
C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

1 of 8

A Graph-based Approach to Specifying Security
Constraint Policies

James Hoagland

Karl Levitt

Raju Pandey

Computer Security Research Laboratory

Department of Computer Science

University of California, Davis

{hoagland,levitt,pandey}@cs.ucdavis.edu

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

2 of 8

Security Policies

Security policies might consist of various elements, i.e.:

❏ when the policy applies

❏ what actions to take when it applies (i.e., provide security mechanisms)

❏ a constraint on the state the system must be in

❏ what to do iff this constraint is violated

Here we focus on the first and third: security constaints on a system.

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

3 of 8

Approach

Goals of work:

❏ an easy way to formally specify security policies

❏ have the method be application-independent

Our approach to specifying security policies:

❏ specify policies in a formal language

❏ policies consist of a set of constraints

❏ each constraint is represented by a graph

❏ constraints get checked against the system and violations reported

❏ the constraint graphs depict

• when the policies apply (the antecedent)

• what the requirement then is (the consequent)

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

4 of 8

System Model

Model the system to apply the policy to as:

❏ objects with attributes and values

❏ methods being invoked between objects

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

5 of 8

Graph-based Constraint Language

Language has nodes and edges:

❏ nodes are a pattern for objects

❏ edges are a pattern for method invocations

• source node is the invoking object

• destination node is the invoked object

Nodes and edges have annotations:

❏ antecedent and consequent boolean expressions

❏ these predicates further restrict what objects and method invocations
can match the constraint

❏ predicates can refer to:

• object attribute values (nodes) or method parameter values (edges)

• variables (bound like in Prolog, on first use)

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

6 of 8

Example Policy Specification Using Graphs

Example: a process with a certain clearance level can only read a file with
lower or equal security level

Note:

❏ blue parts are the antecedent or trigger (when the policy applies)

❏ red parts are the consequent or requirement (what must then be the
case)

read

Process:
 clearance=$C security_level ≤ $C

File

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

7 of 8

Exam Scenario Constraint Graph

An online exam is to be given for a class at a university. Part of the design is:

❏ completed exams are to be dropped off in a file

❏ solutions are to be available electronically to students after they turn in
their exam, but not before

Policy: If a student appends to the exam dropoff file and reads the exam
solution file, then the time of the append must be earlier than the time of the
read.

Key: antecedent is blue ; consequent is red

time < $T

File:
name=“exam-dropoff”

File:
name=“exam-solution”

read:time=$T

append

User:
“student” ∈

roles

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

8 of 8

Future Work

Formally develop constraint language

❏ define system model formally

❏ fully define semantics of the language

❏ characterize the language’s ability to express policies

Policy violation detection

❏ design and implement policy enforcement mechanism for Java

Composition of policies

❏ investigate different ways to compose policies

• peer and prioritized policiesXC

