
C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

1 of 21

A Graph-based Approach to Specifying Security
Policies

James Hoagland

Karl Levitt

Raju Pandey

Computer Security Research Laboratory

Department of Computer Science

University of California, Davis

{hoagland,levitt,pandey}@cs.ucdavis.edu

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

2 of 21

Outline

❏ Introduction

❏ System model

❏ Graph-based constraint language

❏ Composing policies

❏ Future work

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

3 of 21

Security Policies

Security policies:

❏ define the security requirements for a system

❏ are the manifestations of the security needs of an organization

❏ indicate what security-relevant behavior is allowed to occur in certain
situations

❏ consist of a set of constraints

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

4 of 21

Approach

Goals of work:

❏ an easy way to formally specify security policies

• for enforcing policies in a uniform way

• to formally reason about policies

❏ to be able to specify many policies using this method

• for greater potential usefulness

Approach:

❏ specify policies in a formal language

❏ language is based on graphs

• nodes represent entities

• edges represent some relationship between entities

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

5 of 21

System Description

System model:

❏ object-oriented approach to describing the security-relevant behavior

❏ description consists of a set of classes for the types of entities in the
system

❏ classes contain:

• attributes

• methods

Example system description:

class Process { class File {

clearance: Level security_level: Level

pid: integer read(length:int)

spawn() write(data: string)

} }

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

6 of 21

System Instance

The system instance is the state of the system at some moment.

A system instance consists of:

❏ a set of class instances (objects) with attribute values

❏ a set of method invocations with parameter values

A more formal specification of the system is work in progress.

System instance graph:

❏ a way to present a system instance

❏ a node for each object

❏ an edge for each method invocation

• from node representing invoking object

• to node representing invoked object

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

7 of 21

System Instance Graph Example

Process:
clearance= S,
pid=1324

Process:
clearance=C,
pid=1654

Process:
clearance: C,
pid=1701

File:
security_level=T

File:
security_level=C

File:
security_level=U

read: length=17

read: length=234

read:length=3

write: data=”822”

write
: data=”1234”

spawn

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

8 of 21

Graph-based Approach

The graph-based approach to specifying security policies

❏ policies consist of a set of constraints

❏ each constraint is represented by a graph

❏ constraints get checked against the system

❏ the constraint graphs depict

• when the policies apply (the antecedent)

• what the requirement is (the consequent)

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

9 of 21

Antecedent and Consequent Semantics

When applying a policy to a system instance:

1. If the antecedent applies:

2. check the consequent to see if the policy was upheld

For the following:

❏ let S be a system instance

❏ let P be a policy in effect on that system

❏ let Ap(s) be true iff s satisfies the antecedent of p

❏ let Cp(s) be true iff s satisfies the consequent of p

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

10 of 21

Antecedent and Consequent Semantics [2]

❏ A policy is relevant to a system instance if the antecedent is satisfied.

• relevant(P,S) = Ap(S)

❏ A policy is upheld on a system instance if it is relevant to the instance
and if its consequent is satisfied.

• upheld(P,S) = relevant(P,S) ∧ CP(S) = AP(S) ∧ CP(S)

❏ A policy is not violated if it either is not relevant or is upheld.

• no_violation(P,S) = ¬relevant(P,S) ∨ upheld(P,S) =

¬AP(S) ∨ (AP(S) ∧ CP(S))= (¬AP(S) ∨ Ap(S)) ∧ (¬AP(S) ∨ CP(S))=

AP(S) ⇒ CP(S)

❏ A policy is considered to be violated if it is relevant but its consequent is
not satisfied.

• violation(P,S) = relevant(P,S) ∧ ¬CP(S) = ¬(¬AP(S) ∨ CP(S)) =

¬(AP(S) ⇒ CP(S)) = ¬no_violation(P,S)

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

11 of 21

Graph-based Constraint Language

Language has nodes and edges:

❏ nodes are a pattern for objects of a particular class

❏ edges are a pattern for method invocations

• source node is the invoking object

• destination node is the invoked object

Nodes and edges have annotations:

❏ antecedent and consequent boolean expressions

❏ these predicates further restrict what objects and method invocations
can match the constraint

❏ predates can refer to:

• object attribute values (nodes) or method parameter values (edges)

• variables (bound like in Prolog, on first use)

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

12 of 21

Graph-based Constraint Language [2]

Satisfying the antecedent results in bindings of:

❏ nodes to system instance objects

❏ edges to method invocations from the system instance

❏ variables to values

Formal semantics for evaluating antecedent and consequent expressions is
work in progress.

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

13 of 21

Example Policy Specification Using Graphs

Example: a process with a certain clearance level can only read a file with
lower or equal security level

Note:

❏ blue parts are the antecedent or trigger (when the policy applies)

❏ red parts are the consequent or requirement (what must then be the
case)

read

Process:
 clearance=$C security_level ≤ $C

File

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

14 of 21

Example Policy Applied

The policy applied to the example system graph: 3 applications, 1 violation

Process:
clearance=S,
pid=1324

Process:
clearance=C,
pid=1654

Process:
clearance=S,
pid=1701

File:
security_level=T

File:
security_level=C

File:
security_level=U

read: length=17

read: length=234

write: data=”822”
spawn

✖

✔

✔

①

②

③

write
: data=”1234”

read:length=3

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

15 of 21

Exam Scenario Constraint Graph

An online exam is to be given for a class at a university. Part of the design is:

❏ completed exams are to be dropped off in a file

❏ solutions are to be available electronically to students after they turn in
their exam, but not before

Policy: If a student appends to the exam dropoff file and reads the exam
solution file, then the time of the append must be earlier than the time of the
read.

Key: antecedent is blue ; consequent is red

time < $T

File:
name=“exam-dropoff”

File:
name=“exam-solution”

read:time=$T

append

User:
“student” ∈

roles

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

16 of 21

Chinese Wall A/C Constraint Graph

Chinese Wall: If a consultant has accessed protected data from two
companies, then one company cannot be in the same conflict of interest
class as the other.

Key: antecedent is blue ; consequent is red

access

Organization:
COI_class=$C

File: “CW” ∈
policies

owns

User:
“CW” ∈ policies

access

Organization

File: “CW”
∈ policies

owns

COI_class ≠
$C

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

17 of 21

Advantages to this Approach

It is expressive:

❏ language is independent of the semantics of the entities and
relationships

• nodes are independent of the specific entity

• edges can represent any relationship

It is formal:

❏ can reason about policies expressed in the language

❏ can enforce all policies in the same way

It is separate from the system model

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

18 of 21

Composing Policies

Composed policy:

❏ the policy consisting of the constraints enforced by two or more policies
that are in effect

❏ semantics of policy composition:

• a policy violation if and only if system instance violates any of the set
of policies

❏ S is a system instance and P is a set of policies:

• violation(P,S)= ∃ p ∈P: violation(p,S)

• no_violation(P,S)= ∀ p ∈P: no_violation(p,S)

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

19 of 21

Policy Contradiction

However, having a set of policies in effect may lead to contradictions.

❏ two policies contradict if, for some system instance, one indicates
violation and the other indicates no violation

❏ for policies expressed in graph language

• antecedents overlap, and

• consequents produce opposite results for some of the overlap

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

20 of 21

Future Work

Formally develop constraint language

❏ define system model formally

❏ fully define semantics of the language

❏ characterize the language’s ability to express policies

• compare the expressiveness with other methods of formally specifying
security policies

Policy violation detection

❏ design and implement policy enforcement mechanism for some
environment (Java?)

C o m p u t e r S e c u r i t y R e s e a r c h L a b o r a t o r y

James A. Hoagland
Department of Computer Science

University of California, Davis
hoagland@cs.ucdavis.edu

21 of 21

Future Work [2]

Composition of policies

❏ investigate different ways to compose policies

• composition semantics as presented

• prioritized policies

❏ for arbitrary policies specified in the graph constraint language,
determine

• whether two policies are equivalent

• whether one policy is subsumed by another

• under what circumstances the policies apply at the same time

• under what circumstances the policies conflict

