• nodes are independent of the specific entity

• edges can represent any relationship

It is formal:

❏ can reason about policies expressed in the language

❏ can enforce all policies in the same way

It is separate from the system model

