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Chapter 1

Overview of GriIDS

1.0.1 Types of Network Attack

Here we discuss examples of attacks which have interesting
large scale structure which GrIDS will detect.

A sweep involves a single host systematically contacting
many others in succession. Doorknob rattling is a sweep at-
tack that checks for poorly secured or configured hosts, (e.g.
checking for weak or default passwords). The Security Ad-
ministrator’s Tool for Analyzing Networks (SATAN) [?] is an
example of a publicly available sweeping tool that scans for
vulnerabilities. There are legitimate reasons for sweep activ-
ity (SNMP polling, centralized backups). However, legitimate
sweeps tend to be highly circumscribed and regular in their
nature; the source host, services used, hosts contacted, and
time of day may all be predictable.

Coordinated attacks are multi-step exploitations using par-
allel sessions where the division of steps between sessions is
designed to obscure the unified nature of the attack or to al-
low the attack to proceed more quickly. A simple example is
several simultaneous sweep attacks from multiple sources. In
another example, one user makes some high visibility attacks
on a set of military computers as a diversion while another
attacker breaks into one of the hosts and installs Trojan horse
software. The combined nature of the attack can be apparent
if the actual source of the attack is traced back to the same
person, or if features of the attacks are similar. To make this
inference, a mechanism must exist to correlate sessions across
several hosts.

Seely defines a worm as “a program that propagates it-
self across a network using resources on one machine to at-
tack other machines” [?]. The best known worm attack is
the Morris worm of 1988 which infected thousands of hosts
throughout the Internet, rendering them unusable. Worms
are evidenced by a large amount of traffic forming a tree-like
pattern and by similar activity occurring on hosts within this
tree. Intrusion detection systems may detect a worm by an-
alyzing the pattern of spread. It would be difficult to note
the presence of a worm simply by looking at a single host
since the larger, widespread nature of the attack would not
be apparent.

1.1 GrIDS—Graph-Based Intrusion

Detection System

We now present the design of GrIDS. We begin with a very
simplified version, and then explain more details.

1.1.1 A Simple Example

GrIDS will construct graphs which represent hosts and activ-
ity in a network. Let us take the tracking of a worm as an
example of building such an activity graph. In Figure 1.1, the
worm begins on host A, then initiates connections to hosts B
and C which cause them to be infected. The two connections
are reported to a GrIDS module, which creates a new graph
representing this activity and records when it occurred. If
enough time passes without further activity from hosts A, B,
or C, then the graph will be forgotten. However, if the worm
spreads quickly to hosts D and E, as in the figure, then this
new activity is added to the graph and the graph’s time stamp
is updated. This simple procedure assumes that activities be-
tween machines are related if they occur closely together in
time. Further activity by the worm results in an even larger
graph, as in Figure 1.2. In general, when a worm infects a
network protected by GrIDS, the fanning, tree-like structure
of the worm’s propagation will cause GrIDS to build a fan-
ning, tree-like graph. GrIDS evaluates this graph pattern as
a suspected worm. This evaluation can be performed, for ex-
ample, by counting the number of nodes and branches in the
graph. Counts over a threshold provoke GrIDS to report a
suspected worm.

Similarly, network sweeps and other patterns of abuse pro-
duce graphs of a certain shape, and GrIDS may be configured
to detect and report them.

In verifying our design concept, we built a basic implemen-
tation of this algorithm (which we christened FEarly Bird).
While it would be premature to quantitatively evaluate this
version, we did run the code for several weeks on our LAN
with TCP-wrapper data as input. We had no difficulty in
tuning the software to detect a worm or sweep attack within
seconds but produce only one or two false alarms per day.



Figure 1.1: The beginning of a worm graph
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Figure 1.2: A more extensive view of the same worm.

1.1.2 Graph Building

In the worm example of the last section, we detected the worm
based solely on the tree-like structure of the graph, and the
nodes and edges of the graph were included based purely on
time coincidence. GrIDS will use other information to de-
termine if network activities are related, such as whether the
traffic used the same destination ports or went to hosts of sim-
ilar operating systems. In addition to forming graphs from
network traffic reports, GrIDS will allow the nodes and edges
to be annotated with attributes. These provide supplemen-
tary information about the node (host) or edge (traffic) in
question. Hence, GrIDS will be able to detect worms based
on events at the hosts and properties of the traffic, in addition
to the shape of the graph. For example, if GrIDS were looking
for a particular kind of worm, one that transmitted password
files between hosts, then a worm-shaped graph would not be
reported until one or more of the links were annotated as
transmitting a password file.

Node and edge attributes may come from other IDSs, net-
work sniffers, or any monitor that is equipped with a filter to
send its output to GrIDS. A well defined syntax for reporting
to GrIDS will be available to GrIDS users who wish to write
their own filters. The GrIDS mechanisms make no specific
assumptions about the nature of attributes, and GrIDS will
be able to import externally written correlation functions.
This will allow users to put the general GrIDS mechanism to
work in many different ways. For example, thumbprinting [?]

mechanisms could be straightforwardly added in this manner.
This would allow GrIDS to trace intruders through multiple
connections.

Because GrIDS will search for numerous types of network
abuse, it will need to build numerous kinds of graphs. A single
graph containing all network activity would be too awkward
to analyze effectively. GrIDS will maintain multiple graph
spaces, where each graph space contains a number of graphs of
a single type. The “type” of graph represented is determined
by a set of rules which specify how graphs in that space are
built. Each graph space has its own such rule set. A rule set
only modifies the graphs in its own space, and has no effect
in other graph spaces.

When new node or link information is received by GrIDS,
the information is presented to each rule set, which determines
whether and how the information is incorporated into graphs
in the corresponding space. If the information is relevant
to that rule set, it may be added to one or more existing
graphs, cause multiple existing graphs to coalesce into a single
graph, or be used to create a new graph. After such a change
occurs in a graph space, the graphs in that space are analyzed
according to certain rules in the rule set to determine if they
are suspicious. If so, predetermined actions are taken, such
as reporting the graph to the SSO. GrIDS will provide an
interface for displaying such alerts.

GrIDS will have integrated capabilities to debug and trace
rule sets selectively to help the user understand the operations
of his graph rules. The user will be able to profile rule sets
to determine how much time each takes to execute. This
capability might show that certain rules are too expensive to
operate; they should either be optimized or discarded.

1.1.3 Aggregation

GrIDS will model an organization as a hierarchy of depart-
ments. In order to manage this, it will provide a drag and
drop interface which allows the hierarchy to be reconfigured
during operation. Each department in the hierarchy has a
GrIDS module of its own, which builds and evaluates graphs
of activity within that department. However, activity which
crosses departmental boundaries will be passed up to the next
level in the hierarchy for resolution. That level will build re-
duced graphs in which the nodes are entire subdepartments
rather than single hosts. More complex features of the full
graph can be preserved in the reduced graph by use of at-
tributes.

For example, consider the graph in Figure 1.3, which crosses
several departmental boundaries. This graph might well be
cause for suspicion taken as a whole. However, the graph is
not particularly suspicious in any one department.

At the next level in the departmental hierarchy, the reduced
graph (shown in Figure 1.4) will be seen. This graph is not
suspicious just by nature of its topology. However, attributes
of the individual subgraphs are passed up which allow the
higher level module to draw stronger conclusions about the
graph. For a simple example, each sub-department passes up



Figure 1.3: A graph amongst several departments. The

dashed lines are departmental boundaries.

Figure 1.4: The corresponding reduced graph.

the size of the subgraph it sees. Thus GrIDS can deduce that
the total graph has ten hosts in it. Similarly, the number of
branches and the depth of the graph can be computed. This
will be enough to render the graph suspicious.

Using this approach, GrIDS will be able to infer the sus-
picious nature of large graphs, while still reducing drastically
the amount of information which must be considered at the
top of the hierarchy. It is this that makes GrIDS a scalable
design.

We also use the hierarchy to manage the rule sets. A rule
set is specified at a particular node, and all the descendants
of that node must implement that rule set. Other parts of the
hierarchy will not share it. This eliminates potential ambigu-
ity between similar rules in different parts of the network.

1.1.4 Policy

GrIDS includes a policy language to express unacceptable
uses of computer networks. Policies are compiled into rule
sets which watch for network activity that violates the policy.
Hence, network abuses may be detected as the violation of
a user specified policy, rather than a user specified rule set.
Policies need not be written only for network abuses, though.
An organization could include a policy to prevent users from
accessing certain newsgroups during working hours, for exam-
ple. The motivation for including a policy language in GrIDS
is that it saves the user from having to write rule sets manu-
ally. In general, and even in the simple example below, rule
sets are more complicated to specify correctly than is a policy.
With a policy compiler, the user is brought one level higher
in the abstraction.

As an example, let us consider the simple policy “no more
than fifteen connections by a user at a time.” This policy could
be compiled to create a graph space where graphs are formed
from connections labelled by user. The rule set would spec-
ify that each new connection be added to an existing graph
made of connections by the same user, or create a new graph if
none exists. Hence, the graph space would contain one graph
per active user, and a violation would occur if any graph
contained more than 15 connections. The rule set would, of
course, need to specify how to analyze the graphs and re-
port violations; this will be developed automatically from the
policy.

We have analyzed a number of policies and shown that they
can be expressed in our graph rule syntax.

1.1.5 Limitations

GrIDS tackles some of the hard issues which need to be faced
for an intrusion detection system to operate on a large net-
work. A lot of our effort is going into making the aggregation
mechanism scalable, and allowing the system to be dynami-
cally configurable so that it is still manageable when deployed
on a large scale.

Nonetheless, we should be clear that the current version
of GrIDS is intended as a proof of concept rather than as
a finished system appropriate for immediate deployment in
mission-critical environments. Hence, we do not ensure the
integrity of communications between GrIDS modules, nor is
anything done to prevent an attacker from replacing parts of
GrIDS with malicious software of her own. The prototype will
not be resistant to denial of service attacks, disruptions of the
network time protocol, or faults in the networks or computers
on which it runs.

The limitations above could be straightforwardly addressed
in future versions of the system. A more fundamental limi-
tation of GrIDS is that it is oriented towards detecting large
scale attacks or violations of an explicit policy. It may not de-
tect intrusions which are small, slow, or both. If other, local,
IDS systems are installed, GrIDS can be used to present and
manage their conclusions, but it will not detect all intrusions



itself. We like to think of GrIDS as radar. It is still possible
for intruders to fly under the radar; however, it makes the
intruder’s task that much more difficult.



Chapter 2

The Graph Building Engine

2.1 Introduction

This chapter describes the GrIDS graph engine. This is the
piece of software which takes basic activity reports and con-
verts them into graphs. We first cover the purpose of the
engine, then discuss its operation in detail.

Goals

The overall purposes of the graph engine are to build graphs
of network activity and analyze them to see if they are sus-
picious. More specifically, the goals which we wish to achieve
by building these graphs include

2.1.1

e To detect worms and sweeps.
e To detect network access policy violations.

To trace the souce of activities across the network.

To add context to point detection reports.

To provide the SSO with a comprehensible way to visu-
alize the activities of particular users or hosts.

2.1.2 Overview

The graph engine is perhaps the most central piece of GrIDS.
Its task is to take in reports of network activity, build graphs
out of them, and report those graphs to other graph engines.
There is a hierarchy of such engines (the administration of
the hierarchy is described in more detail in chapter 6).

The graph engine has six inputs:

e Rules which describe how graphs should be built (sec-
tion 2.3).

e Functions which can be loaded into the engine at run-
time and then referred to in the rules (section 2.3.6).

e Reports of network activity and partial graphs in our
graph description language (chapter 3).

e Messages from the organizational hierarchy server which
instruct the engine on who it should report to, who is in
its department, etc. (see chapter 6).
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e Queries to see graphs matching a particular pattern (sec-
tion 2.7).

e Messages controlling the nature of debugging information
which is recorded (section 2.8).

It has four outputs:

e Reduced graphs of activity it has seen in its department
(section 2.4).

e Full graphs of activity supplied in response to a query
(section 2.7).

e Alerts sent to a user interface reporting suspicious graphs
(section 2.6).

e Debugging logs (section 2.8).

The algorithms used by the engine are described in sec-
tion 2.3.2, and then in more detail in section 2.10. Also rele-
vant is section 2.5 which describes initial sorting and consol-
idation of incoming reports.

2.2 Graphs

Graphs consist of nodes, edges, attributes of nodes, attributes
of edges, and global attributes of the graph as a whole. All
attributes consists of a pair (name,value). Names are identi-
fiers, while attribute values may either be scalars (in the Perl
sense of being interchangeably strings, numbers, or logical
values), sets of scalars, or ordered lists of scalars.

Reports to the graph engine are in the form of (parts of)
graphs, and the output from the graph engine is also in the
form of a graph. The language in which graphs are specified
is detailed in Chapter 3.

2.3 Graph Engine Rules

The graph engine takes as input a set of rules which tell it
how to build and analyze graphs. This section discusses the
syntax and semantics of those rules.



2.3.1 Rulesets

Not all types of network activity are related enough to belong
in the same graph. Independent graphs representing different
kinds of behavior may be easier to analyze than a single graph
containing several largely unrelated kinds of information.

For example, one user may wish to look for many telnet
connections being generated from a single host, while another
wishes to look for a series of rlogins from host to host to host.
If both kinds of connections (and perhaps other kinds as well)
are all contained in one graph, it will be difficult to detect the
relevant patterns. If, however, one graph contains only telnet
connections, and one contains only rlogin connections, then
the users merely need to look at the shape of their graphs to
determine if their criteria have been met (because they know
all edges in their graphs are of the type they are interested
in.)

For this reason, the graph engine is capable of maintain-
ing multiple graph spaces, where each graph space contains
only graphs of one type. The “type” of graph is specified by
the rules which dictate how graphs in the graph space are
built. In the example above, one graph space would have
rules that allowed only telnet connections to be added to its
graphs, where another graph space would allow only rlogin
connections to enter its graphs.

The rules in different rule sets do not interact at all. Each
operates on its own graphs and does not affect the graphs of
other rulesets.

2.3.2 An Overview of How the Rules Work

Reports come in as partial graphs. For each ruleset, the graph
engine maintains a set of existing graphs. In processing an
incoming report, the task of the engine is to determine which
graphs the incoming report should be combined with and how
the attributes should be updated. The rules are used in sev-
eral ways.

Firstly, there are preconditions for the ruleset. These deter-
mine whether the incoming report is of a type that is suitable
to be incorporated into this ruleset at all. If not, that is the
end of the application of the rules for this particular ruleset
for the report. There are two kinds of preconditions, node
preconditions which are applied at every node of the incom-
ing report, and edge preconditions which are applied at every
edge. If any node or edge passes the precondition, then the
report as a whole is deemed to pass the precondition.

Provided the precondition is met, the partial graph gets
developed into to full graph, with all the attributes associated
thereof. How this transformation takes place is indicated by
report rules, which dictate how the attributes of the graph,
nodes, and edges should be created based on the attributes
in the partial graph. Now that a full graph has been made
from a report, the next step is to possibly combine this new
graph with its peer graphs in the graph space.

An adjacency test is now applied between the new graph
and each of the other graphs constructed by the ruleset. The
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incoming graph will only be considered for incorporation into
graphs with which it has an overlap in at least one node or
edge. It will not be incorporated into graphs with which it is
wholly disjoint.

Next, there are conditions, which are used to determine
whether an incoming graph should be combined with some
particular existing graph with which it does have some over-
lap. If the report is an aggregated graph attribute report
from a subdepartments engine, then the graphs with which
to combine are determined as described in section 2.4. Oth-
erwise rules in the ruleset are used. These rules are again
specific to nodes or edges. They are applied on every node or
edge of the incoming report. Assuming that at least one of
these conditions evaluates to true, then the incoming report
will be incorporated into that existing graph. If no edge or
node condition is true, then the report will not be incorpo-
rated.

It may well be that the new graph can be incorporated with
several incoming graphs. If so, then the report will automat-
ically trigger those graphs and the new graph to combine in
a pairwise manner. A set of rules are concerned with how
to combine two graphs. The actual combining of nodes and
edges can be handled automatically, but the recomputation
of attributes is something which the user must specify; the
engine does not know how to compute the user’s attributes.
Firstly, there are rules which dictate how to combine global at-
tributes of the two graphs. Then there are rules which depend
on local attributes at the nodes and edges in the intersection
of the graphs. The local rules may make modifications to the
global attributes also, to account for global attributes which
depend on the graph topology and which cannot be computed
purely from global attributes of the combining graphs.

2.3.3 Graph Rules - A Simple Example

An example should serve to make the rule operation clearer.
The rules consist of a series of rulesets one after another. We
take the example of a ruleset which is intended just to detect
worms by aggregating connections together which occur close
together in time. It also includes any node reports which have
an alert attribute if they fall in the appropriate time frame.
The first line of a ruleset simply specifies that the text of
a new ruleset is beginning and what its name is. The second
specifies what length of a-buffer to use for this particular
ruleset. Here we have no buffer. The timeout line indicates
how long to wait since the last addition to the graph before
delete the graph (provided no new additions are made).

ruleset worm_detector;
buffer 0;

timeout 600;

Next we specify some macros (some text to replace by some
other text), which in this case are just constants.



macros { L=30; }

Next, there are report attribute declarations. These specify
the nature of any attributes which are going to be referred to
in the rules. In this case there will be ¢time and alert attributes
which are scalars. Any attributes which are not specified in
the ruleset, but show up in reports anyway, will simply be
ignored.

attribute declarations {
time scalar;
alert scalar;

3

A report arrives in the form of part of a graph. The first
thing that happens is that, for each ruleset, the report is
examined to determine if it is appropriate to incorporate in
that ruleset. For each node and edge in the incoming graph,
an appropriate node or edge precondition is evaluated. If the
precondition evaluates to true for any such node or edge, then
the report will be processed further against this ruleset.

In this case, the node precondition looks like the following;:

node precondition defined(new.node.time) &&
defined(new.node.alert);

The expression defined(new.node.time)
&& defined(new.node.alert) says that the incoming node
must have a time attribute and an alert attribute in order
for this condition to be true. Recall that GrIDS scalars are
derived from those of Perl — they evaluate to true if they exist
and are non-zero or non-empty strings and have an explicit
"undefined” value if no value has been set. Thus an isolated
node report will only be considered for incorporation into the
graphs of this ruleset if it has both of these attributes defined.
The new syntax specifies that it is the attribute of the incom-
ing node that is under consideration. In this case, there is no
ambiguity (in fact the “new.” can be omitted), but that will
not be true as we move along.

The precondition for edges to be considered is more lenient;
they simply have to have a time attribute:

edge precondition defined(new.edge.time);

So, if an incoming report has any node or edge which sat-
isfies the corresponding condition, then that report will be
incorporated into the graphs for the ruleset in some manner,
as deterined by later rules.

First, however, reports must be made into graphs. The
nodes and edges in the incoming reports appear in the result-
ing graph, but the attributes (except the auto-computed ones,
see section 2.3.4) must be computed explicitly in the follow-
ing rules. In these rules, new refers to attributes appearing
on the report and res refers to attributes being computed for
the graph, which is the default.
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report global rules {
res.global.alerts = {};
res.global.time = 0;

}

The “report global rules” are run first for a first cut at
computing the global graph attributes. In this example, the
alerts and time global attributes are initialized.

report node rules {

res.global.alerts = {res.global.alerts,
new.node.alert};

res.node.alerts = {new.node.alert};
res.global.time = max({res.global.time,
new.node.time});

res.node.time = new.node.time;

}

Next the node rules for making a report into a graph are run
for each of the nodes in the incoming report in some order.
This section has access to both the set of global attributes
and the attributes on the report node and update the “res”
global and the attributes on the corresponding node. The
above rules combine any alert attributes of the node with the
global alerts attribute, putting the result into the the global
alerts attribute; initialize the local alerts attribute; and does
something like what was done for the alerts attribute for the
time attribute, except that the maximum is kept around.

report edge rules {

res.global.alerts = {res.global.alerts,
new.edge.alert};

res.edge.alerts = {res.edge.alerts,
new.edge.alert};

res.global.time = max({res.global.time,
new.edge.time,new.source.time,new.dest.time}) ;
res.edge.time = max({new.edge.time,
new.source.time,new.dest.time});

}

These edge rules are like the above node rules except that
they are executed for each edge rather than each node.

There are a number of complications to understand about
the next parts of the rules. Two graphs are being consid-
ered for combination, and also the way that the attributes on
two graphs will combine into a final graph is being specified.
Graphs combine if they overlap in at least one node or edge
and if the combine rules evaluate to true for any node or edge
in the intersection of the graphs. Computations are only done
with the global attributes, and with the nodes and edges that
are in the overlap of two graphs.

The following three rule sections describe whether and how
to combine two adjacent graphs and are similar in structure
to report rules above. In the following rules, res will refer
to attributes being computed, while new refers to attributes
appearing on one of the graphs, and cur refers to attributes



on the other graph. If none of res, new, or cur is mentioned,
then the resulting graph is the one being referred to.

The first rules to appear specify how the global attributes of
two graphs should combine. This will be a first effort at com-
bination which can be modified by local rules further down.

global rules {
res.global.alerts
cur.global.alerts};

3

This says that the final global alerts attribute for a graph
will be the union of the existing alerts attribute for one graph,
together with any global alerts attribute in the other graph.
The notation { ... }isa set constructor, where sets inside
the constructor are flattened out. Set and list contructors are
described in more detail in section 2.3.5.

Next we have the rules which specify how nodes combine.
The order in which node and edge rules are evaluated is imple-
mentation dependent and should not be relied upon in writing
rules.

{new.global.alerts,

node rules {

res.node.combine
lempty ({new.node.alerts,cur.node.alerts}) &&
abs(cur.node.time - new.node.time) < L;

res.node.alerts {cur.node.alerts,

new.node.alerts};

res.node.time = max({cur.node.time,

new.node.timel);

The first rule shown concerns a special fictional attribute
combine. The value of this attribute will not appear in the
final graph, but rather is used in the computation of whether
the graphs should be combined at all. If the combine at-
tribute evaluates to true on any overlapping node or edge in
the graphs, then the graphs will in fact be coalesced. In the
particular case above, the condition for the graphs to com-
bine based on a particular node is basically that one of the
nodes has a non-empty alerts attributes, and that the time
attribute on the one node and the time attribute on the other
node are sufficiently close together (where sufficiently is here
defined by L which was earlier set to 30 seconds in a macro
— all GrIDS times are in seconds).

The remaining node rules specify, assuming that the graphs
are to combine at all, how attributes at nodes will combine.
For example, the alerts attribute at a node in the final graph
will be the union of the alerts attributes for the nodes and
the time attribute will be the latest of the time attribute on
the nodes. Not that “res.global” attributes could have been
updated in these rules if the rule writer so desired.

Now, we have a set of edge rules which have a similar func-
tion as the node rules.

edge rules {
res.edge.combine

abs(source.cur.time
- new.edge.time) < L;
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This first edge rule is the one that dictates whether com-
bination should be triggered by this rule or not. In this case,
the condition applied is that the time attribute on the incom-
ing edge must be sufficiently close to the time attribute on
the node which is the source of this particular edge in the
existing graph.

The remaining edge rules determine the value of local and
global attributes. These are all similar in nature to the node
attribute rules described above.

res.edge.alerts = {cur.edge.alerts,

new.edge.alerts};
res.edge.time
max ({cur.edge.time, new.edge.time});

}

Finally, we have the assessment rules which evaluate the
resulting graph and take appropriate actions. The result-
ing graph attributes may be referred to as “res” or without
such a prefix. Assessment rules may only refer to global at-
tributes. The actions on the right hand side can either be
calls to built-in or user defined functions or assignments to
global attributes. The alert function sends some text as an
alert to the user interfaces monitoring the engine and the re-
port_graph function sends some text and the current graph
to the user interfaces. The numberic argument to these func-
tions is an alert level. This is described in more detail in
section 2.6.

assessments {

lempty (global.alerts) ==
report_graph(2,"alerts found!");

global.nnodes > 7 ==> report_graph(3,

global.nnodes::" nodes in graph");
global.nedges > 12 ==> report_graph(2,
global.nedges::" edges in graph");
global.nnodes > 3 ==>
alert(1,"warning from "::global.ruleset);

global.nedges > 5 ==>
alert(1,"> 5 edges in graph");
}

The point worthy of note here is that a number of attributes
are being referred to which the earlier rules did not compute.
These are automatically computed attributes, which can be
referred to by the rules, but not assigned to. More detail on
these attributes can be found in section 2.3.4.

2.3.4 Auto-Computed Attributes

The following attributes are computed automatically by the
engine. They may be referred to by the rule writer, but are
not computed explicitly by the rules.

e Global Attributes



gids, a set of graph ids associated with this graph,
any of which can be used as a unique identifier.

ruleset, the name of the ruleset this graph is in.

nnodes, the total number of nodes in a graph.

nedges, the total number of edges in a graph.
e Node Attributes

— name, the name of this particular node (see chap-
ter 3).

e Edge Attributes

— source, the domains associated with the source of
this edge that are within this aggregator’s domain,
in a list starting with the domain for the source
within this aggregator’s domain and ending with the
host (see section 2.4).

— dest, same as source except pertaining to the desti-
nation side of the edge.

— id, a textual unique identifier for this edge.

2.3.5 Rule Primatives

The operations available in the engine rules are described in
this section. The following binary infix operations are avail-
able:

+, integer and floating point addition

—, integer and floating point subtraction
%, integer and floating point multiplication
/, floating point division

xx, floating point exponentiation

:1, string concatination

==, numeric equality

<, numeric less than

>, numeric greater than

<=, numeric less than or equal to

>=, numeric greater than or equal to

eq, string equality

It, string less than

gt, string greater than

ne, string inequality

&&, boolean short-circuit and

||, boolean short-circuit or
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e ::, string concatination

One unary operation is available, ! which is the boolean
”not” operation.

Set and list constructors are also available. The set con-
struction begins with a ’{’ and ends with a ’}’ and contains a
comma-seperated list of scalars, sets and lists. All the scalars
(including those in the sets and lists) become the elements of
the constructed set. For example, {”a”,{”b”,’c¢”}”} evaluates
to the set containing ”a”, ”b”, and ”¢”. This list constructor
is similar, but is surrounded by ’[’ and ’]’.

The following primative operations are availble using
function-call syntax:

e in_set(scalar,set), evaluates to true if the first argument
is contained in the set given in the second argument, false

otherwise, where string comparison is used

maz(set), evaluates to the numerically largest scalar in
the set

min(set), evaluates to the numerically smallest scalar in
the set

empty(set), evaluates to true if and only it the given set
is empty

on_list(scalar,list), evaluates to true if the first argument
is located somewhere on the list given in the second ar-
gument, false otherwise, where string comparison is used

head(list), evaluates to the first scalar on the list
last(list), evaluates to the last scalar on the list

sort(list), evaluates to a list containing the same scalars
as the given list, but in lexically sorted order

sort_numerically(list), evaluates to a list containing the
same scalars as the given list, but in numerically sorted
order

abs(scalar), evaluates to the absolute value of the given
number

alert(alert_level, message), sends an alert with the given
level, message, and no graph (see section 7?7 on alerts)

report_graph(alert_level, message), as with alert but sends
the current graph as well

2.3.6 Importing Functions into the Graph
Rules

The graph rules allow user supplied functions to be used in the
rules in addition to the built in functions provided by GrIDS.
This section describes the syntax and calling convention for
such functions.

Thee functions must be written in Perl. The arguments
supplied to the user defined function will be either GrIDS



scalars, sets of scalars, or lists of scalars. The user must
supply a function prototype and a perl implementation of the
function. The prototype is of the form:

)

list foo(set, scalar, scalar, list,

In addition to scalar, list, and set, “void” is a valid return
type from a function, indicating that no return value should
be expected. Providing prototypes enables GrIDS to check
the types of invocations of this function in the rules.

The conventions on arguments to and return values from
the function are as follows:

e GrIDS scalars become Perl scalars.
e GrIDS lists become references to Perl lists.

e GrIDS sets become references to Perl associative arrays.
Elements in the GrIDS set hash to a true value, while
elements not in the set hash to 0 or are not present in
the associative array.

The functions and prototypes are supplied to the engine in
one or more files. Each file has two parts:

e a prototype part, beginning with the start of the file and
ending with the start of the code section (or the end of
file), this section consists of some lines with prototypes
and some lines which are ignored. If a line begins with
“void”, “set”, “scalar”, or “list”, possibly preceded by a
“#” then the line is taken as a prototype.

a code part, starting with the first line of the file that
starts with a “sub”, the section consists of a set of perl
functions which implement the supplied functions. A
function begins with a line starting with a sub and ends
with the line before a line starting with a “sub” (or the
end of file).

The prototype of a function must precede its implementa-
tion, in whatever order the files are read in.

2.3.7 Rule Grammar

The grammar for the rule language is specified here.
<rules> => <ruleset>*

<ruleset> => ’ruleset’ <id> ’;
’buffer’ <constant> ’;’

’timeout’ <constant> ’;’

)

<macros> <declarations>
<preconditions> <report-rules>
<combine-rules> <assessments>

<macros> => macros ’{’ <macrolist> ’}’

<macrolist> => <macro> <macrolist>|A
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)=

<macro> => <id> <constant> ’;’

)

[0-91+ .
7\||7

[0-91+ |
[*\u] * )\ll)

<constant> => [0-9]+ |

’attribute declarations’
’{’ <decl-list> ’}’

<declarations> =>

<decl-list> => <declaration>;<decl-list>|\

<declaration> => <id> ’set’ | <id> ’list’ |

<id> ’scalar’
<preconditions> => <node-precondition>
<edge-precondition>
<node-precondition> => ’node precondition’
<expr>
<edge-precondition> => ’edge precondition’
<expr>

<report-rules> => <report-global>
<report-node> <report-edge>

<report-global> => ’report global rules’
’{’ <assignment>* ’}’
<report-node> => ’report node rules’
’{’ <assignment>* ’}’
<report-edge> => ’report edge rules’
’{’ <assignment>* ’}’

<combine-rules> => <global-rules> <node-rules>
<edge-rules>

<global-rules> => ’global rules’
’{’ <assignment>* ’}’

’node rules’
’{’ <assignment>* ’}’

<node-rules> =>

<edge-rules> => ’edge rules’
’{’ <assignment>* ’}’

<assignment> => <attribute> ’=’ <expr> ’;’

<assessments> => ’assessments’

’{’ <assessment>* ’}’

<assessment> => <expr> ’==>’ <actions> ’;’
A

<actions> => (<action> ’,’)* <action> |

<action> => <assignment> | <function-call>



<attribute> => <object-indic> ’.’ <id> | <id>

<object-indic> => <graph-indic> <domain-indic>

<graph-indic> => ’res.’ | ’cur.’ | ’new.’ | A

<domain-indic> => ’global’ | ’node’ | ’edge’ |
’source’ | ’dest’

<expr> => <attribute> | <constant> | !<expr>

<expr> <binary-op> <expr> |

<function-call> | ’(’ <expr> ’)’
'{’ <expr-list> ’}’ |
'[’ <expr-list> ’]’ |

<regex>

<regex> => <attribute>’="’ ’/’ <anything>* ’/’;

<expr-list> => <expr> | <expr> ’,’ <expr-list> | A

<binary—op> => ;+;|;_,|;*,|;/,|;**;|;==,|
’!!’|’&&’|’||’|’eq’|’ne’|’gt’|’1t’|
J<=J|J>=J|J<J|J>7

<id> => [A-Za-z_][A-Za-z0-9_]x*

<function-call> => <id> ’(’ <expr-list> ’)’

The above grammar is more permissive that the semantics
actually allow. For example, 'source’ and ’dest’ only have
meaning within edge rules although the grammar allows it
elsewhere as well. Node attributes should only be assigned to
inside node rules and edge attributes only within edge rules.

2.4 Aggregation of Graphs

2.4.1 Introduction to Aggregation

Graph engines build graphs of activities within a certain por-
tion of a network. Take as an example, the graph engine which
collects reports from all the machines within the Production
department, of ACME inc. These machines do not necessarily
fit physically on a single network, but from a human perspec-
tive, they all lie within the Production department.

Often, two machines within the Production department
may connect, as shown in Figure 2.1. The report of the con-
nection is seen by the engine in the production department.

Sometimes, a connection from within the department of
a particular graph engine is made to a host outside that
graph engine’s realm. For example, in Figure 2.2, a con-
nection within the Production department is made to a host
in the Management department. The management end of
the connection is clearly outside the realm of the Production
department’s graph engine, yet the connection is visible to
it. The Production department’s engine builds a graph as
shown in Figure 2.3, but the engine must also ”pass up” to
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Production

host1.production.ACME.com host2.production.ACME.com

Figure 2.1:
partment.

Two machines connecting in the production de-

Diagram of connection topology at the ACME level,
though no aggregator sees it quite this way.

Production

Management

host1.management. ACME.com

host1.production. ACME.com

host2.production. ACME.com

Figure 2.2: Connection from production to management.

a higher level engine (i.e., aggregator) this report that goes
outside its realm. To do this, engines must be able to rec-
ognize nodes that are within their department and nodes
that are not. Hence, engines keep record of all host and de-
partment names which lie within their realm. In this exam-
ple, the engine in the Production department sends a report
to the aggregator for ACME inc. because it does not rec-
ognize “hostl.management.ACME.com” as a department or
host that Production contains.

We assume that an engine for ACME exists and is running
to accept this report. It receives a report from Production
and sees that the connection occurs between two departments
both of which lie within ACME. (Similarly, the Management
department will have built its own graph and sent a report up
to ACME’s engine.) The ACME Inc. engine creates the graph
shown in Figure 2.4, showing the two departments as nodes
and the hosts within those departments that were involved as
attributes on the link.

Imagine now that the entire .com domain is watched by a
GrIDS engine. When a connection comes out of ACME Inc

Production

host1.production.ACME.com host1.management. ACME.com

host2.production.ACME.com

Figure 2.3: The production department graph engine’s view
of the same situation.



ACME

Source: host1 production ACME.com
Dest: host1.management ACME.com

Production Management

Figure 2.4: The view according to the engine for Acme Inc.

Diagram of connection topology at the .com
level, though no aggregator sees it quite thisway.

ACME Widgets

Management  Accounting Advertising Design

O

Management

Production Accounting

hostLproduction ACME.com hostLaccounting widgets com

Figure 2.5: Connection between ACME and Widgets.

to Widgets Inc, as shown in Figure 2.5, the ACME aggrega-
tor must “pass up” news of this to the .com engine, which
builds the graph shown in Figure 2.6. As in Figure 2.4, the
link is decorated with the names of the hosts involved in the
connection. But this time, there were also departments in-
volved which do not show up at the engine’s level. Hence,
they too are denoted on the link. In general, all departments
and hosts on the source and dest side that cannot be seen at
the engine’s level will be listed on the link, recursively.

More realistically, imagine that ACME is running GrIDS
and Widgets is also, but no overall .com GrIDS engine exists.
Also imagine that ACME and Widgets do not share GrIDS
data. (Perhaps they don’t trust each other.) When ACME’s
engine sees a connection going out to Widgets, it produces a
graph as shown in Figure 2.7. The graph shows that a con-
nection comes out of host1 within the Production department
(both of which are known) and goes to some unknown ma-
chine called hostl.accounting.widgets.com. Because, in this
example, there is no GrIDS engine running at a higher level
than ACME, the ACME engine does not aggregate the graph
shown in Figure 2.7 upwards.

2.4.2 Aggregating Attributes

Links in graphs show all hidden departments and hosts
involved in the link. This is done through the use of
the automatically computed ”source” and ”dest” link at-
tributes.  Having this information available allows the
rules to analyze the links more fully and make more pre-
cise decisions regarding them. For the same purpose, at-

.com

Source: Production::host1.production.ACME.com
Dest: Accounting::host1.accounting.widgets.com

ACME

O

Widgets

O

Figure 2.6: View at .com domain
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ACME

‘ Source: hostL. production. ACME.com

Production

hostL.accounting.widgets com

Figure 2.7: ACME view of connection to Widgets.

tributes of hidden departments and hosts may be included
in the link information, but only through explicit stor-
age of such attributes. Look again at Figure 2.5. When
the connection between hostl.production.ACME.com and
host1.accounting.widgets.com is seen by the .com engine (as-
suming again that it
exists), the node attributes of hostl.production. ACME.com
and hostl.accounting.widgets.com would not necessarily be
available, though they may be of interest.

2.4.3 When Reports Are Sent to the Parent
Engine

Whenever a graph engine makes a change to the global at-
tributes of a rule set, the new attributes for that space is
passed upwards (seen at the next level up as a node report.)
Whenever a connection is entered to a graph space which con-
tains one side in the realm of the engine and one side out of
the realm of the engine, a report of the connection is passed
upwards with the attributes present on the edge after the ex-
ecution of the rules. Both of these upward propagations are
on a per-ruleset basis, with the reports from a particular rule-
set only being applied to the same ruleset at the higher level.
Note that the realm of engine at the next level up may still
not contain the foreign host, in which case it can enter the
link into its graphs but then must pass it up as well.

2.4.4 Graph Aggregation Details

Recall that a department shows up as a node in the parent
domain’s aggregator and that rulesets may permit multiple
instances of nodes with the same name to appear in separate
graphs within a ruleset. Not only are graph attribute reports
destined for a particular ruleset in the parent, they are also,
in general, destined for a particular instance of a node.
Associated with each graph being constructed by the en-
gine is a graph identifier (gid) that is unique within the ruleset
for a department. Similarly, associated with each node that
represents a department is an instance identifier. The in-
stance id on a node is the same as the gid of the graph whose
global attributes correspond to the node’s attributes. Thus
there is a correspondence between a graph at a lower level
and a node at a higher level. When the global attributes on
a graph change, the updated attribute values are sent to the
particular node in the parent that corresponds to the graph
at lower department level (i.e. has the same name as that
of the department and has the instance id that is that same
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Figure 2.8: Graph Spaces At Host Level
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Figure 2.9:

Graph Spaces At Aggregated Level
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as the gid). The attributes that are sent up are constructed
into a graph (as per the rules in the ruleset) and merge (also
as per ruleset rules) with the graph containing that instance,
thereby (potentially) updating the attributes on a node and
graph.

However, as time proceeds, graphs can be combined at the
lower level, the graphs at the higher level can merge (thus
causing the department node instances to merge), and graphs
at either level may be inactive long enough to time out. There
is also the case of the first attribute report from a graph
and the case where the attribute report was rejected at the
higher level. These cases must be dealt with since there is no
longer a one-to-one correspondence between graphs and node
instances.

The way this is done is that when two graphs combine, the
resulting graph inherits the gids of each graph. Thus as time
goes along and graphs merge, the set of gids on a graph in-
clude all the gids of all the graphs that contributed to the
forming of that graph. When an attribute report is sent up,
it is sent to each of the node instances corresponding to the
gids on the graph. The graphs containing the instances are
used as a more restricted set of graphs to potentially combine
with than in the non-aggregated case (where any graphs in
the ruleset might combine, assuming they pass the adjacency
test). If the graphs containing those instances decide to ac-
cept the report (by merging with it), the usual thing happens
when reports are accepted into multiple graphs, that being
that all the graphs are combined. In the case where there are
no graphs containing any of the node instances to which the
report was sent (perhaps they all timed out), then the aggre-
gated report is treated like a normal (non-aggregated) report
and may be combined with any graph in the ruleset.

When instances of a node combine (because the graphs con-
taining the combined), the instance ids then correspond to the
same node as would be expected. In a sense, the instance ids
are inherited in much the same manner as gids were inherited
when graphs combined. In the case where graph reports from
a graph do not get incorporated into the graph that the last
report from the same graph did (due to restrictive combining
rules), the new graph formed will be the target of the next at-
tribute report from that graph. It should be noted here that
not all nodes have instance ids associated with them, just
those that correspond to departments (as opposed to hosts).

2.4.5 Graph Aggregation Example

An example should help make things clearer. First lets de-
fined some notation. Let a subscripted name of a department
or host that is capitalized denote a graph in that department
and one that is subscripted and in lower case denote a node in
the parents engine that corresponds to the department. The
subscripts on each of these are the id(s) associated with the
graph or node.

Consider a department A which is one of Department B’s
children. At some point there is a graph in A, A;, which cor-
responds to a node a; in one of B’s graphs, B;. Changes in
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Figure 2.10: Example graph aggregation attribute path (time
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Figure 2.11: Example graph aggregation attribute path (time
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Figure 2.12: Example graph aggregation attribute path (time
3)

Aq’s global attributes are sent to By since By contains aq. (see
Figure 2.10.) Now suppose a new graph A» is created. Sup-
pose that its graph attributes propagated upward and caused
a new graph By to be created within B’s engine. now changes
in A;’s global attributes are sent to B7 and changes in As’s
global attributes are sent to By as shown in Figure 2.11.

After a fashion, A; and A, merge forming A; ». Now all
attribute reports from A; » are sent to both B; and By. (see
Figure 2.12.) Later on Aj gets created and its initial at-
tributes propagating upwards (which don’t end up being di-
rected at an particular graph) is intermediately put in newly
created B12 which contains az. At the merge phase, B2
and By merge, forming By 12 which necessarily contains a
node az 3. As Figure 2.13 shows, at this point changes to
A1 2’s global attributes are still sent to both By and By 12
and changes to Ag’s attributes are sent to By 1. Thus note it
is possible for multiple graphs in a lower level to correspond
to the same higher level node.

2.5 Buffers

The GrIDS engine has three buffering mechanisms to serves
different ends:

e to sorts events, which could come in out of order, by
time,

e to remove redundant reports, and

e to adjust reports to be correct from a particular engine’s
point of view.
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Figure 2.13: Example graph aggregation attribute path (time
4)

All incoming reports are assumed to have a time attribute
which represents the true time at which the event to which
they refer occurred.

The « buffer sorts them by this attribute as much as pos-
sible, before giving them to the rest of the engine. As part of
any given ruleset, a lag time a > 0 is specified. The buffer
will correct any out of order events if they are not out by more
than «. Note that differences between the system clocks on
the source and engine hosts affects how well the buffer works.
If an incoming event is already out of date by more than «
on arrival, then it is handed off to the rest of the engine im-
mediately

The B buffer acts to coalesce multiple reports of the same
thing. Since the buffer stores things in time order, it can check
when an event is reported if it has been reported already in an
identical manner (by another sniffer, for instance) by looking
back in the buffer 8 time. If any entries match as being the
same (a best guess, subject to engine implementation details),
the "new” data is dropped. This is valuable for networks
ripe with sniffers, where each link activity may be reported
identically many times. If two data sources witness the same
thing, but report it differently, both reports will go into the
buffer to be fed to the rest of the engine.

It is beneficial to remove redundant reports since adding
identical reports into the engine causes the engine to work
multiple times. The 3 buffer reduces this by eliminating all
but one of the reports. However, the buffer is only 3 long, so
if some data source has enough lag time in reporting, this late
report may not be eliminated. For efficiency, 8 should be set
(according to a network’s behavior) to a value that accounts
for most lags, but does not make the buffer too long. The
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Figure 2.14: Connection between host a in department A and
host b in department B.

individual rulesets do not specify 3 like they do «. Instead,
it is specified for the graph engine as a control variable (see
section 2.9). Hence, each ruleset can be thought of as having
its own ordering buffer, but sharing a common redundancy
reducing buffer.

The v buffer serves to reconcile the hosts or departments
mentioned in reports with the departments in which they be-
long for the perspective of a particular engine, which operates
at a particular department. If a host or department is (recur-
sively) contained in the engine’s department, then its node
is renamed to be the appropriate child of the engine. The
source and dest auto-computed attributes are also updated.
The reason this step is needed is shown in Figure 2.14. There,
department A reports a connection from host a to host b as A
to b whereas department B would report the same connection
as being from a to B. From the point of view of department
R, the report should be from A to B. The engine could
have been designed to know all of its descendants, but this
might require updating several engines every time a host or
department changed departments. Instead, the gamma buffer
monitors incoming reports for the source and dest attributes
of edges to automatically discover its hierarchy. However, ini-
tially no information is known about the child corresponding
to a reported host or department. This issue is addressed
by buffering reports whose source and destination cannot be
immediately resolved to be descendants of the department.
They are kept in the buffer for up to v seconds. The engine
attempts to resolve the department for the nodes for up to y
seconds. If either the source or destination is a child of the
department, then the report is assumed to be fully resolved
and any remaining unresolved nodes are foreign to the de-
partment of the engine. Otherwise, the report is discarded
as not of interest for the department, since both hosts sides
are out of the scope of this department. Note that in the
example above, provided that the two reports are given to
the engine within v seconds of each other, then both reports
could be properly reconciled regardless of whether the engine
knew that host a was in department A and that host b was
in department B beforehand.

The order of the buffers for a new report is 3, 7, then a.

2.6 Alerts

When a ruleset detects what it considers to be suspicous ac-
tivity, it sends an alert message to the user interfaces that are
monitoring the engine (as determined by the organizational
heirarchy server, chapter 6). The rule primatives ”alert” and



"report_graph” are used to send these alerts. See the rule pri-
matives section (section 2.3.5) for details on these primatives.

Alerts alway contain the name of the ruleset that generated
it, a message, and an alert level. The message is some text to
indicate the the user what the alert is about. The alert level
is a number between 1 and 3 which the user interface uses
ot indicate the seriousness of the alert, with higher numbers
indicating more serious alerts. Alerts may contain the graph
corresponding to the generated alert in the standard GrIDS
format described in section 3.2.

Alerts are sent using the GrIDS common packet format
(chapter 3.1). The header used is ”alt” and the body contains
these elements in order: the ruleset name, the message, the
graph (or the empty sting if no graph is being sent, and the
alert level.

2.7 Query language

For increased usability, the graph engine accepts queries re-
garding its graphs. Queries select which graphs are to be
returned.

English examples of permitted contraints follow: ”Contains
lhotse”, ”contains a link between lhotse and denali”, ” within
ruleset1 containing lhotse with the attribute ‘compromised’.”

The engine checks each graph it contains against the list of
statements. If all the statements are true for a graph, then
that graph is returned.

For efficiency of checking, not all types of statements are
allowed. Refering to attributes are on some node or edge is
not allowed, because the engine would have to search through
each node/edge to check for a match and this might slow the
engine significantly if the engine contains many graphs of if
the graphs are large. However, once you have specified the
global attribute, or the attribute on a specific node/edge, you
may perform operations on that attribute that evaluate to
TRUE or FALSE. The statement is considered true if the
operation evaluated to true. Specific nodes are identified by
their “name” attribute. Edges are identified by their source
and destination. Note that this may be ambiguous.

The syntax of the contraints is the same as that of indi-
vidual ruleset rules except that attributes are specified with
different prefixes. Bare attributes (i.e. “a”) and attributes
prefixed with “global” indicate global attributes of the graph.
Those attributes of the form “<text>”.node.<id> refer to
attributes of the node with the name equal to the indi-
cated text. For example “lhotse.cs.ucdavis.edu”.node.time
refers to the “time” attribute on the node with attribute
“name” equal to lhotse.cs.ucdavis.edu. “lhotse.cs.ucdavis.edu
-> sierra.cs.ucdavis.edu” .edge.time refers to an edge from
“lhotse.cs.ucdavis.edu” to “sierra.cs.ucdavis.edu”. If there is
more than one edge, one is chosen in some unspecified man-
ner.

Queries corresponding to the above examples are:

defined("lhotse".node);
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defined("lhotse -> denali".edge) ;
defined("denali -> lhotse".edge);

ruleset eq "rulesetl" && defined("lhotse".node)
&& "lhotse".node.comprimised;

GrIDS packets coming into the engine with the header ”q”
are interpreted as queries with the text of the query in the
body.

The engine returns the query results to the querier in the
GrIDS common packet format with the header ”qr”. The re-
turn value of a query is a composite graph of all graphs which
passed the tests (see chapter 3.1). The following grammar is
used for the list:

<graph-list> -> [<graph> <graph-list>]

where graph is defined in the communications protocol
grammer.

2.8 Debugging

[This section is inconsistant and needs to be revised.]

2.8.1 Introduction To Log Files

When a graph engine is first brought online and starts receiv-
ing reports, it starts numbering the reports. (The numbers
are unique across invocations. How this is done is indicated
later.) All reports it receives are numbered roughly in order
of when the graph engine received them. It isn’t important
to have them ordered exactly right, only that the number be
unique for each report. We will call this the “report num-
ber.” A file is maintained which records all reports the engine
receives, with the associated report number and the time of
receipt. This file is called the Global Log File (GLF) and is
described in more detail later.

For each ruleset, a file recording activity within that ruleset
is maintained. When a ruleset is first stated, a file for it is
opened and the name of the ruleset listed at the top of the file
along with the ruleset. Then, every time a report is passed to
the ruleset from the buffer, the number of the report goes into
this ruleset’s file along with whether it was accepted by the
prequalifying rules. These files are called Ruleset Log Files
(RLFs), and are described in more detail later.

The log file format for both the engine log and the ruleset
are similar in syntax. All numbers in the log files are strings
so the they can be easily read by humans and no byte-ordering
confusion is caused. All times are in Unix time. All distinct
recorded items in the logs are separated by at least a new-
line (i.e. ”\n”). Lines starting with a ’#’ and blank lines
are ignored. Control variable values are stored in a ”vari-
able=value” format.



2.8.2 Reconstructing Behavior From Log
Files

Between the data stored in the engine’s GLF and its RLFs,
enough information is available to reconstruct how an engine’s
rulesets operated. Since a graph engine equipped with a rule-
set operates deterministically, a debugger, equipped with an
engine and a copy of the rules being debugged, could dump
in reports one at a time to the ruleset and watch the graph
grow. All reports accepted and rejected are known, as well as
the order in which the graph engine saw them. Exactly how
a debugging utility would present this information to a user
is not relevant to the graph engine design.

Changes to control variables, as well a their initial values,
for both the engine as a whole and for particular rulesets
gets recorded in the respective log file. This ensures that the
settings are know for all times.

In addition to reports and control variable values, the “ver-
sion number” of the engine needs to be recorded in order to
ensure the proper engine is run for replay purposes. How-
ever, as the code for the engine may consist of several files, a
single version number will not suffice. Thus let the “version
number” of the graph be an (unordered) list of files and their
respective individual version numbers. The files are those
that make up the engine. To run the appropriate engine, the
stand-alone debugger can check out the proper versions of the
various files and use those.

It is desirable to be able to be able to retain the log from
multiple invocations of the engine. Furthermore it is desir-
able to be able to look at the log that was in effect at a given
time (if any was). These points motivate the following log-
ging architecture. A global file is maintained recording engine
start-ups, shut-downs and where the logs for the invocation
are stored. Lines in the file beginning with ”>" are produced
on the start up of the graph engine and consist of the time,
and a unique identifier for this invocation (perhaps a nonce).
Lines starting with ”<” are produced when the graph en-
gine shuts down (at least when it shuts down gracefully) and
indicates the time.

The identifier for the invocation serves as the name of a
subdirectory in which the logs for the invocation are kept.
Within that directory, the log for the engine is called ”"en-
gine.log” and the log for ruleset RS is called ”ruleset.RS.log”,
for all rulesets.

2.8.3 Global Log File

The Global Log File (GLF) records reports to the graph en-
gine across multiple invocations of the engine, records the
version of the engine running and notes each time the en-
gine is restarted, and records the control variables upon each
startup of the engine as well as the midstream changes to
them. There is only one GLF per aggregator dynasty (an
aggregator and all successive aggregators which replace it).
As individually mentioned above, three types of records
are stored in the global log file are the engine version num-
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ber, control variable values, and reports. The format for the
version number is exemplified by:

version {
filel.pl: 1.8
file2.pl: 1.3
file3.pl: 1.5
Reports are recorded as the report number, the time, and
the report (in the format used for communications), in that

order, separated by spaces and tabs.
The grammar for the GLF follows:

<global-log-file> -> <GLF-event-list> <EOF>

<GLF-event-list> -> [<GLF-event> "\n"
<GLF-event-1list>]

<GLF-event> -> <startup>|<shutdown> |
<control-change> |<report> |
<comment>|<ruleset-change>

<startup> -> ">" <time> ";" <invocation-number>
"\n" <version-and-control>

<shutdown> -> "<" <time> ";"
<invocation-number> "\n"

<version-and-control> -> "version {\n" <file-list>
"Fncontrol {\n"
<control-list> "}\n"

<file-list> -> [<file-id> <file-list>]

<file-id> -> <filename> ": "

<revision-number> "\n"

<control-list> -> [<control-value>
<control-list>]

<control-value> -> <id> "=" <id> "\n"

<control-change> -> "change: " <control-value>
<ruleset-change> -> "ruleset change: " <control-value>
<report> -> <report-number> " " <time> " " <graph>

<comment> —-> "#" <text> "\n"

<EOQOF> =
<filename>

end of file marker
any legal unix file name
ascii representation of

<revision-number>



a floating point number

<time> = ascii representation of a
unix time stamp
<id> = the same as in communication

protocol grammar

ascii representation of

a positive integer

the same as in communication
protocol grammar

ascii representation of

a positive integer

any string not containing a
newline or EOF

<report-number> =
<graph> =
<invocation-number> =

<text> =

< startup > is entered into the file each time the aggre-
gator is (re)started. It stores the revision of the aggregator
and the control variables under which it is running. This
should only be entered upon start-ups, even though it may
be tempting to dump this information periodically. (Use
< control — change > if control variables change.) The first
report seen by the aggregator is implicit in the file, as it is
the first report logged after the < startup > is logged.

< shutdown > is entered each time the aggregator shuts
down gracefully. The time of shutdown is noted. The last
report seen by the aggregator is implicit in the file, as it is the
last one logged before the < shutdown > is logged. (Since
the engine is doing the logging, if something is logged, the
engine saw it.)

< control — change > is entered each time a running ag-
gregator has its control variables changed on the fly. It stores
the new values of the changed variables.

< report > is entered each time a network report (graph)
is received by the engine. It numbers and stores the report
verbatim (without parsing the < graph >).

< control — value > shows a control variable and its as-
signed value. The < id > terminal (as defined in the commu-
nications protocol) allows for complex terms, but should not
be used here for more than a variable name and a perl vari-
able value. For the procedure to convert perl variable values
to strings, see the communications protocol section.

< revision — number > is the revision number (as used by
RCS) associated with the file name that procedes it.

< report —number > is a unique (across invocations of the
engine) number assigned to a report. By it, reports can be
uniquely identified. It is suggested (but not required) that
report numbers ”count” up by one as each report comes in,
and that report numbers are ordered according to the order
that the reports came in.

< invocation — number > is a unique number assigned to
an invocation of an engine. As an engine is shut down and
restarted, a new invocation number is assigned. Hence, and
invocation number may be associated with the code versions
and initial control variables of that invocation.

2.8.4 Ruleset Log File

When a ruleset starts up or debugging is turned on for a
ruleset, a dump of the current graph space is made to the
log file for the ruleset. Ocassionally checkpointing the graph
space, say every 1000 reports, would speed up debugging at-
tempts at reconstructing a graph at a certain point because
the reconstruction would never need to incorporate more than
1000 reports (for our example number). Also, sanity checks
could be performed by incorporating more than 1000 reports
and seeing if the periodic dumped graphs match those recon-
structed.

The five types of records stored in a Ruleset Log File are
the rules, dumps of graphs, control variable values, report
acceptance, and report rejection. The rules in the log are in
the format exemplified by:

ruleset worm_detector {
[text for rules here]

}

The graph dumps are stored in the format used for commu-
nications, which is, not coincidentally, similar in structure to
the above. Report acceptance is indicated by simply record-
ing the report number and report rejection is indicated by a
I’ immediately followed by the report number.

The grammar for the RLF follows:

<ruleset-log-file> -> <RLF-event-list> <EOF>

<RLF-event-list> -> [<RLF-event> "\n"
<RLF-event-list>]

<RLF-event> -> <ruleset>|<acceptance>|<rejectance>|
<graphspace>|<control-list>

<acceptance> -> <report-number>
<rejectance> ->

"!I" <report-number>

"graphspace {\n" <graph-list>
n \n} \n"

<graphspace> ->

<graph-list> -> [<graph> <graph-list>]

<ruleset> = same as in engine grammar
definition

same as in GLF grammar
same as in communications
protocol grammar

same as in GLF grammar

<report-number> =
<graph>

<control-list> =

< ruleset > is entered into the file at the beginning of the
file, and then each time the ruleset changes.



< acceptance > is entered every time a report passes the
ruleset’s prequalifying rules. The number of the report is
indicated in < report — number >.

< rejectance > is entered every time a report does not pass
the ruleset’s prequalifying rules. The number of the rejected
report is indicated in < report — number >.

< graph—space > is entered at any time, though a periodic
spacing of graph-space dumps is recommended.

< control —list > is entered everytime one or more control
variables are changed. The new values of the variables are
indicated.

2.9 Controlling the Graph Engine

A running graph engine is controlled by the same mechanisms
which are used for data sources (see chapter 4). The state
variables which affect its operation include the following.

o [isten_udp: The UDP port on which the engine is listen-
ing.

o [isten_tcp: The TCP port on which the engine is listening.
e department: A department this engine is running for.

e parent_aggregator: The name or IP address and port for
the aggregator to send reduced graph reports to. The
format is name:port or ip-address:port or the empty string
if there is no parent.

e childrenname: True if the host or department with name
“name” is a child of this engine.

e rulesets{foo}: The graph engine rules for ruleset foo.

e alert_recipients{host:port}: True if and only if the
host/port is somewhere to send alerts to. The format
of the index is as in teh value of parent_aggregator.

e beta: The [ value to use for buffering (see section 2.5).

e debug{foo}: Set to true to start debugging for ruleset foo,
and to false to stop debugging.

2.10 The Graph Engine Algorithm

To document how the engine is implemented, we provide a
pseudocode version of it. The operation of the buffer and
logging is ignored here for simplicity.
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Read in rules and other parameters from configuration files
Set signal handlers to flag changes to parameters.
Initialize data structures

while(there is incoming information)
if (rules have changed)

dump graphs of changed rulesets
foreach (ruleset)

remove timed out graphs

unless(the preconditions applied to this report are true)
proceed to the next ruleset

contruct the new graph from the report as per the report rules
foreach (graph in the graph space)
unless(the new graph is adjacent to this graph)
next
if (the new graph corresponds to a global attribute report)

unless (this graph contains a corresponding node instance)
next

foreach (node and link of the incoming graph)
if (the combine attribute computes to true)

add graph to temporary list
foreach (graph in the temporary list)

coalesce the graph data-structures
coalesce the global attributes using global attribute rules
coalesce auto-computed global attributes
foreach (node and link in the overlap of the graphs)
apply the local coalescing rules
coalesce auto-computed attributes
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Chapter 3

Basic Communication Protocols

3.1 GrIDS common packet format

GrIDS uses a number of different kinds of network communi-
cation. These include:

e Reports of events or partial aggregations of events (sec-
tion 3.2).

Queries for graphs (section 2.7).

Get/Set messages to control the operation of GrIDS com-
ponents (chapter 4).

Messages to view or alter the organizational hierarchy
(chapter 6).

Others for sure. . .

This section describes aspects of GrIDS packets that are
common to all types of communication.

Firstly, all GrIDS communications do occur in discrete
packets. However, sometimes it is convenient to send GrIDS
packets over TCP, and sometimes it may be convenient to
send multiple GrIDS packets within a single UDP packet.
GrIDS conventions are as follows.

All GrIDS packets, UDP or TCP, contain a header and a
body. The header is any scalar, and the body is a list of
scalars. Lists of any length are allowed.

The packet head serves to identify the type of packet to
any GrIDS software that may receive it. The body holds
the actual information. The presently allowed values for the
header are shown in table 3.1. Headers other than this are
not allowed in GrIDS packets.

It is convenient at times to store packets in files or print
them out to display to humans. The convention adopted for
doing that here is that a sequence of GrIDS packets can be
stored in a file exactly as they are sent in a connection, ezxcept
that the separator between packets will be an extra newline
(character 10). This serves to make the files more readable.

A common function interface library is available to all
GrIDS components to handle packaging single or multiple
packets into the two formats described above. Corresponding
library calls unpack such packets.

Head | Meaning

g A Get request for a software control variable

gr A response to a Get request

s A Set request for a software control variable

sr A response to a Set request

gdv A Get request for a software control variable at a software 1
gdvr | A response to a gdv

sdv A Set request for a software control variable at a software n
sdvr | A response to an sdv

ghv A Get request for a software control variable on a host via .
ghvr | A response to a ghv

shv A Set request for a software control variable on a host via &
shvr | A response to a shv

r A graph language report.

a An upward aggregation report between engines.

q A query to the graph engine.

qr A response to a graph engine query.

alt An alert generated by a ruleset.

hvr A request for part of the organizational hierarchy.

hv A part of the organizational hierarchy.

hve An error in a hierarchy request.

hvu An invalidation of part of of the hierarchy.

htr Initiating a hierarchy transaction.
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Table 3.1: Allowable headers in GrIDS packets



3.2 The Graph Language

This section describes how graphs are represented in GrIDS
packets. From the GrIDS engine detailed design, reports from
data sources are either reports of links, or reports of attributes
of links or nodes. In some cases, we need to send graphs
instead of nodes and links. For example, first, when a user
wants to visualize the graphs currently kept by an aggregator.
Second, if we want to move an aggregator or to restart/reboot
an aggregator, the aggregator should be able to request the
current graphs from its child aggregators. Third, when an
aggregator sends multiple reports to its parent aggregator,
they can be combined and be sent as one report and hence
reducing the communication bandwidth required. This will
happen when, say, an event can trigger multiple rules to be
fired.

We use a modified DOT graph grammar to represent
graphs. Doing so allows us to use the same representation
for GrIDS components to communicate and for presenting
graphs to a human user. The graph grammar is shown in
Section 3.2.7.

3.2.1 Labeling Nodes and Edges

We use a fully qualified domain name (e.g.,

olympus.cs.ucdavis.edu.) or a unique department name to la-
bel a node. The former is used to name a host, and the latter
is used to name an internal node in the hierarchy. Fully qual-
ified domain names (FQDN) are used instead of IP addresses
because a host can have multiple IP addresses associated with
it. What we want is a uniform way to uniquely label a host.

We use a 6-tuple to uniquely identify a TCP connection —
source host, source port, destination host, destination port,
sequence number of the first SYN packet, start time. If a
connection is seen by multiple sniffers, they will report the
same sequence number associated with the first SYN packet
sent by the TCP client to the TCP server. Because TCP uses
a 32-bit field for sequence numbers, it will take a long time
before the same sequence number will be reused. Thus we
can use the sequence number to aggregate reports from dif-
ferent sniffers. Moreover, we will also use the start timestamp
of the TCP connection to differentiate among TCP connec-
tions that have the same sequence number. If some cases,
some fields might be missing. For instance, a TCP wrapper
does not know the source (i.e., remote) port number and the
TCP sequence number of a TCP connection. An aggregator
which receives reports with missing fields has to make some
“guesses”, say based on the timestamp, to combine the cor-
responding reports.

We use a 6-tuple to uniquely identify a UDP “connection”
— source host, source port, destination host, destination port,
start timestamp, and udpid. A udpid consists of the sniffer’s
id and a 16-bit integer. The latter is generated by a counter
which is incremented after each use. We use timestamp and
udpid to uniquely identify a UDP “connection”. By a UDP
“connection”, we refer to a sequence of UDP packets that be-
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long to the same transaction. It is left to the sniffer design
to determine how to group UDP packets into UDP “connec-
tions”. For instance, the time the packets are observed may
be used. If a sniffer observes a UDP packet and decides that
it belongs to an existing UDP “connection”, the timestamp
and the udpid of the first UDP packet is used to identify the
“connection”.

3.2.2 Reports Containing a Connection

The following is an example report sent by a data source to
an aggregator. The report shows a connection from helvellyn
to jaya with the three link attributes (stime, destination port,
and thumbprint).

digraph sniffer {

helvellyn.cs.ucdavis.edu -> jaya.cs.ucdavis.edu
[ctype="tcp", sport=1024, dport=25,
stime=33311222, seq=12345,
tpnt = "A487 239B FF72 D7A1"];
X

In order for an aggregator to report to its parent, the aggre-
gator also needs to specify the rule to which the connection
belongs. We use the graph id for this purpose. For example,
if the connection corresponds to a worm rule (worml), the
report is as follows:

digraph worml {

helvyllyn.cs.ucdavis.edu -> jaya.cs.ucdavis.edu
[ctype="tcp", sport=1024, dport=25,
stime=33311222, seq=12345,
tpnt="A487 239B FF72 D7A1"];
X

3.2.3 Reports Containing a Host

The following is an example report on host blanc.

digraph ex_mon {
blanc.cs.ucdavis.edu [ time=23472358,
alert="ex_monitor"];

}

3.2.4 Reports Containing a Graph

The following is an example report representing three concur-
rent connections from olympus to blanc, rainier, and sierra
and a global attribute, nedges. .

digraph worm2 {

nedges=3;

olympus.cs.ucdavis.edu -> blanc.cs.ucdavis.edu
[ctype="tcp", sport=1024, dport=25,



stime=823112009, seq=23232];
olympus.cs.ucdavis.edu -> rainier.cs.ucdavis.edu

[ctype="tcp", sport=1024, dport=25,

stime=823112020, seq=13131];
olympus.cs.ucdavis.edu -> sierra.cs.ucdavis.edu

[ctype="tcp", sport=1024, dport=25,

stime=823112031, seq=10101];

}

The next example shows how reports correspond to differ-
ent rules can be combined and sent as one report. Let us as-
sume that there is a network policy that prevents user C from
connecting from olympus to sierra. In the example, “compos-
ite” is used as the graph id of the entire graph, and graphs
corresponding to (possibly) different rules are represented as
subgraphs.

digraph composite {
subgraph worm2 {
olympus.cs.ucdavis.edu -> blanc.cs.ucdavis.edu
[ctype="tcp", sport=1024, dport=25,
stime=823112009, seq=23232];
olympus.cs.ucdavis.edu -> rainier.cs.ucdavis.edu
[ctype="tcp", sport=1024, dport=25,
stime=823112020, seq=13131];
olympus.cs.ucdavis.edu -> sierra.cs.ucdavis.edu
[ctype="tcp", sport=1024, dport=25,
stime=823112031, seq=10101];
3
subgraph conn_violation {
user = "C";
olympus.cs.ucdavis.edu -> sierra.cs.ucdavis.edu
[ctype="tcp", sport=1024, dport=25,
stime=823112031, seq=10101];
3
}

3.2.5 Representing Attributes on Nodes,
Edges and Graphs

As demonstrated above, the attributes associated with nodes
and edges and their corresponding values are stored as a
comma-seperted list within square brackets after the listing
of that node or edge. Graph attributes with their values are
listed at the top level of the “digraph” for the graph. In any
case, the basic format is “name=value”.

Regardless of the way a particular component represents
its attributes internally, they have a common denotation in
the Graph Language, refered to as flattened attribute format.
This denotation depends on the type of the attribute. Recall
that in GrIDS, attributes can be of type scalar, set of scalars,
or list or scalars. Scalars are represented as the ascii text as-
sociated with the scalar, i.e. “abc” or “2”. Sets are denoted
in accordance to the common mathematical convention of be-
ing scalars, comma-seperated and enclosed by curly braces,
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ie. “{a,3,b}” and “{}”. The order of the scalars, of course,
does not matter for sets. Lists are represented in a similar
fashion, but with square brackets surrounding the scalars, i.e.
“la,c,b]” and “[3]”. Whitespace surrounding scalars is signif-
icant in all three types.

However, this represetation can lead to ambiguity. Con-
sider for instance the set consisting of one member “a,b”. A
method is provided to encode scalars and the scalar elements
of sets and lists which might be misinterpreted. “%xx” is un-
derstood to stand for character whose hex representation of
the character’s ASCII value is xx, i.e. “%2¢” for a comma, so
the above mentioned set would be represented as “{a%2cb}”.
The characters that must be encoded to avoid confusion are:
“rsfl 4, “1, and “%”; however, any character may

) )
be encoded in this manner.

3.2.6 Quoting in the Graph Language

As in the DOT language, names of graphs, edges, nodes,
and attributes as well as attribute values can be put in-
side of double quotes to avoid confusion with syntactic con-
tructs of the language; however a backslash may not be used
to hide the following character. Instead, a more general
method is used, refered to as DOT-encoding, described a bit
later. The DOT documentation does not make it clear under
what circumstances a name or attribute value must be dou-
ble quoted. However it is prudent to quote strings contain-
ing non-alphanumeric characters and words such as “node”,
“edge”, and “digraph”.

DOT-encoding is similar to the encoding used for scalars
in the flattened-attribute format described above, however a
“4” is used instead of “%” as the delimited. That is, “#xx”
represents the character whose ASCII number is xx in hex-
adecimal. The characters that must be encoded in this man-
ner are “7”, “\“ “#” whitespace and non-printable char-
acters. Other characters may optionally be encoded in this
manner as well. Note that DOT-encoding is not an alter-
ative for flattened attribute encoding used for attribute val-
ues. DOT-encoding is done after this encoding.

Take, as an example, the this portion of a Graph Language
graph:

hello -> ‘‘good#32bye’’ [color=’’ruby’’,
“‘alerts’’=’’{‘‘tuesday’s#0agone’’ ,#23#83,7}];

That text represents an edge going from a node “hello”
to one called “good bye” with a scalar “color” attibute with
value “ruby” and an “alerts” attribute which is a set consist-
ing of the scalars: “tuesday’s\ngone” (where “\n” is the new-
line character), “#” concatinated with the characters whose
ascii value is 131 decimal, and the scalar number 7.

3.2.7 Graph Grammar

Non-terminals are enclosed by <>. The terminals [ and ] are
enclosed by a pair of double quotes. Graph ID’s, < id >,



is any alphanumeric string not beginning with a digit, but
possibly including underscores, or a number, or any DOT-
encoded double-quoted string. < edgeop > is — > in directed
graphs. < text > is some flattened-attribute-encoded text.

<graph> -> digraph <id> {<stmt-list>}
<stmt-list> -> [<stmt> ; <stmt-list>]
<stmt> -> <node-stmt>|<edge-stmt>|
<subgraph>|<attr-id>=<attr-value>
<node-stmt> -> <node-id>
[ "[" <attr-list> "]" ]
<edge-stmt> -> <node-id> <edgeop> <node-id>
[ "[" <attr-list> "]" 1]
<node-id> -> <fqdn> | <id>
<fqdn> -> <id>[.<fqdn>]
<attr-list> -> <attr-id>=<attr-val>
[, <attr-list>]
<attr-val> -> <text> | <set-val> | <list-val>
<set-val> -> "{" <text-list> "}"
<list-val> -> "[" <text-list> "]"
<text-list> -> | <text> ("," <text>)*
<node-list> -> [<node-stmt>], [<node-list>]
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Chapter 4

The Data Source Library
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Figure 4.1: Data flow through data source modules

A GrIDS data source is a module that provides information
to an aggregator. It may be such a thing as an IP sniffer or
a point intrusion detection system.

Ordinary data sources must engage in two distinct forms of
communication; they must provide an aggregator with graph
node and link attributes, and they must respond to configu-
ration requests. Attribute reports are sent by the data source
directly to the aggregator using a protocol based on TCP.
Configuration requests are sent by entities such as user inter-
faces using a protocol based on TCP. They are received by a
Module Controller on that host, which forwards them to the
appropriate data source module and then sends a response
back to the querying entity. The basic configuration is shown
in Figure XXXXXX.

Note that an Aggregator is, itself, a module that can be
reconfigured only via a Module Controller. In contrast, a
Software Manager is, itself, a module that is typically started
by a Module Controller, but that subsequently handles its
own configuration requests.

All data sources must have this functionality to work with
GrIDS. A “wrapper” program may be written to manage soft-
ware not written specifically for GrIDS. The wrapper must
manage the software appropriately and present a compliant
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interface to GrIDS.

Communication with User Inter-
face

4.1

A user interface may communicate via a Module Controller to
data source modules, to re-configure them or to query their
status. Each data source carries a set of control variables.
Requests from the user interface consist of reads or writes to
these variables. A single Module Controller per monitored
host manages all such requests.

4.1.1 Control Variables

The purpose of control variables is to exhibit and change the
state of a data source module. Data source modules normally
report all other information directly to their aggregators. Set-
ting a control variable might cause a module to take action
such as shutting itself down, or it might cause the Module
Controller to start an instance of some module.

Control variables are named. The names may be any valid
Perl variable name. Control variables may have a single value,
or they may be indexed (e.g., so that an Aggregator can be
dynamically reconfigured and given a new Ruleset.)

A set of standard control variable names will be defined.
These standard variables will serve identical functions on dif-
ferent kinds of data source modules.

All values are represented as strings. They may contain any
characters except 255. Data other than strings is represented
as strings. Numerical data is represented as printable ASCII.
Boolean data is represented by the strings “true” and “false”.
Lists or sets are represented by indexed arrays.

The set of control variables used by any particular module
is static during that module’s lifetime. It may not change
without introducing a new version of that module. However,
any variable name may be indexed by another string. The
value of a variable at an unset index is the empty string. A
variable index may be removed by setting the value of the
variable at that index to the empty string.



4.1.2 Module Controller

One Module Controller will run on each GrIDS host. The
Module Controller receives requests from Software Managers
through TCP connections. Each request to an ordinary data
source module on a host must go through the Module Con-
troller on that host. A request to a Module Controller must
specify 1) the module name of the data source module that
the request addresses; 2) the module’s version number [prob-
ably not checked by the initial implementation of the Module
Controller]; 3) the department_I D on whose behalf that mod-
ule runs; and 4) the command to be executed. Each request
addresses exactly one data source module. If a set of data
source modules must be addressed, a set of requests to indi-
vidual modules must be issued. To minimize the number of
processes, the Module Controller will also be responsible for
startup of the data source modules on the host.

4.1.3 Protocol
TCP

When a Software Manager wishes to communicate control
info with a data source, it opens a TCP connection to the
Module Controller residing on a known port on the appro-
priate host. We use TCP because we do not want to drop
any control packets, and we do not want to implement error
detection/correction manually on top of UDP.

Although establishing a TCP connection involves some
overhead, plus an open file handle, this is a small price to
pay for reliable control flow.

Because the organizational hierarchy will rarely change, it
may be ok for certain TCP connections to remain open in-
definitely, e.g., a TCP connection from a Module Controller
to the Software Manager of its own department. This allows
the TCP setup overhead to be amortized over multiple com-
mands.

The Data Source Architecture will support two basic types
of commands, to Get or Set certain State Variables.

Control variable files and operation

Each data source module will have at least 3 associated files: a
command file, a status/response file and an init file (it may be
convenient for this initialization file to have the same format
as a command file). Other associated files are optional (e.g.,
one or more logging files to which a module — such as an
Aggregator — may write debugging info.) All associated files
will comply with a standard file naming convention, to be
defined by the implementors.

When a module controller receives an incoming command,
it writes that to the command file of the appropriate data
source module, then sends that process a signal (eg, USR1).
Sometime after receiving that signal, a data source module
will read its command file, obey the command, then update
its status/response file. It then will delete its command file,
to signal that it has completed its update.
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Figure 4.2: Operation of module controller

When the module controller sees the command file has been
deleted, it then reads that status/response file and forwards
any relevant info back along its open TCP command connec-
tion. The module controller will also set a 2-second timeout
immediately after initially signalling a data source module. If
the operation does not complete before the timeout, then the
module controller will return an error message along the TCP
connection prior to (optionally) closing that connection.

Module Controllers and Data Source Modules are intended
to be single-tasking, i.e., each should process only one single
command request at a time. Thus, the existence of a com-
mand file for some Data Source Module indicates that that
Data Source Module is busy processing a request. A Module
Controller should not write a new command file until the old
one is deleted by the Data Source Module.

A status/response file will consist generally of State Vari-
ables and their values. It may be updated asynchronously by
its data source module, or synchronously in response to a par-
ticular command. Data source modules should lock their file
when writing it, so if a module controller receives a “GET-
asynch” command, it will not read a module’s status in the
midst of an update.

The operation of the module controller is shown in fig-
ure 4.2.

Packet Format

Data source packets use the general GrIDS Common Packet
Format (GCPF) described in chapter 3. The GCPF header
is either g for a GET request, s for a SET request, or gr and
sr for RESPONSES to GET and SET requests. The format
for the body of a command or response packet will contain
various fields, separated by a 255 character.

The body of a GET, SET, or RESPONSE packet will con-
tain the following fields:

e SET | GET | GET-asynch | OK | ERROR-text |
WARNING-text

e Data Source Name



Version # (minimum acceptable version; assume upward-
compatible) (RESPONSE packet may insert actual Ver-
sion #, or more likely may ignore this field entirely)
Department ID represented by that module.
StateVarName

Value

StateVarName

Value

StateVarName

Value

For GET requests, the Value fields may be empty, in which
case there may be adjacent 255 characters.

The file format of the command file and the status/response
file has this same form, although each character-255 separator
is followed by a newline for readability.

If a packet is a RESPONSE to a GET command, then all
the requested StateVarNames and corresponding Values will
be returned, unless there was an error outcome. If this is a
RESPONSE to a SET command, then none of the original
StateVarNames and corresponding Values will be returned,
unless an error occurred. In that case, the response packet
may include only those StateVar/Value pairs that help ex-
plain the error.

Note that an ERROR-tezt value (pertaining to the entire
RESPONSE) may appear in the initial field, in addition to
other ERROR-text fields which may appear as Values of Stat-
eVars. Possible text for ERROR fields include:

Failure,

Timeout,

No such data source,

No data source here representing specified Department,
Bad version number,

Set failed (invalid value),

Set failed (read-only variable),

Set/Get failed (no such StateVarName).

Set/Get failed (unauthorized access).
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4.1.4 Special Aliases & Subcommands to
Module Controller

Among the set of required StateVars, we have reserved one
special StateVar name as an alias, “ALL_STATEV ARS”.

(The initial implementation may ignore this feature.)

A command to GET ALL_STATEV ARS for some module
should return a RESPONSE containing the StateVarNames
and Values of all its scalar StateVars; for its indexed Stat-
eVars, only the indices themselves will be returned within a
single Value field, enclosed in squiggly brackets.

A command to GET Ruleset {ALL_.STATEV ARS} for
some module should return all Rulesets.

A command to
GET ALL.STATEVARS {ALL_.STATEV ARS} for some
module should generate an exhaustive enumeration of both
scalar and indexed StateVars.

By addressing a SET or GET command to the module con-
troller itself, certain subcommands can be represented.

A command to the Module
Controller to GET INVENTORY would cause the Mod-
ule Controller to read its T'ask F'ile and return a list of every
GrIDS module currently running on its host.

We anticipate implementing SET subcommands to START
or KILL (a particular module), and to add or delete
entries in our STARTUP_TASK FILE (via subcommands
TASK_FILE_ADD and TASK _FILE_DELETE).

We illustrate the packet format of a SET subcommand by
showing how a new instance of a module is invoked. To
STARTUP a new module, send a SET command to the ap-
propriate module controller. It should specify the following
named fields (as pseudo control variables) and values:

module == “module_controller” (Address it to the

module controller.)

e mc_command == “START”  (Tell module controller
its sub-command.)

e mod_module == Official/generic name of module you
want to start. This might not be same as its executable
pathname.

e mod_department == official dept_name the new module
represents.

mod_version (If you know it. Ignored in first implemen-
tation.)

report_to_host_port == (optional) A string of form
"host:port’ so the new module can locate its parent or
significant other. (Defaults to the host:port of the aggre-
gator for that module controller’s department.)

machine_acl == (optional) host:port of whoever is au-
thorized to issue subsequent SET/GET cmds to this
module. (Default is host:port of module controller’s par-
ent.)



e init_file_-name == (optional) init file for new module to
read.

e path_prefiz
new module.

(optional) filespace work area for the

If either of the last two fields are null, the module controller
will load them with whatever defaults (perhaps null) come
from its CONSTRAINT_TASK_FILE.

4.2 Data Source
Communication

To Aggregator

Reports from the data source modules are sent to the Ag-
gregators asynchronously via TCP. Each data source module
reports to one Aggregator, while an Aggregator gathers in-
formation from one or more data source modules.

The host name and port number of the appropriate Aggre-
gator are specified in a data source module’s state variables.
The state variables are set initially from the config file at the
startup time of the module.

Each data source module has a set of state variables that
control the amount and type of reports to be sent to the
Aggregator. For example, a Sniffer module might have a state
variable called FROM_HOST. When the variable is assigned
with the value of a certain host, say Rainier, the sniffer would
report only those connections initiated by Rainier.

The reports from data source modules are expressed in
DOT format. For example, a host is represented as a node,
a connection is represented as an edge, and attributes could
be attached to the nodes and edges. Refer to the “GrIDS
Communication Protocol Detailed Design” for details about
representing information in the DOT format. Reports are
passed as strings through the TCP connections.

4.3 Library Functions

A set of library functions will be developed for the User In-
terfaces, Module Controllers, Software Managers, and Data
Source Modules. Library functions for the User Interfaces
include,

o set_command(Module_Controller, command);

e get_command(Module_Controller, command) which re-
turns the information requested.

The library functions for the Module Controller include,

e write_command_ file
department_ID, command);

(data_source_module,

e write_config file (data_source_module, command);
e read_config file (data_source_module);

e read_status_response_file (data_source_module, depart-
ment_ID, StateVarNames);

The library functions for the data source module include,
e read_config file();

e sig_handler() which handles signals from the Module
Controller.

e read_command file() which returns the command read;

e write_status_responsefile (in addition to writing out the
Values of all StateVars, this will update the required
LAST UPDATE_TIME before writing it out);

e delete_.command_file() which indicates it has finished that
command;

A user communicates with the data sources modules using

the library functions as provided for the User Interface.

Each data source module should support a standard set of
“read-only” state variables that describe the execution of the
module. They include,

e running; which is either True or False;

e PID;

)

LAST_UPDATE_TIME;

module_name;
e version_number.
e department_ID;

Each data source module also must support a standard
set of required state variables to control the execution of
the data source module. They include,

e execute_config file;

e shutdown;

4.4 Detailed Design of Module Con-
troller

4.4.1 Startup and Trust Issues for Module

Controllers

At startup, the Module Controller reads its own config files
to determine:

e parent Software Manager (Host:Port)

e Aggregator to whom Data Source Modules report
(Host:Port of Aggregator itself)

e Organizational Hierarchy Server (Host:Port)

e timeout period (to wait for local modules to respond to
reconfigs)



Liveness Protocol between Module Controller and
Software Manager

The uptime/liveness protocol between a Module Controller
and its parent Software Manager may be initiated by either
party. Each party should identify itself, and assert its kin-
ship relationship with the other. This protocol may cause
a Module Controller to question its parentage (rightly or
wrongly). If a Module Controller believes an unauthorized
Software Manager parent is trying to claim it, or if its over-
tures are rejected by its purported parent, then the Mod-
ule Controller should contact the Organizational Hierarchy
Server. This method will handle cases where a host (and its
Module Controller) is down, and misses the notification that
it is being moved to a different department (Software Man-
ager), and henceforth should obey commands from a different
parent Software Manager.

Normally, the parent Software Manager will initiate the
uptime/liveness protocol by sending a request to GET
Module_Controller _Parent. The Module Controller —if alive
— should respond with the Value of its corresponding State-
Var, unless the request is from an unauthorized Host:Port,
in which it returns the appropriate ERROR message.

Upon startup, a Module Controller will wait to be con-
tacted by its parent Software Manager. If its parent
has not claimed it within some timeout, then the Mod-
ule Controller will initiate the uptime/liveness protocol, by
sending a RESPONSE to a nonexistent request to GET
Module_Controller _Parent. If the parent is alive and willing
to assert its kinship relationship, then it initiates the normal
uptime/liveness protocol. This second form of the protocol
makes sense in cases where a Module Controller wakes up
long after it has been abandoned by its former parent during
an organizational change (organizational downsizing leads to
family breakup :-)

4.4.2 Special Files for Module Controller

The Module Controller has 2 special config files: Its T'ask File
contains commands to invoke (potentially multiple) instances
of certain programs, with appropriate parameters (some of
those parms may be variables, e.g., all dumb Data Sources
must be given the Host:Port of this department’s Aggregator).
This config file is writable by the Module Controller, since
it represents a dynamically changing sequence of tasks the
Module Controller should execute each time it awakens.

The Module Controller can read — but not write — its
Constraint File, its second special config file. This file will
map the generic name of a GrIDS module (as it would appear
in a Task File) to a specific executable path.

The Constraint File may contain patterns that further
constrain what can appear in the T'ask File, e.g., command-
line parameters. In this manner, we can ensure that path-
names and parameters in the Constraint File comprise
“safe” commands, yet also allow the Module Controller to
dynamically invoke new instances of programs.
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(The Module Controller also needs a file to store the PID
and config-file path prefix corresponding to each GrIDS mod-
ule running on its host. It is not sufficient to store these in
RAM, because whenever the Module Controller awakens, it
must ascertain whether some of its previous children are still
alive, to avoid invoking redundant instances of those tasks.
This file should also store the department ID that “owns”
each task. This file may be a third file, or it may combined
with the T'ask File.)

The main loop of the Module Controller receives a
TCP connection and/or packet, decodes the incoming com-
mand, decides whether to allow access (based on the source
Host:Port), processes the command, and responds to the
sender.

4.4.3 Machine Access Control

Most commands are intended for “ordinary” Data Source
modules. By checking the Host:Port of an incoming TCP
connection, a Module Controller will allow only its own par-
ent Software Manager to access (via GET or SET) StateVars
on an ordinary module. (A Module Controller knows its par-
ent Software Manager via its own StateVars.) Two types of
special modules require different access control.

If a module is a Software Manager or an Aggregator, then
it may be running on behalf of another department — ie, not
the dept on whose host it is headquartered. In that case,
an Aggregator should trust commands from the Host:Port of
its own dept’s Software Manager, and a Software Manager
should trust commands from the Host:Port of its own Soft-
ware Manager parent. In general, these may be different from
the local Module Controller’s Software Manager parent.

Thus, each instance of an Aggregator or Software Manager
must be associated with an ACL specifying which Host:Port is
allowed to reconfigure or shut it down. (The initial implemen-
tation will allow an ACL to contain only a single Host:Port.
This should be sufficient.) The ACL will be implemented as
a StateVar for its corresponding module.

The Module Controller will check that ACL before allowing
Write access to an Aggregator. The Module Controller’s own
Software Manager parent is implicitly granted Read access
to every module running on that host. Commands to GET
or SET from other Host:Port origins are unauthorized, and
should generate an error message as a response.

4.4.4 Access Control for Special Modules

It is the responsibility of a Module Controller to perform
this enhanced access-control checking when it receives com-
mands directed at an Aggregator module. Thus, to perform
authorized reconfiguration of a resident-alien Aggregator, the
Module Controller must be able to read (and write) a file con-
taining the Aggregator’s ACL.

In contrast, since a Software Manager will reconfigure it-
self, it performs the access-control check itself (the Module
Controller is not involved in the protocol at all). Although



the local Module Controller does not need to read a resident-
alien Software Manager’s ACL file, it does need read access
to certain info in the Software Manager’s config file.

This is because a Module Controller’s own Software Man-
ager parent has the “right” to inventory all modules running
within its domain. Hence the Module Controller needs read
access to config files of resident-alien Aggregators and Soft-
ware Managers, so it can determine who they represent. (This
capability allows a Module Controller to return a helpful er-
ror message if a User Interface tries to delete its host, yet a
foreign Software Manager is headquartered on it.) Note that
a Module Controller’s own Software Manager parent is not
allowed write or shutdown access to a resident-alien Aggre-
gator or Software Manager that is already running.

Finally, who should be authorized to start a new Software
Manager or Aggregator dynamically? A Module Controller
should obey incoming commands from its own departmen-
tal Software Manager to start a new Aggregator or Software
Manager.

But after launch, write-access to a new Aggregator or
Software Manager should be allowed only from whatever
Host:Port was specified in its startup command (and stored
in its ACL file). In this manner, a native Software Manager
authorizes the residency of a foreign module. (By setting
strict constraints on the invocation parameters of a Software
Manager in the special config file, a department can prevent
certain foreign departments from headquartering their Soft-
ware Managers or Aggregators on its host.)

4.4.5 Module Controllers Should Use Stan-
dard Port

Humans will attempt to ensure that all Module Controllers
occupy the same known port on all hosts. This value will
be loaded by hand into each host node in the Organizational
Hierarchy file. When a Module Controller must occupy a
non-standard port, it is the responsibility of human opera-
tors manually to update the Organizational Hierarchy file to
reflect that situation.

4.4.6 Deleting Hosts Running Critical Mod-
ules

When a host is to be deleted, we already specified this op-
eration should fail (with an informative error message) if the
host is running any Aggregator or Software Manager. Thus,
the Module Controller must know every GrIDS module it is
running, including resident-aliens. Because the Module Con-
troller has implicit Read-access to resident-aliens’ config files,
this allows the Module Controller to inform a User Interface
whose Aggregator is causing an error in response to a host-
delete command.
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4.4.7 What Software is Executing?

The Module Controller will have a known set of StateVars.
A request, e.g., to GET INVENTORY, would cause the
Module Controller to read its T'ask File and return a list of
every GrIDS module currently running on its host.

4.4.8 Launching Recurring Modules

The Module Controller will have a known StateVar, e.g.,
CHRON_JOBS, which will be indexed by the frequency (in
minutes) at which to launch a task, and the particular task
to launch.

This will not be implemented initially!

4.5 Initialization of Modules

When launching a new task, the Module Controller will pass
it a command-line argument indicating the pathname of its
initialization/config file (which may or may not be unique to
this task), the path prefix of its unique control files, plus
optional additional args (e.g., department ID).

The new Module will construct the exact pathnames
of its unique control files (command, status_response, and
log_debug files) by appending a known set of suffixes to the
given prefix.



Chapter 5
Control of Software

5.1 Overview

This chapter addresses how a user can control and see what
GrIDS software is executing where in the distributed GrIDS
system. This chapter builds on the mechanisms described
in the data source library chapter (chapter 4), and is also
closely tied in with the organizational hierarchy (chapter 6).
In particular, the reader will need a sense of an organization
as a tree of departments, as described in that chapter, and
also in the Introduction (chapter 1).

When the user wants to see what software is executing
where, the GUI shows her a structured list of hosts and sub-
departments in the department, along with what software is
executing on the host/subdepartment and what software it
can run but is not currently running with options to turn on
or off the software.

If the user chooses to do so, then a request is sent to the
Module Controller on the host, which then starts up or turns
off the appropriate software. It is the process by which such
requests are handled that is described in this chapter.

The software that the user sees and controls through these
mechanisms includes:

e graph aggregators
e GrIDS monitoring devices i.e. sniffers, TCP wrappers
e point IDSs

e Departmental Software Managers (described below)

However, we use the same mechanisms to mediate access
to any variables that are settable via the data source library
mechanisms of chapter 4.

5.2 Software Managers

A software manager runs for each department, and handles
requests originating from the interfaces. These requests in-
volve starting up and shutting down software that is execut-
ing, returning lists of what software is and is not running, and
changing parameters of running software.

The software manager also keeps track of hosts that are
currently not responding to GrIDS messages. It knows not to
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include them in actions that are taken (to avoid delays while
the protocols time out), but it probes them on a regular basis
to see if they have come up again.

Software managers listen on a given port (which the orga-
nizational hierarchy software knows about) for requests. Note
that there may be more than one software manager running
on a given host if more than one domain is “headquartered”
there, so a single global port cannot be used.

5.3 Access Control

Certain transactions are initiated by a User Interface in direct
conversation with a Software Manager. In such cases, the
Software Manager mediates human access control.

In other cases, a Module Controller may be contacted by
some entity claiming to be a Software Manager, on behalf of
some unknown user. To ensure that such transactions are
authorized, the Module Controller performs machine access
control, based on the Host:Port of the alleged Software Man-
ager from whom it received the command.

5.3.1 User Access Control

The software manager for a department maintains a human
access control list, specifying the operations that can be
performed on its hosts and subdepartments by particular
users. (The initial implementation will not support explicit
revocation of some access capability.) Each entry of the list
is a pair as follows,
(user_id, Operation)

User_id uniquely identifies a GrIDS user. Operation is the
capability either to Read or to Write State Variables every-
where within the subtree rooted at that department.

The access control list of a software manager inherits the
access control lists from all its ancestor software managers in
the “Software Manager Hierarchy”. Hence, the access control
list of a software manger consists of two parts: the inher-
ited access control list (i_acl), and the local access control
list (I_acl). The relationship between the access control lists
of a software manager (P) and its immediate child software
manager (C) is shown as follows,

acl(C) =i_acl(P) Ul _acl(P) Ul_acl(C)



Any change to the acl of a software manager is propagated
to each of the i_acl of the descending software mangers. For
example, removing an entry in the [_acl of a software manager
results in removing that entry in the i_acl of all the descending
software managers ... unless that entry also was inherited by
the software manager from whose [_acl it was just removed.
(In this scheme, we do not allow children to revoke capabilities
they have inherited from their ancestors.)

5.3.2 Machine Access Control

(This section is replicated below.)

Most commands are intended for “ordinary” Data Source
modules. A Module Controller will allow only its own parent
Software Manager to access (via GET or SET) StateVars on
an ordinary module. But 2 types of special modules require
different, access control.

If a module is a Software Manager or an Aggregator, then
it may be running on behalf of another department — ie, not
the dept on whose host it is headquartered. In that case,
an Aggregator should trust commands from the Host:Port of
its own dept’s Software Manager, and a Software Manager
should trust commands from the Host:Port of its own Soft-
ware Manager parent. In general, these may be different from
the local Module Controller’s Software Manager parent.

Thus, each instance of an Aggregator or Software Manager
must be associated with an ACL specifying which Host:Port is
allowed to reconfigure or shut it down. (The initial implemen-
tation will allow an ACL to contain only a single Host:Port.
This should be sufficient.)

The Module Controller will check that ACL before allowing
Write access to an Aggregator. The Module Controller’s own
Software Manager parent is implicitly granted Read access
to every module running on that host.

5.4 Trust Issues for Software Man-
agers

Each Software Manager has its own self-settable StateVars
(ie, not accessible by the Module Controller):

parent Software Manager (Host:Port)

child Software Managers (list of Host:Port)

child Module Controllers (list of Host:Port)

(Host:Port) of Aggregator for our dept

(Host:Port) of Module Controller for the above Aggrega-
tor (might not be the same port on every host)

Inherited ACL (human IDs)
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Organizational Hierarchy Server (Host:Port)
its own department ID (unique)
Local ACL (human IDs)

timeout period (to wait for kids to reply to pings it issues
to implement a “host_status” command)

list of “pending” transactions it should attempt to com-
plete (Typically, these involve some of its former chil-
dren. Therefore it should explicitly store the relevant
Host:Ports here.)

A local config file contains those last 5 items for persistent
storage. On wakeup, a Software Manager needs to confirm
its place in the Organizational Hierarchy, and update any
cached info that may be stale. It should not risk passing on
any stale info to what may or may not be its children (hence
its config file only stores those last 5 items), nor should it
waste bandwidth by sending “unbuffered” info.

Therefore, a new Software Manager first contacts the Orga-
nizational Hierarchy Server and presents its department ID.
If the Software Manager has an invalid department ID, or if
somehow that department already has a different Software
Manager, then the Organizational Hierarchy Server tells the
new Software Manager to die. The Organizational Hierarchy
Server should make a note of strange incidents like this in its
own log file.

Otherwise, the Organizational Hierarchy Server tells the
new Software Manager its:

e parent Software Manager (Host:Port)

child Software Managers (list of Host:Port)
child Module Controllers (list of Host:Port)

(Host:Port) of Aggregator for our dept

(Host:Port) of Module Controller for the above Aggrega-
tor

The Software Manager then waits (this timeout should be
implemented as a separate State Variable) to be contacted by
its parent, from whom it receives a single catenation of its
ancestors’:

e Inherited ACL (human IDs)

It then contacts each child Software Manager, and propa-
gates both Local and Inherited ACLs. If some child Software
Managers do not respond soon enough (a different timeout
State Variable), it marks those child Software Managers as
presumed down, and appends those transactions to its “pend-
ing” file.

Note that upon wakeup, before a Software Manager can
connect to the Organizational Hierarchy Server, it might re-
ceive a connection from someone claiming to be its parent. In
this case, the Software Manager should accept an Inherited



ACL from the alleged parent. However, it should not pass
that data on to its own children until it can connect to the
Organizational Hierarchy Server and confirm the identity of
its alleged parent.

Next, the Software Manager performs an uptime/liveness
check of its child hosts. At some safe place in its main loop,
the Software Manager checks whether it has recently (yet an-
other timeout Variable) polled the Module Controller of each
child to see if it is alive. If appropriate, it polls them again. It
then attempts to process (ONE OF, OR ALL?) the “pending”
transactions stored in its file, if any of the intended recipients
are currently alive.

SCHEDULING ISSUES: PRIORITY, FAIRNESS,
INTERACTIVE RESPONSE 777

5.5 Trust Issues for Module Con-

trollers

(Much of this section should be replicated in the chapter on
Data Sources.)

At startup, the Module Controller reads its own config files
to determine:

e parent Software Manager (Host:Port)

e Aggregator to whom Data Source Modules report
(Host:Port of Aggregator itself)

e Organizational Hierarchy Server (Host:Port)

e timeout period (to wait for local modules to respond to
reconfigs)

The uptime/liveness protocol between a Module Controller
and its parent Software Manager may be initiated by either
party. Each party should identify itself, and assert its kin-
ship relationship with the other. This protocol may cause
a Module Controller to question its parentage (rightly or
wrongly). If a Module Controller believes an unauthorized
Software Manager parent is trying to claim it, or if its over-
tures are rejected by its purported parent, then the Mod-
ule Controller should contact the Organizational Hierarchy
Server. This method will handle cases where a host (and its
Module Controller) is down, and misses the notification that
it is being moved to a different department (Software Man-
ager), and henceforth should obey commands from a different
parent Software Manager.

The Module Controller has 2 special config files: One con-
tains commands to invoke (potentially multiple) instances of
certain programs, with appropriate parameters (some of those
parms may be variables, e.g., all dumb Data Sources must be
given the Host:Port of this department’s Aggregator). This
config file is writable by the Module Controller, since it rep-
resents a dynamically changing sequence of tasks the Module
Controller should execute each time it awakens.
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The Module Controller can read — but not write — its second
special config file. This file contains patterns that constrain
what can appear in the first special config file. In this manner,
we can ensure that pathnames and parameters in the first con-
fig file comprise “safe” commands, yet also allow the Module
Controller to dynamically invoke new instances of programs.

(The Module Controller also needs a file to store the PIDs
corresponding to running GrIDS programs. It is not sufficient
to store these in RAM, because whenever the Module Con-
troller awakens, it must ascertain whether some of its children
are still alive, to avoid invoking redundant instances of those
tasks. This file should also store the names/locations of the
config files corresponding to those tasks, and the department
ID that “owns” each task.)

Initially, a Module Controller might startup both Aggrega-
tors and Software Managers, and each will read config info
from its own file(s). From its file(s) or parms, an Aggregator
will learn the Host:Port of its parent Aggregator, and of its
departmental Software Manager. A Software Manager will
learn (via config files or parms) the ID of the department
it represents, and will contact the Organizational Hierarchy
Server to learn the Host:Port of its parent Software Manager.

Thus, initially, various Module Controllers will correctly
startup all Software Managers via this method.

The main loop of the Module Controller receives a TCP
connection, decodes the incoming command, decides whether
to allow access (based on the source Host:Port), processes the
command, responds to the sender, and closes the connection.

Most commands are intended for “ordinary” Data Source
modules. A Module Controller will allow only its own parent
Software Manager to access (via GET or SET) StateVars on
an ordinary module. But 2 types of special modules require
different access control.

If a module is a Software Manager or an Aggregator, then
it may be running on behalf of another department — ie, not
the dept on whose host it is headquartered. In that case,
an Aggregator should trust commands from the Host:Port of
its own dept’s Software Manager, and a Software Manager
should trust commands from the Host:Port of its own Soft-
ware Manager parent. In general, these may be different from
the local Module Controller’s Software Manager parent.

Thus, each instance of an Aggregator or Software Manager
must be associated with an ACL specifying which Host:Port is
allowed to reconfigure or shut it down. (The initial implemen-
tation will allow an ACL to contain only a single Host:Port.
This should be sufficient.)

The Module Controller will check that ACL before allowing
Write access to an Aggregator. The Module Controller’s own
Software Manager parent is implicitly granted Read access
to every module running on that host.

It is the responsibility of a Module Controller to perform
this enhanced access-control checking when it receives com-
mands directed at an Aggregator module. Thus, to perform
authorized reconfiguration of a resident-alien Aggregator, the
Module Controller must be able to read (and write) a file con-



taining the Aggregator’s ACL.

In contrast, since a Software Manager will reconfigure it-
self, it performs the access-control check itself (the Module
Controller is not involved in the protocol at all). Although
the local Module Controller does not need to read a resident-
alien Software Manager’s ACL file, it does need read access
to certain info in the Software Manager’s config file.

This is because a Module Controller’s own Software Man-
ager parent has the “right” to inventory all modules running
within its domain. Hence the Module Controller needs read
access to config files of resident-alien Aggregators and Soft-
ware Managers, so it can determine who they represent. (This
capability allows a Module Controller to return a helpful er-
ror message if a User Interface tries to delete its host, yet a
foreign Software Manager is headquartered on it.) Note that
a Module Controller’s own Software Manager parent is not
allowed write or shutdown access to a resident-alien Aggre-
gator or Software Manager that is already running.

[ This schema allows inconsistent reads under certain race
conditions, where a Module Controller is reading a resident-
alien Software Manager’s configuration while that Software
Manager is reconfiguring itself via its own TCP connection.
We believe this problem is minor, and can be ignored initially.
]

Finally, who should be authorized to start a new Software
Manager or Aggregator dynamically? A Module Controller
should obey incoming commands from its own departmen-
tal Software Manager to start a new Aggregator or Software
Manager. (These commands will be SETs directed at the
Module Controller itself, to which its parent Software Man-
ager implicitly has Write access. These commands will specify
the Host:Port for future access-control to that newly started
special module.) But after launch, write-access to a new Ag-
gregator or Software Manager should be allowed only from
whatever Host:Port was specified in its startup command (and
stored in its ACL file). In this manner, a native Software Man-
ager authorizes the residency of a foreign module. (By setting
strict constraints on the invocation parameters of a Software
Manager in the special config file, a department can prevent
certain foreign departments from headquartering their Soft-
ware Managers or Aggregators on its host.)

5.6 IMPLICATIONS for GET/SET
FORMAT

Because multiple instances of the “same” program (Aggrega-
tor or Software Manager) may be running on the same host,
how do we tell the Module Controller which instance of a
module to read or reconfigure?

This situation could arise for multiple Aggregators (GET
and SET), and for multiple Software Managers (GET only;
their reconfiguration does not involve the local Module Con-
troller.)

We could continue using the previous GET/SET format:
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SET-ting an Aggregator could distinguish between multiple
Aggregators via the HOST:PORT that initiated the reconfig
command. If the ACL for an Aggregator only has a single
value, then this method will work ok. GET commands could
be applied to all instances of the relevant module (either Ag-
gregators or Software managers).

Alternatively, the GET/SET command could specify the
port or the home department ID of a particular multi-
instance module. The Module Controller would need to learn
(presumably from the modules’ config files) which port or
home department ID corresponded to which instance (PID)
of a multi-instance module.

5.7 IMPLICATIONS for
Updating

Ruleset

For Software Manager of dept C to update C’s Aggregator, it
is not sufficient to know the Aggregator’s Host:Port (to which
GrIDS reports are sent by C’s children). Instead, to SET
StateVars on C’s Aggregator, C’s Software Manager needs
to know the Port for the Module Controller at which C’s
Aggregator resides. (Generally this Port will be the same on
all hosts ... but not necessarily, especially as we scale up!)

The Organizational Hierarchy schema already requires that
for each host, it stores the Port of its Module Controller.
Moreover, the initial wakeup procedure for a Software Man-
ager specifies that one item it will receive from the Orga-
nizational Hierarchy Server is the Host:Port of the Module
Controller that controls its Aggregator.

Since presumably Rulesets change more frequently than the
Organizational Hierarchy, the Software Manager should cache
that Host:Port, from its most recent dialog with the Organi-
zational Hierarchy Server.

Humans will attempt to ensure that all Module Controllers
occupy the same known port on all hosts. This value will
be loaded by hand into each host node in the Organizational
Hierarchy file. When a Module Controller must occupy a
non-standard port, it is the responsibility of human opera-
tors manually to update the Organizational Hierarchy file to
reflect that situation.

It is possible (though unlikely) that a Module Controller
may change Ports, eg, perhaps its host dies, and upon restart,
it awakens to find that its previous port has been taken by
some other process. Any Software Manager needing to con-
tact that Module Controller must assume it resides on the
previously-cached port, and send its message there. (The
node for a host at the Organizational Hierarchy server does
not carry info about which Aggregators may be running on
that host. So unless someone does an exhaustive search after
a human manually updates the port of a Module Controller,
the Organizational Hierarchy Server cannot know to update
a Software Manager if/when its Aggregator’s Module Con-
troller changes Ports.)

If the Software Manager fails to receive an ACK from



the Module Controller before the timeout, then the Software
Manager should contact the Organizational Hierarchy server
and ask for the correct (changed) Port for the Module Con-
troller at that host.

5.8 Deleting Hosts Running Critical
Modules

When a host is to be deleted, we already specified this op-
eration should fail (with an informative error message) if the
host is running any Aggregator or Software Manager. Thus,
the Module Controller must know every GrIDS module it is
running, including resident-aliens. Because the Module Con-
troller has implicit Read-access to resident-aliens’ config files,
this allows the Module Controller to inform a User Interface
whose Aggregator is causing an error in response to a host-
delete command.

5.9 Software Control Protocol

All of these packets use the GCPF described in chapter 3.
The reader will also need to be familiar with the get/set pro-
tocol described in chapter 4. All messages here use the field
separation scheme detailed there.

5.9.1 Set Host Variable (header shv)

This message tells the software manager to set a particular
variable on a particular host. The host must be a member of
the associated department. The fields are:

e Username

e Password

e Host Name

e Data Source Name

e Department ID on whose behalf the Data Source is run-
ning

o StateVarName
e Value
e StateVarName
e Value
o StateVarName
e Value

e StateVarName
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5.9.2 Get Host Variable (header ghv)

This message tells the software manager to return a particular
variable on a particular host. The fields are:

e Username

e Password

e Host Name

e Data Source Name

e Department ID on whose behalf the Data Source is run-
ning

o StateVarName
e Value
o StateVarName
e Value
o StateVarName
e Value

e StateVarName

5.9.3 Set Dept Variable (header sdv)

This message is used to tell the software manager to set vari-
ables that are handled in particular ways and need to be
updated across the whole department, such as rulesets and
access control variables. The fields are:

e Username

e Password

e StateVarName
e Value

o StateVarName
e Value

o StateVarName
e Value

e StateVarName



5.9.4 Get Dept Variable (header gdv)

This message is used to get summary information from the
software manager. For the specified variables, the returned
information will be a list of host-variable-value tuples which
give the value of the variable on every host in the depart-
ment. A null value for a variable name indicates that host is
presently down.

e Username

e Password

e StateVarName
e Value

e StateVarName
e Value

e StateVarName
e Value

e StateVarName



Chapter 6

The Organizational Hierarchy

6.1 Introduction

The organization is assumed to be divided up in a hierarchical
tree structure. Each internal node corresponds to a depart-
ment in the organization. Each leaf node corresponds to a
host/machine. Hosts are referred to by their fully qualified
DNS names, while departments have unique identifier strings.

Each department has an associated graph engine, and a
software manager. The engines use the departmental hierar-
chy as the means for aggregation of graphs, as described in
chapter 2. The software managers control software operation
in their particular department—their operation is detailed in
chapter 5.

This chapter deals in how the information about the orga-
nizational hierarchy is stored and how it can be dynamically
changed while staying in a consistent state.

6.2 An example

In order to make the overall scheme clearer to the reader, we
will step through a complete example of a transaction on the
hierarchy, showing how all the major elements of the system
are affected. In subsequent sections, protocol details will be
described.

Our scenario is depicted in figure 6.1. We begin with the
start up of the interface component. At the outset, the user
must supply the interface with the name of a department to
which he believes he has access, his user identifier, and his
credentials. In this case, let us suppose that he has access at
department, C, but not at B or A. Because of his access at C,
he will automatically have access in the subtree below this.

In the following, we use the notation S¢ to refer to the soft-
ware manager at C, Ac to refer to the aggregator at C, M¢
to refer to the module controller on the machine on which S¢
and A¢ are running, and similarly for the other departments.
The organizational hierarchy server is O, and the interface is
I.

I contacts O to request a copy of the hierarchy below C. O
contacts S¢ first and verifies that the user does have access at
C and his credentials match up. S¢ replies in the affirmative.
Then O supplies I with a copy of the hierarchy rooted at C.
I displays this on the user’s screen. The copy is marked with
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Interface ‘

OHS

Figure 6.1: An example hierarchy. Department G is about to
be moved from under department E to under department D.
An interface and the organizational hierarchy server are also
shown.



a version number which can be used to determine if it is still
valid. O also marks down that I has a copy of this part of
the hierarchy. If someone else were to change the hierarchy,
O would send a message to I telling it that its version was
out-of-date.

Suppose that, having inspected the hierarchy, the user de-
cides to move department G (and by implication, its subtree
also) to be under D instead of E. The first step is to send a
message to O. This message describes the planned action and
supplies the hierarchy version number on which the planned
action was based. O first determines if the planned action is
consistent with existing locks in the hierarchy and is based on
an up to date version of the hierarchy. If so, it locks the hi-
erarchy appropriately. Next, it contacts Sp and Sg to verify
that the user has appropriate permissions. If not, it releases
the locks. If any step has failed, an appropriate error message
is supplied to the user at this time. Assuming that the action
appears feasible, O gives permission for I to go ahead.

Now I contacts Sg and informs it that G is to be moved.
Assuming that Sg believes M, S and Ag to be up, it sends
messages to S¢ telling it that all rulesets inherited from E are
to be deleted. Sg also sets these rulesuts null via Mg. Sg
does the same recursively for its children, and then acknowl-
edges to Sg. Then S sends set messages to Mg which alter
where Sg and Ag send messages and where Mg believes its
parent to be. Once these actions have succeeded, Sg updates
its own data structures and acknowledges completion to I.

Next I contacts Sp and informs it of the change. Sp then
performs the following actions.

e Contacts Sg and Mg to give them the new rulesets.

e Sets the new value of the inherited access control list on
S which recursively does the same for the tree below it.

e Sets default policy variables via Mg and Sg, with Sg to
do the same below it.

e Acknowledges success to

When this is complete, I reports back to O that the action
is complete. O then removes appropriate locks on the hierar-
chy. Finally, O contacts any interfaces that might have been
affected and tells them that their information is invalid.

Note that this procedure causes problems if any of the crit-
ical actors dies in the middle.

6.3 The Organizational Hierarchy

Server

The organizational hierarchy server is designed so that it can
be shut down and then restarted without any change in the
operation of the hierarchy (though no transactions or new
viewing will be possible during the shutdown). Transactions
in progress before the shutdown must be able to run to com-
pletion after the shutdown. Hence, it is necessary for the

43

server to store its state on shutdown and read it again on
startup.

The structure of the organizational hierarchy will be stored
in a file, represented in modified DOT format. For each inter-
nal node in the organizational hierarchy, the file will contain:

e is node a department or a host (zero children is not a
reliable indicator)

e department name (must enforce uniqueness of dept
name)

e location of this department’s aggregator (host:port)

e this node’s parent department ID (unless it’s the root
node)

e hosts directly attached to this department (ID list)
e this node’s child departments (ID list)

e location of Software Manager for this node (host:port)
(this allows Software Managers to be sparsely distributed
within the tree, vs. mapping 1-1 to departmental nodes)

For each host node in the organizational hierarchy, the file
will contain:

e is node a department or a host (zero children is not a
reliable indicator)

e host name
e this node’s parent department name

e location (port) of Module Controller (omit if there is a
universal port number for it)

The syntax of the file is as follows,

<0Organizational-Hierarchy-Structure> ::= <node>

<node> ::= [<host-node>; | <dept-node>;] [<node>]

<host-node> ::= ‘host, ’ <host-name> °,’
<dept-name> ¢,’ <MC-port>

<host-name> ::= <alphanumeric-string>

<dept-name> ::= <alphanumeric-string>

<MC-port> ::= <port-number>

<dept-node> ::= ‘dept, ’ <dept-name> ¢,’
<parent-dept-name> ¢,’ <host-list>
¢,? <child-dept-name-list> ¢,’
<software-manager> ¢,’
<aggregator>

<parent-dept-name> ::= ‘null’ | <dept-name>



<host-list> ::= ‘{’ [<hosts>] ‘}’

<hosts> ::= <host-name> [‘,’ <hosts>]

<child-dept-name-list> ::
‘{’ [<child-dept-names>] ‘}’

<child-dept-names> ::= <dept-name>

[¢,’” <child-dept-names>]

<software-manager> ::= <host-name> ’:

)

<aggregator> ::= <host-name> :’ <port-number>

<port-number> ::= <numerical-string>

<alphanumeric-string> ::= [A-Za-z0-9._]

<numerical-string> ::= [0-9]

We expect graph rule sets (and/or policies) to change fairly
often. Thus we decided that rule sets will not be stored in
this central Organizational Hierarchy file.

All accesses to this file will be channeled through an Orga-
nizational Server, to assure coherent updates and consistent
views. This Server will constrain access to the file by imple-
menting both read locks and write locks on the entire file.
However, to permit finer locking granularity in the future,
our protocol design will allow locks to be specified on partic-
ular departmental subtrees. If and when the Server becomes
a bottleneck (e.g., when we scale beyond some point), then
the Server implementation can be upgraded to allow more
concurrent access, without modifying the protocol.

Also, note that Write locks on subtrees might be used to
indicate that a Software Manager has “checked out” a partic-
ular subtree, thus distributing the org hierarchy for arbitrar-
ily long periods. Making those checkout periods permanent
might defuse various real-world departments’ concerns about
deployment and access control (e.g., they may not want others
to read names of all their hosts).

6.4 Organizational Hierarchy Mes-
sages

6.4.1 Introduction

A number of messages are sent to the organizational hierarchy
server, and they are described in this section. All these mes-
sages are GrIDS packets and use the GrIDS Common Packet
Format (GCPF) defined in section 3.1.

All transactions follow a roughly similar pattern (a detailed
description of the case of a move can be found in section 6.2).
There is an initial request to change the hierarchy from an

> <port-number>

44

term term I term ItermI term Iterm Iterm

Figure 6.2: The hierarchy packet format. The separator, char-
acter 254, is shown in black.

interface to the OHS. This has a header ht¢r (hierarchy trans-
action request). The hierarchy server checks the feasibility of
the request, and then responds with a message having a hip
(hierarchy transaction permission) header which authorizes
the interface to go ahead with the change. Alternatively, an
hve message may indicate an error. After the change has
been completed, the interface informs the hierarchy server of
that fact with a message having a header of htc (hierarchy
transaction completed).

In addition to transactions, there are also messages asking
to view some portion of the hierarchy. These have a header
hur (hierarchy view request). The OHS will then respond
with a hv (hierarchy view) message.

6.4.2 Packet Format

All hierarchy messages have a body which consists of a set
of terms. Each term is separated from the next by a charac-
ter 254. The terms themselves may consist of any character
other than 254 and 255. There is no trailing 254. Only one
hierarchy message can be contained in a GrIDS packet. The
format is shown in figure 6.2.

As with the GCPF, the convention for storing these packets
in files, or displaying packets to humans, is that the separator
is followed by a newline.

6.4.3 Transaction Types
Hierarchy View Request (hur)

These messages represent a request to see a particular section
of the organizational hierarchy. The sender will generally be
an interface, and the receiver will be the OHS. The messages
have the following format (with one term per column of the
table).

| User | Password | Dept |

User is the username of the individual on behalf of whom
the interface is acting; Password was supplied by that user,
and Dept is the name of the department for which the user
wishes to view the hierarchy.

Hierarchy View (hv)

These messages are sent in response to a HVR, and supply
the requested information. The format is as follows.

| Dept | Serial | Hierarchy |




Dept is the name of the department at which this particular
hierarchy is rooted; Serial is a serial string for this information
which can be used later to check validity of requests based
on this information; Hierarchy is the requested view of the
hierarchy—it is supplied in the hierarchy description language
defined in section ?7?.

Two serial strings are considered the same iff they are iden-
tical considered as a sequence of ASCII characters.

Hierarchy View Error (hve)

These messages are sent in response to an hur and indicate
that the requested information cannot be supplied. The for-
mat is as follows.

| User | Dept | Error |

User is the requesting user; Dept is the name of the depart-
ment at which this particular hierarchy is rooted; Erroris an
informative message which explains why the hierarchy is not
being supplied. Typical reasons would be that the user didn’t
have permission, supplied an incorrect password, etc.

Note that hvr, hv, and he will all be carried over a TCP
connection. Specifically, the interface opens a TCP connec-
tion to the OHS, passes the relevant packet, and then waits
until the OHS supplies the appropriate response along the
same connection before it closes the connection.

Hierarchy View Update (hvu)

These messages are initiated by the OHS to inform an inter-
face that it now has invalid information. The messages are
sent via UDP and are not acknowledged - this is only a best
effort service. Ultimately, we rely on serial strings to catch
that a request is based on old information. The format is as
follows.

Dept is the name of the department at which this particular
hierarchy is rooted; Serial is the serial string for the view
which is no longer valid.

Hierarchy Transaction Request (htr)

There are a number of different kinds of these, depending on
the particular transaction being attempted.

e add_host

This message indicates that the requesting interface
would like to add a host into the named department.
The department must exist already, and the host may
not already be part of the GrIDS system. The message
format is:
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| Type | Trans-id | User | Pass | Serial |
| Dept | Host | Port |

Useris the the requesting user-id, Pass her password, and
Serial the view of the hierarchy on which this request was
based. Trans-id is a transaction identifier string which
will be used to refer to this particular transaction in fu-
ture interchanges. It should be unique. Type is the string
add_host, indicating the nature of the transaction. Host
is the host to be added, and port is the port on which
its module controller is running. Dept is the department
name to which this host is to be added.

remove_host

This message indicates that the requesting interface
would like to remove a host from the hierarchy. The host
must currently be part of the GrIDS system. Note that
this transaction cannot complete if any software man-
agers or aggregators are running on the system, and the
OHS should enforce this. The message format is:

| Type | Trans-id | User | Pass | Serial | Host |

User, Pass, and Serial have their usual meaning. Type
is the string remove_host, indicating the nature of the
transaction. Host is the host to be removed.

move_host

This message indicates that the requesting interface
would like to move a host within the hierarchy. The
host must currently be part of the GrIDS system. The
message format is:

| Type | Trans-id | User | Pass | Serial | Dept | Host |

User, Pass, and Serial have their usual meaning. Type is
the string move_host, indicating the nature of the trans-
action. Host is the host to be moved, and Dept is the
department to move it to.

add_dept

This message indicates that the requesting interface
would like to create a new department within the hi-
erarchy. The department name must not already be in
use. The new department will not have any children un-
til they are added via separate commands. The message
format is:

| Type | Trans-id | User | Pass | Serial |
| Parent | Dept | Hosts | Hosty |




User, Pass, and Serial have their usual meaning. Type is
the string add_dept, indicating the nature of the transac-
tion. Dept is the name of the new department, and Par-
ent is the department to make it a child of. Hostg is the
host on which to run software manager for the new de-
partment, while its graph engine will run on Host4. This
host must already be running a module controller—the
port will already be known to the OHS.

move_dept

This message indicates that the requesting interface
would like to move an existing department within the
hierarchy. The subtree beneath it moves with it. Note
that this causes no change in the physical location of the
departmental facilities such as the software manager and
the aggregator. It simply changes who they report to,
inherit rulesets from, etc. The message format is:

| Type | Trans-id | User | Pass | Serial |
| Parent | Dept |

User, Pass, and Serial have their usual meaning. Type is
the string move_dept, indicating the nature of the trans-
action. Deptis the name of the department to be moved,
and Parent is the department to make it a child of.

new-root

This message indicates that the requesting interface
would like to create a new root department for the hi-
erarchy. This can only happen if there is no existing
hierarchy and is intended just to be the mechanism for
starting a hierarchy from scratch.

| Type | Trans-id | Dept | |
| Hostg | Portg | Hosty | Porty |

Type is the string new_root, indicating the nature of the
transaction. Dept is the name to give to the new depart-
ment. Hosts and Hosty are the hosts on which to run
the root department software manager and aggregator
respectively. These must already be running module-
controllers. However, the OHS must be told the ports
of these, which is done in Portg and Port 4 respectively.
Note that these are the ports of the module-controllers
not the software manager and aggregator themselves.
This is an oddity required in bootstrapping the system -
we cannot add any hosts until we have a root department
to add them into.

remove_dept

This message indicates that the requesting interface
would like to delete a department within the hierarchy.
The department must exist. All children of the depart-
ment will also be deleted. The message format is:
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| Type | Trans-id | User | Pass | Serial | Dept |

User, Pass, and Serial have their usual meaning. Type is
the string remove_dept, indicating the nature of the trans-
action. Dept is the name of the department to delete.

change_variable

This message indicates that the requesting interface
would like to change some variables (perhaps rulesets or
access control lists) in the subtree of some department. It
is necessary for the organizational hierarchy server to be
involved to ensure that the hierarchy is not changed dur-
ing the process, possibly resulting in a corrupted state.

| Type | Trans-id | User | Pass | Serial | Dept |

User, Pass, and Serial have their usual meaning. Type is
the string change_variable, indicating the nature of the
transaction. Dept is the name of the department at or
below which changes will be made.

move-manager

This message indicates that the requesting interface
would like to change the physical location of the soft-
ware manager for some department, without changing
the actual structure of the hierarchy.

| Type | Trans-id | User | Pass |
| Serial | Dept | Host |

User, Pass, Serial, and Trans-id have their usual mean-
ing. Type is the string move_manager, indicating the
nature of the transaction. Dept is the name of the de-
partment being changed, and Host is the name of the
new host on which to locate the software manager. That
host must already be part of the GrIDS system.

move_aggregator

This message indicates that the requesting interface
would like to change the physical location of the aggre-
gator for some department, without changing the actual
structure of the hierarchy.

| Type | Trans-id | User | Pass |
| Serial | Dept | Host |

User, Pass, Serial, and Trans-id have their usual mean-
ing. Type is the string move_aggregator, indicating the
nature of the transaction. Dept is the name of the de-
partment being changed, and Host is the name of the
new host on which to locate the aggregator. That host
must already be part of the GrIDS system.



Hierarchy Transaction Error (hte)

These messages are used by the OHS to inform an interface
that a transaction cannot be performed. The format is as
follows.

| Trans-id | Error |

Trans-id is the identifier of the request in question, and
Type is the type of transaction request. Error is an explana-
tory message.

Hierarchy Transaction Permission (htp)

These messages are used by the OHS to inform an interface
that it may go ahead with a requested transaction. The for-
mat is as follows.

Trans-id is the identifier of the request in question.

Hierarchy Transaction Complete (htc)

These messages are sent to the OHS by an interface to say
that a transaction has been completed and locks should now
be released. In almost all cases, the format is as follows:

| Type | Trans-id |

Trans-id is the identifier of the request in question, and
Type corresponds to the types in the htr messages.

However, there are also a few special cases in which addi-
tional information is present. This happens with the port
numbers of software managers and aggregators. When a
transaction involves moving one of these, the port number
that will eventually be used cannot be known reliably at the
outset of the transaction. Hence it must be supplied by the
interface in the htc message at conclusion. The special cases
are:

e add_department

| Type | Trans-id | Portg | Porta |

Trans-id is the identifier of the request in question, and
Type is the type of transaction request. Portg is the port
number on which the software manager is now located,
and Porty is the aggregator port.

® new_root

| Type | Trans-id | Portg | Porta |

Trans-id is the identifier of the request in question, and
Type is the type of transaction request. Portg is the port
number on which the software manager is now located,
and Port, is the aggregator port.

® move_manager

| Type | Trans-id | Portg |

Trans-id is the identifier of the request in question, and
Type is the type of transaction request. Portg is the port
number on which the software manager is now located.

e move_aggregator

| Type | Trans-id | Porty |

Trans-id is the identifier of the request in question, and
Type is the type of transaction request. Port, is the port
number on which the aggregator is now located.

6.5 The View Serial Number Mech-
anism

In the previous section, hv and htr messages have a Serial field.
This section explains the significance and the management of
that field.

The purpose of this mechanism is to ensure that users do
not attempt, accidentally, to make transactions on the hier-
archy when they have an inadequate view of it. This can
happen either because their view is out of date, or because
they are attempting transactions outside of any view they
have obtained.

To prevent this, when the OHS gives out a view of some
portion of the hierarchy in a hv message, it attaches a serial
number. Subsequently, when an interface requests a transac-
tion on the hierarchy, the OHS checks that the serial number
is up to date. If not, the OHS gives an hte error message.
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Chapter 7

The Network Monitor

In GrIDS, network connections are monitored using net-
work sniffers. A sniffer examines raw data packets carried
within the monitored network and reports the status of com-
munication channels between system entities (users, hosts,
programs, etc.) to its aggregator. The aggregator analyzes
the reports and detects patterns of communication amongst
system entities that indicate misuse.

7.1 Assumptions and Design Objec-
tives

Only one aggregator per sniffer. All packets that the sniffer
cannot recognize as part of a “session” or “connection” are
dropped.

We will do our best to report the current state of the net-
work. A design goal is not to miss packets during GrIDS
operation and consequently omit connection reports.

7.2 Events

An event is an abstract network occurrence. An event may
consist of a single network packet or a collection of packets,
but that detail is hidden within the data source from the
aggregator.

We describe some types of network connections that the
sniffer will monitor.

A connection is characterized by a START event, a END,
and several intervening stages (events). The intermediate
stages varies according to the application protocol communi-
cating via the connection. Regardless of protocol, the sniffer
should report the START, END stages of a connection. The
END event may be successful or unsuccessful (error).

Note that a long delay may exist between consecutive pack-
ets that belong to an event. In some of these cases, the sniffer
will recognize the some but not all packets of the event and
withhold reporting to the aggregator until after all relevant
packets have been observed.

to report the beginning of an event in hopes of seeing the
rest of the event puts the GrIDS system in significant dan-
ger of delaying or failing detection of something critical. For
example, reporting a telnet connection should not be delayed
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until the connection is closed and all packets have been sniffed
and considered. However, individual parts of a telnet con-
nection which require multiple packets may be appropriately
reported individually, rather than as multiple packet reports.

7.3 What to sniff for

The initial three packets corresponding to a TCP handshake
are aggregated into a TCP_START event. This connection
is uniquely labelled with the 6-tuple (src host, src port, dst
host, dst port, seq, time) where host is the hostname, port is
the numeric port identifier, seq is the initial sequence number
of the SYN packet from the source to the destination host,
and timestamp of the initial SYN packet with respect to the
sniffer’s local host clock.

An important connection attribute is the protocol type.
The protocol type indicates the sniffer’s best guess as to the
type of application or data that is carried by this TCP con-
nection. The types we anticipate identifying include TEL-
NET, RLOGIN, RSH, HTTP, MOUNT, NFS, UNKNOWN,
etc. The sniffer recognizes different connection types using
the port number of the source and destination hosts. In some
instances, the sniffer may examine the first few data bytes
of the connection to guess the protocol type of connection
(e.g., MOUNT, NFS). The protocol type attribute is a sepa-
rate attribute from the port number attribute because some
services (e.g., MOUNT) do not have a standard fixed port
number associated with it.

Besides the above attributes, there are some protocol de-
pendent attributes. For instance, for RLOGIN connections,
there are attributes that describe the login name of the user
on the client host, the login name of the user on the server
host, the client-user’s terminal type and the speed of the ter-
minal.

The output of a sniffer includes reports of the following
events: 1) Start of a TCP connection between hosts. 2) End
of a TCP connection between hosts — normal close (FIN), a
connection reset (RST), a timeout (TIM). 3) Start of a UDP
session between a pair of hosts. 4) End of a UDP session
between a pair of hosts. 5) ICMP messages.

Although UDP is not a connection oriented network pro-
tocol, agents that communicate via UDP often exchange a
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Figure 7.1: UDP sessions.

type prot stage status | other

attributes

TELNET | TCP START SUCC

TELNET | TCP | OPTNEG SUCC | TERM SIZE

TELNET | TCP AUTH SUCC | LOGIN
PASSWORD

TELNET | TCP AUTH ERROR | LOGIN
PASSWORD

TELNET | TCP END SuCcC

TELNET | TCP END ERROR

TELNET | TCP | EXISTING | SUCC

Table 7.1: TELNET events.

series of related UDP packets. We define a UDP session as
the collection of UDP packets between a pair of hosts originat-
ing from the same port numbers. Packets that occur within a
time window are part of the same session, and packets outside
the window are treated as members of separate UDP sessions.
A session’s time window terminates when more than a certain
amount of time, say « seconds, passes without a next packet
of the session coming forth. See Figure 7.1.

In the event that we have a better heuristic for determining
the start and end of a UDP session (e.g., UDP packets con-
taining NFS requests between the MOUNT and UNMOUNT
transactions), the sniffer should use the better heuristic.

Each event report consists of a collection of attributes.
Each attribute has a name and a value. Attributes may in-
clude the name of the source host, the IP address of the source
host, the port number, and the time. All sniffer reports are
edge reports.

7.3.1 TELNET

A TELNET connection has several stages (as shown in Fig-
ure 7.1). The stages are START, OPTION-NEGOTIATION,
AUTHENTICATION, DATA, END or RESET. Each stage is
reported by the sniffer with a connection report. We describe
the attributes included with each report.

(TELNET, TCP,END,SUCC) refers to the event that
FIN packets were observed in both directions. (TEL-
NET, TCP,END,ERROR) indicates that a TCP RST flag was
sent in one direction. The other side of the TCP connec-
tion may continue to send data and delay acknowledgement.
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In any case, the sniffer reports the first RST sent in either
direction without waiting for its corresponding ACK mes-
sage. In event of a MOUNT connection, there are attributes
that describe the user credential type (e.g., AUTH_.NONE,
AUTH_UNIX, AUTH_DES, AUTH_KERB), the user creden-
tial (e.g., AUTH_UNIX and the path of the filesystem to be
mounted. (TELNET, TCP,EXISTING,SUCC) refers to the
event that packets of a connection are observed and the snif-
fer has not seen the start stage of the connection. It may
happen when a sniffer is first started. A control variable, Re-
portPartial, is used to control whether to report this type of
events.

The reports are formatted in the DOT-like graph language
(see Chapter 3). Here is a report of a START event:

digraph sniffer {
helvellyn.cs.ucdavis.edu —> jaya.cs.ucdavis.edu
[ app-prot="telnet", prot="tcp", sport=1024,
dport=23, stime =33311222, seq=12345,
stage="start", status="succ"]; }

Here is a report of a END event:

digraph sniffer {
helvellyn.cs.ucdavis.edu —> jaya.cs.ucdavis.edu
[ app-prot="telnet", prot="tcp", sport=1024,
dport=23, stime =33311222, seq=12345,
stage="end", status="succ"]; }

Here is a report of a AUTH event:

digraph sniffer {
helvellyn.cs.ucdavis.edu —> jaya.cs.ucdavis.edu
[ app-prot="telnet", prot="tcp", sport=1024,
dport=23, stime =33311222, seq=12345,
stage="auth", status="error", login="stanifor",
password="fuzbuzz" 1; }

7.3.2 NFS

NFS servers and clients use three protocols — PORTMAP-
PER (RPCBIND), MOUNT, and NFS — to access remote
files. An NFS session may consist of transactions to locate
the mount server (PORTMAPPER), to mount a file system
(MOUNT), and to access files within a file system (NFS). The
sniffer only generates reports for selected NFS transactions.
The report is sent to the aggregator only after both request
and reply messages are processed. The transactions that we
process are listed in Figure 7.2.

(NFS,*, AUTH,ERR) reports an RPC protocol authenti-
cation failure. The user credential is also included in the re-
port. For example, if a request to access a file is forbidden, the
AUTH report includes the user credential “unix/1263/10/10”
which indicates that the AUTH_UNIX authentication scheme
with user identifier 1263, group 10, and groups 10 was the cre-
dential associated with the failed transaction.



type | prot stage status | other attributes

NFS * AUTH ERR | user credential

NFS * STALE ERR | file handle

NFS * MOUNT | SUCC | path, user credential

NFS * MOUNT | ERR | path, user credential

NFS * SETUID | ERR | file handle, mode,
user credential

NFS * READ | SUCC | filename, file handle,
user credential

NFS * WRITE | SUCC | filename, file handle,
user credential

Table 7.2: NFS events.

Since the mount server process (daemon) may be located
at a different port address for each host, the sniffer employs
a heuristic to recognize mount protocol packets. If first few
words of a packet matches the RPC header corresponding to
a mount protocol procedure, the rest of packet is processed.

Similarly, the sniffer uses a heuristic to detect the access of
interesting filenames by processing NFS lookup transactions
and remembering the file handles to those files. Subsequent
read, write or setattr transactions on those file handles are re-
ported. For example, the heuristic would treat any file named
“passwd” as equivalent and report any accesses to it.

7.4 Sniffer Control Messages

The sniffer will accept control messages to 1) add/change type
of packets to sniff 2) ask what the sniffer is currently sniffing
for 3) start up and shut down.

The control variables for sniffers are as follows:

startup: To startup a sniffer, set “startup” to TRUE.
shutdown: To startup a sniffer, set “shutdown” to TRUE.

add_endpoint_filter: “add_endpoint_filter” specifies a partic-
ular type of connection to be reported by sniffer. It is a
list of 3-tuple. Tuples are separated by “
n”. Each tuple has three fields: source IP address, des-
tination IP address, and connection type. The fields are
separated by whitespace characters. The IP addresses
are in full IP address, e.g., rainier.cs.ucdavis.edu. The
connection types include: telnet, nfs, www, rip, and rsh.
For example, if we are only interested in sniffing telnet
connection from k6 to lhotse, and rsh connection from
lhotse to nob, then the corresponding tuples are as fol-
lows,

k6.cs.ucdavis.edu lhotse.cs.ucdavis.edu telnet
n lhotse.cs.ucdavis.edu nob.cs.ucdavis.edu rsh

Note that if we want to sniffe connection between two
hosts, regardless of the direction of the connection, then
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we need to explicitly specifies the two possible directions
by two tuples. For example, the tuples for specifying
telnet connections between rainier and k2 are,

rainier.cs.ucdavis.edu k2.cs.ucdavis.edu telnet
n k2.cs.ucdavis.edu rainier.cs.ucdavis.edu

Wildcard, “*”, is allowed to represent any IP address or
connection type. For example, to sniffer any connection
from rainier to sierra,

rainier.cs.ucdavis.edu sierra.cs.ucdavis.edu *

To sniffer any connection, the tuple will be,
x %k

We call a list of these tuples the “wanted-connection”.

delete_endpoint filter:
Delete_endpoint_filter is a list of tuples separated by “

n”. Each tuple specifies the connection to be removed
from the “wanted_connection”. The tuple to be removed
must be of exactly same form of as it is added using the

“add_endpoint_filter” control variable.

current_endpoint_filter:

It specifies a whole new list for the “wanted-connection”.
The existing “wanted-connected” list is replaced by this
new list.

add_unwanted_connection:

It specifies the connections that are not to be reported.
It is also a list of tuple separated by “

n”, and each tuple takes the same form as those in
“add_endpoint_filter” control variable. We called a list

of such tuples as the “unwanted-connection”.

delete_unwanted_connection:

It is a list of tuples to be removed from the “unwanted-
connection”.

current_neg_endpoint_filter: It specifies a whole new list for
the “unwanted-connection”.

set_time_windows:

It specifies the time of the day to send out reports from
the sniffer. It is a list of tuples separated by “

n”. Each tuple has two fields: the start time of a period,
and the end time of the period. For example, to have
report from sniffer between 9pm to noon, and from 1pm
to 5pm, set the control variable as follows,

9:00 12:00
n 13:00 17:00

no wildcard is allowed.

set_session_window:

It specifies the maximum length of a UDP session. Nfs
reports that are with the same source IP addresses and
destination IP addresses, and that fall within the length
are combined and reported as a single report.



set_session_gap:

It specifies minimum gap between two UDP sessions. If
any two nfs reports that are with the same source IP ad-
dresses and destination IP addresses, and that are apart
from each other more than the length of session gap,
these two reports are regarded as two separate sessions.

7.4.1 Start Up and Shut Down

Everything in this section is a lie. It is controlled by a lying
control variable. The variable may be set to “other truth,”
whereupon the sniffer will report existing connections.

First, when a sniffer is shut down (i.e., no sniffer process
it running), control messages from the module controller are
silently ignored and no reports are issued.

One can start-up a sniffer by sending a control message to
the module controller. To avoid reporting TCP connections
and UDP sessions in progress, a sniffer uses the following
strategies. The sniffer waits for packets that indicate start of
TCP connections. TCP packets that belong to connections
already in progress are ignored. Similarly, UDP packets are
ignored for a seconds after the sniffer is started. Once a
window of quiet time has passed, UDP packets are recognized
as UDP sessions (as per the UDP session definition above).

When a sniffer shuts down gracefully (i.e., a control mes-
sage from the module controller instructs it to shut down),
the sniffer sends reports for each TCP or UDP connection
that it is currently monitoring and that has not shut down
(i-e., FIN packet or timeout window). The report states that
there will not be any more reports for this connection due to
a shutdown of the data source, not because the connection
abruptly terminates. This message tells aggregator rulesets
not to expect any more reports and enables each ruleset to
clean up appropriately.

When a sniffer shuts down due to an internal fault (out of
memory etc.), it should try to send a shut down message to
both the module controller and to its aggregator. However,
in the case of an unexpected termination of the sniffer, it will
not send any messages and the module controller may have
to determine that it is no longer functioning and re-activate
another sniffer as necessary.

Other alternatives considered but rejected are a fault-
tolerant sniffer design that checkpoints its list of monitored
connections so that a subsequent invocation can continue to
report on existing network connections. This approach was
rejected as too complex for our prototype IDS.

7.5 Glossary

connection identifier: a unique id for each connection.
The attributes used to construct the connection identifier
depends on whether it is a TCP or a UDP connection.

connection report: report of one event.

event: abstraction of a network occurrence.
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transaction: a pair of network messages.

7.6 Suggestions to the Implementa-
tors

Tepdump reports one packet per line of output. Upon reading
each line, the manager attempts to associate the packet seen
with an existing TCP or UDP connection. If unsuccessful, the
corresponding packet is dropped. Any information contained
in the packet report (the line from tcpdump) that is not im-
plicit in the connection name is formed into attributes for this
connection. The connection identifier is formed according to
the outline in the communications protocol section.

When the sniffer is started (i.e., the manager process is
started), the manager reads a configuration file that describes
what connections/ packets it needs to report. (For instance,
a sniffer will report all TCP packets that have certain flags—
SYN, FIN, RST.) and the expression therefore empty, tcp-
dump will report all packets.

Sniffers based on SunOS 4.x Network Interface Tap (NIT)
cannot monitor packets sent to or from its own interface.

7.6.1 Tcpdump Argument “Expression”

Tcpdump uses a filter “expression” to select packets that sat-
isfy the expression. The absence of an expression implies
that all packets are selected. The expression consists of one
or more primitives. Primitives usually consist of an id (name
or number) preceded by one or more qualifiers. There are
three different qualifiers:

Type qualifiers say what kind of thing the id name or num-
ber refers to. Possible types are host, net and port. E.g.,
‘host foo’, ‘net 128.3°, ‘port 20’. If there is no type qualifier,
host is assumed.

Dir qualifiers specify a particular transfer direction to
and/or from id. Possible directions are src, dst, src or dst
and src and dst. E.g., ‘src foo’, ‘dst net 128.3’, ‘src or dst
port ftp-data’. If there is no dir qualifier, src or dst is as-
sumed.

Proto qualifiers restrict the match to a particular protocol.
Possible protos are: ether, fddi, ip, arp, rarp, decnet, lat,
moprc, mopdl, tcp and udp. E.g., ‘ether src foo’, ‘arp net
128.3’, ‘tcp port 21°. If there is no proto qualifier, all protocols
consistent with the type are assumed. E.g., ‘src foo’ means
‘(ip or arp or rarp) src foo’ (except the latter is not legal
syntax), ‘net bar’ means ‘(ip or arp or rarp) net bar’ and
‘port 53’ means ‘(tcp or udp) port 53’.

In addition to the above, there are some special primitive
keywords that don’t follow the pattern: gateway, broadcast,
less, greater and arithmetic expressions. More complex filter
expressions are built up by using the words and, or and not
to combine primitives.



7.6.2 Tcpdump Example Output 2. Since data source library is not finished, perhaps use
RPC to perform control.

Tcpdump output when run without ¢‘expressions’’
looks like:
11:34:35.932301 blanc.cs.ucdavis.edu.43886 >
rainier.cs.ucdavis.edu.660: udp 56 (DF)

11:34:36.194128 roma-cafe.cs.ucdavis.edu.1009 >
avalon.cs.ucdavis.edu.2049: P
2899044920:2899045044 (124)
ack 1297860147 win 8760 (DF)

Tcpdump output in verbose mode looks like:

11:38:32.653805 blanc.cs.ucdavis.edu.43896 >
rainier.cs.ucdavis.edu.660: udp 88 (DF)
(ttl 255, id 9012)

Tcpdump output when looking for TCP connections looks
like:

11:40:24.632285 denali.cs.ucdavis.edu.1023 >
blanc.cs.ucdavis.edu.login:
. ack 1873081272 win 4096 (ttl 60, id 31897)

11:40:24.831506 denali.cs.ucdavis.edu.1023 >
blanc.cs.ucdavis.edu.login:
. ack 21 win 4096 (ttl 60, id 31898)

Tcpdump output when run with “-e -s96 -S -vv tcp” as ex-
pression looks like:

11:52:02.440734 8:0:20:d4:£3:52
8:0:20:23:71:52 ip 60:
denali.cs.ucdavis.edu.1023 >
blanc.cs.ucdavis.edu.login:
. ack 1873104562 win 4096
(ttl 60, id 33132)

11:52:02.441077 8:0:20:23:71:52
8:0:20:d4:£3:52 ip 74:
blanc.cs.ucdavis.edu.login >
denali.cs.ucdavis.edu.1023:
P 1873104562:1873104582(20)
ack 1203776269 win 8760
(DF) (ttl 255, id 25855)

7.6.3 Implementation Plan

1. Create a dummy data-source that takes packet data from
a file (e.g., a snoop-format file) and sends the packet data
through the communications channel to an aggregator.
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Chapter 8

Network Access Policies

The purpose of the policy language is to allow a user to
specify authorized and unauthorized behavior on the network.
A network is a collection of users, hosts and departments.
These entities communicate via pair-wise network connections
which are labelled with the application protocol employed
(e.g., TELNET, NFS, HTTP). Thus, a connection originates
from a user, host or department and terminates in another
user, host and/or department.

The authorization model employed is similar to an access
control model. The user specifies whether a connection is per-
mitted or prohibited. Thus a rule regarding a certain type of
connection consists of a tuple (action, time, source, destina-
tion, protocol, stage, status, ...) where action is allow or deny,
time qualifies the rule with respect to a clock or time inter-
val, source, and destination describe the connection endpoints
and protocol describes the connection type. A connection pro-
gresses through several stages (e.g. start, login, authentica-
tion, stop, etc.), and the stage and status attribute further
characterizes the connection.

The connection endpoints may be described with a user
name, a host name and a department name or any combina-
tion of the three.

The application protocol is described using by a type (the
names of protocol types should be compatible with the pro-
tocol names used in the sniffer reports (or other data source
reports).

Some protocols may be characterized with additional at-
tributes, for example, connections report for the HTTP pro-
tocol may include a URL attribute. The user may specify
these additional attributes within each rule if the protocol
attribute is not a wildcard.

The policy is translated into a ruleset which is included
into the rulesets of those departments that are affected by the
policy. The departmental engines interpret the same ruleset
based on the contextual information available to it. We il-
lustrate this by an example. Consider the following policy,
“no user at host H; in department D; can telnet to host
H, in department Dy and run the program P there”, where
the common ancestor of department D; and D-, say Dy, is
higher up in the organizational hierarchy than both D; and
D>. The policy will be translated into a ruleset R which is
added to the rulesets of department Dy and its descending
departments. Suppose the sniffer in department D; reports
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to the departmental aggregator a rlogin connection from host
H; to host Hy. The engine of department D1 tries to evaluate
R against the connection information. However, the engine
cannot determine if this rlogin connection violates R, as the
engine knows that it will not have the information about the
user activities in host H>. Hence, the engine passes up this in-
formation to its parent aggregator, hoping that the required
information will be available at a higher level in the struc-
ture. Similarly, any department between Dy and D; in the
hierarchy structure (if exist) will pass the rlogin connection
information to its parent. When the rlogin connection infor-
mation arrives at the aggregator of department Dy, the engine
knows that all the required information for evaluating R can
be available at this level, and it will make the decision if the
connection violates R.

In order for this scheme to work, the engine of a depart-
ment needs to have the knowlege about the set of information
available to its departmental aggregator which is a function
of the detection modules reside in the department.

One issue that must be addressed further is how to resolve
conflicts between rules. For example, the user may specify a
pair of rules, the first authorizes a type of connection and the
second prohibits it. The syntax of the policy language cannot
prevent this. Thus, the compiler should detect and warn the
user when policies contain conflicting rules.

The rule (deny, *, A/D1, D2, TELNET, AUTH, SUCC)
generates the following ruleset:

# User A in dept D1 cannot telnet to dept D2

node precondition new.
&% new.dest.dept == ’D2’;

edge precondition new.edge.app-prot == ’telnet’
&& new.edge.suser == ’A’;

source.dept == ’D1’

node rules {
res.node.combine = 1;

}

edge rules {
res.edge.combine = 1;



assessments {
global.nedges >= 1 ==> alert, report-graph;
}

The rule (deny, *, «a, «a, *) generates the following ruleset,
where a represents an instantiated variable. The variable «
is instantiated with the value of the source and destination
attributes and both must match to trigger the rule.

# User A can only make connections within
# a single department

node precondition new.source.dept == new.dest.dept;
edge precondition new.edge.suser == ’A’;

node rules {

res.node.combine = 1;
¥
edge rules {
res.edge.combine = 1;

}

assessments {
global.nedges >= 1 ==> alert, report-graph;

3

The rule (deny, *, * * NFS, READ, SUCC, file-
name(passwd)) generates the following rulesets.

# report movement of passwd between hosts
# using NFS

node precondition 1;

edge precondition
in_set(’passwd’ ,new.edge.files_moved)
&& new.edge.app-prot == ’nfs’);

node rules {

res.node.combine = 1;

edge rules {
res.edge.combine

1]
[

}

assessments {
global.nedges >= 1 ==> alert, report-graph;

3
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Our current policy language is not able to specify the fol-
lowing ruleset. However, the language must be extend to
allow such a ruleset to be generated.

# a single user using a series of connections
# is suspicious

node precondition defined(new.node.name);
edge precondition new.edge.connection;

node rules {
res.node.combine = !defined(cur.global.User)
|| new.global.User == cur.global.User;

}

edge rules {
res.edge.combine = 0;
res.global.User=

}

new.source.suser;

assessments {
global.nedges >=
}

4 ==> alert, report-graph;

8.0.4 Language Syntax

The syntax of the policy language is not yet specified. The
policy language syntax should allow multiple rules, variable
number of attributes in the rule, the specification of instanti-
ated variables, wildcards, the specification of combinations of
users, hosts, and departments, and attribute values that are
lists.



Chapter 9
Debugging Facilities

9.1 Overview

Debugging capabilities should be integral to the design of all
relevant GrIDS components. Two types of debugging capa-
bilities are supported. The first type is for providing a logging
facility for GrIDS components. Using this logging service, a
GrIDS component can record debugging messages in a central
place. The second type is for debugging rulesets. Using this
ruleset debugging service, a rule writer can understand how
the rulesets operate among GrIDS components.

9.2 Central logging facility

The central logging facility is a simple means for GrIDS com-
ponents to record debugging messages in a central place. The
facility is expected to be deployed during the internal devel-
opment phase of GrIDS. We will not ship (at least we will
not support) the implementation of this type of debugging
capabilities as a part of GrIDS.

When a component detects an exception, it can log the
event using the central logging facility. Thus instead of us-
ing “die” or “warn” Perl statements, GrIDS module writers
should use the central logging facility to record exceptions.

When a GrIDS component wants to log a message, it will
invoke a library routine grids_log with the string it wants to
log. The centralized log will record the event with the source
and the local timestamp. The centralized log thus induces a
partial ordering of the recorded events. The central logging
facility can be implemented using NFS.

We illustrate the use of grids_log with an example:

#IF DBUG

grids_log("before send ctrl msg");
#ENDIF

send_con(...);

#IF DBUG

grids_log("after send ctrl msg");
#ENDIF

Note that if an Engine discovers a syntax error in a Ruleset,
that message should be sent to the central logging facility.

9.3 Ruleset debugging servers

The purpose of a ruleset debugging server or simply a debug-
ging server (DBG) is to respond to requests (originally) from
a user interface (typically off-host), for sections of debugging
logs stored on-host.

Assuming logging of the relevant information is enabled
for a module (via one or more dynamically settable State
Vars), this will allow a retroactive reconstruction/tracing of
distributed processing in GrIDS.

In order to reduce the number of processes, ruleset debug-
ging servers are not implemented by a dedicated process. In-
stead, the debugging servers are implemented as part of Mod-
ule Controllers.

To debug Rulesets, a debugging server running on each host
will respond to requests (directly from a Software Manager;
indirectly from a User Interface) to send specific debugging in-
formation regarding the behaviors of aggregators. That infor-
mation will be displayed at the User Interface without much
additional processing. As we begin using GrIDS, it should
become clear which enhancements to the debugging library
routines at the User Interface end should have the highest
priority.

The DBG waits for a TCP connection request responds to
the request, then waits for that party to send another request,
or for a new connection from another party. It is the respon-
sibility of the client party to close a DBG TCP connection.

9.4 Log browsing

DBG supports three types of services: log browsing, forward
data flow tracing, and backward data flow tracing. Data flow
tracing requires the user to specify a unique label or connec-
tion ID for the edge to be traced. Because we have no way to
label subgraphs, they are accessible only in browsing mode.

Browsing allows a wide variety of info emitted by Engines
to be viewed. (For details on what Ruleset debugging info
the Engine emits, see section 2.8.)

Log browsing provides a means to retrieve a certain portion
of an aggregator log that satisfies given criteria. The other
two services will be described subsequently. There are three
types of messages used for browsing aggregator logs.



Log Browsing Request: This message represents a re-
quest to a debugging server to collect reports that fall
into a specified time interval and belong to a specified
aggregator. The message has four terms: start-time, end-
time, department ID, and optional Ruleset Name. Start-
time and end-time are ASCII representation of Unix time
stamps. There are two special values for the time stamps.
0 means the earliest possible time, and -1 means the lat-
est possible time. Department ID is the unique label
assigned to a department.

| Start time | End time | Dept ID | Ruleset Name |

Log Browsing Result: This message is sent in response
to a Log Browsing Request. It supplies all the reports
that were sent to the aggregator within the specified time
interval. The format of the reports is shown in Sec-
tion 2.8. The message has four terms (plus optional
Ruleset Name): start-time, end-time, department ID,
and report-list. The first four terms are copied from the
corresponding request. Report-list is a list of reports.

PID of the child (so the Module Controller can signal
the child when it receives a SET command for it).

name (generic alias) of the child GrIDS module.

Department_I D of that child module (since there may be
several identical modules running on a host, representing
different Departments).

pathname of config files for this child. This might in-
dicate a separate subdirectory for each child’s files, or
it might be a pathname prefiz unique to one child. In
either case, the implementation team must devise some
standard naming conventions — probably using suffixes
— to specify the various config-files for one GrIDS mod-
ule. Config files for a module include initialization file,

command file, status/response file, and debug/logging
file(s).

Thus, when a DBG receives a Log Browsing Request, it
can find the exact location of the desired debugging logfile by
reading the Module Controller’s Current Task File.

Note that the Log Browsing Request might imply multiple
logfiles. In the most extreme case, an Aggregator for Depart-
ment, Physics might have multiple logfiles that store debug-

| Start time | End time | Dept ID | Ruleset Name | Repoﬁ%’slé“]

formation — one logfile per Ruleset per hour.

Log Browsing Error: This message is sent in response to
a Log Browsing Request and indicates that the request
cannot, be successfully processed. The message has four
terms (plus optional Ruleset Name): start-time, end-
time, department ID, and error. Error is a string ex-
plaining why an error occurred. Typical reasons are that
data requested not available (e.g., data for time specified
not available), and unknown department ID.

9.6 Control variables

Control variables currently envisioned for each DBG are as
follows:

e exact pathname of Debugger’s Current Task File. (By
resetting this to an archival Current Task File, a Ul
could direct the DBG to peruse post — mortem logfiles
of GrIDS modules that are no longer alive.)

| Start time | End time | Dept ID | Ruleset Name | Erro9

.7 Access Control

9.5 Serving log browsing requests

When a DBG receives a Log Browsing Request, how does the
DBG translate that info into (an) exact pathname(s)?

This question has been answered by clever design of the
Module Controller. We specify that every host’s Module
Controller must maintain a “Current Task File”, in which
it stores various data about each living GrIDS module it
spawned. The Module Controller needs this info in persis-
tent storage, so that whenever it starts up, it can “adopt”
any still-living children it spawned in a past life. For each
child process, the “Current Task File” will contain:
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For uniformity of access control, we decided a User Interface
must contact a Software Manager with a debugging request.
That Software Manager will check human access control, then
forward the request to the proper Debugger (Module Con-
troller).

Once a Debugger receives a request, it will follow the nor-
mal machine access-control procedure it uses in its role as
Module Controller. For example, prior to opening the log-
file for a “resident-alien” Aggregator, the DBG should first
read the Aggregator’s own ACL, to ensure the Host:Port of
the requesting Software Manager matches that of the foreign
Aggregator’s home department (vs. the Host:Port of the De-
bugger’s own home department).

(See access — control discussion in software_control.tex)



9.8 Requirements for others

Note to implementors of Engine, Sniffer, Protocols, and User
Interface :

For the debugging routines to achieve forward and backward
dataflow tracing of graph pieces, the UI will need some means
to uniquely identify or label graph pieces. Those labels must
be preserved as edges become “reduced” during upward ag-
gregation. Also, an Aggregator’s Global Log File must note
the source of any report that comes from a child Aggregator
(vs. from an on-host data source).

Note to implementors of Software Management System:
We don’t want user to have to manually turn on $debug{foo}
for 25 departments. So let’s allow that control-var to be prop-
agated downward via inheritance. Presumably, user should
turn on/off $debug{foo} at the highest node at which Ruleset
foo is defined.

9.9 Forward data flow tracing

9.9.1 Overview

Given a piece of data we want to trace, forward data flow
tracing presents to the client how the data got propagated in
GrIDS. The type of data we want to trace are events associ-
ated with a connection. Examples of connection events can
be found in the Network Monitoring chapter.

9.9.2 Specifying the target connection

To use forward data flow tracing, a user needs to specify which
connection to focus on. The Communications Protocol chap-
ter specifies the set of attributes used to uniquely identify a
connection. However, a user normally does not know all the
attributes needed to identify a connection. For example, an
attribute used for identifying a connection is the start time
observed by the sniffer. Thus having the user to directly spec-
ify the ID of the connection does not work.

For the user to locate the ID of the connection, the user
first sends a Log Browsing Request (time interval, depart-
ment ID) to a debugging server. The debugging server then
returns the user a list of connection events seen by the aggre-
gator of the corresponding department. A department ID is
included because there may be multiple aggregators running
on a machine, and the debugging server needs to know which
aggregator’s log to use for the reply.

9.9.3 Forward-tracing debugging algorithm

The protocol for forward data flow tracing consists of two
phases: log browsing and forward tracing. It is permissible
to browse an engine log without proceeding to the forward
tracing phase.

1. A client sends a Log Browsing Request, (time interval,
department ID), to the debugging server on the host of
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department ID’s engine.

. The debugging server returns a list of event reports that
match the department ID (and optional ruleset name)
and fall within the time interval. Based on the list, the
client may narrow the search by selecting one connec-
tion ID to target for forward tracing. Or the client may
terminate the search.

The client finds out the location of the parent aggregator
machine and sends a forward tracing request, (connection
ID, time interval, department ID, ruleset name), to the
debugging server on that machine. The parent aggrega-
tor is now the current aggregator, and “department ID”
corresponds to the name of this aggregator’s department.

Again in this case, ruleset name is an optional addi-
tional filter criterion. If ruleset name is not specified,
then the debugging server will select event reports for
all ruleset names in which the specified connection ID
appeared.

The debugging server sends forward tracing results to
the client. If the results are “positive” (i.e., the reports
passed the pre-qualifying rule of a relevant ruleset), then
we assume the ruleset is inherited, and attempt to goto
the previous step. Otherwise, exit the protocol.

We envision that a user usually wants to debug rulesets one
at a time. Because rulesets are independently executed, one
does not need to worry about interference among rulesets.
Thus it is always possible to debug rulesets one at a time.
However, we allow the simultaneous tracing of one connection
through multiple rulesets, since the user may wish to compare
the behavior of two or more slightly different rulesets.

The above protocol only describes the “normal” behaviors
of the protocol. There are cases in which the above protocol
might not work. We assume the following;:

e The organizational hierarchy has not been changed be-
tween the time of logging and the time of running this

protocol.

Logging is turned on for the specified rulesets on the
aggregators involved.

The attributes of the connection ID are kept as the data
propagate in GrIDS.

The relevant hosts are up.

9.9.4 Forward tracing messages

There are six types of messages used in the above protocol.
The three of them that concern log browsing have already
been described in the Log Browsing section. The following
three are for forward tracing.



Forward Tracing Request: This message represents a re-
quest to collect reports about a connection within a spec-
ified time interval that optionally relates to a ruleset.
The message has the following terms: <connection ID>,
start-time, end-time, department ID, and optionally rule-
set name. The attributes used to label a connection,
<connection ID>, are shown in the Communications
Protocol chapter.

Conn ID
Dept ID

Start time End time

Ruleset Name

Forward Tracing Result: This message is sent in re-
sponse to a forward tracing request. For each report
that matches the conditions specified in the request, a
boolean result showing whether the report passed the
pre-qualifying rule is also returned. In addition to
the terms copied from the request message, the mes-
sage includes a list of reports that match the conditions
prepended by the ruleset name and the result of the pre-
qualifying rule test.

Conn ID
Dept ID

End time
Report list

Start time
Ruleset Name

Forward Tracing Error: This error message represents
the forward tracing request received cannot be processed.
The message has the following terms: <connection ID>,
start-time, end-time, department ID, optionally ruleset
name, and error. Error explains why an error occurred.
Typical reasons are that data requested not available,
incorrect department ID, incorrect ruleset name.

Conn ID
Dept ID

End time
Error

Start time
Ruleset Name

9.10 Backward data flow tracing

9.10.1 Overview

The protocol for backward data flow tracing consists of two
phases: selecting a connection, and backward tracing. Selec-
tion may occur as a result of browsing an engine log at an
intermediate aggregator (as described in the section on Log
Browsing), or it may occur from visual inspection of a graph
that has been displayed at a user interface for whatever rea-
son.

In any case, we assume the user has selected a specific con-
nection, and knows its Connection ID, the Ruleset Name in
whose graph space it appeared, and the Department 1D of
the aggregator at which to initiate the trace.
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9.10.2 Backward-tracing debugging algo-
rithm

1. The client finds out the location of the aggregator ma-
chine and sends a backward tracing request, (connection
ID, time interval, department ID, ruleset name), to the
debugging server on that machine.

Conn ID
Dept ID

Start time End time

Ruleset Name

. The debugging server returns to the client a list of event
reports that match the selection criteria and fall within
the time interval. (Typically, only a single event would
qualify within the time interval.)

Conn ID
Dept ID

End time
Report list

Start time
Ruleset Name

The client examines the event report(s) to determine its
source. If the source is not a terminal hostname, but
rather a sub-department ID, then goto step one. Other-
wise, exit the protocol.

Again, the above protocol only describes the “normal” be-
haviors of the protocol. There are cases in which the above
protocol might not work. We assume the following:

e The organizational hierarchy has not been changed be-
tween the time of logging and the time of running this
protocol.

e Logging is turned on for the specified rulesets on the
aggregators involved.

e The attributes of the connection ID are kept as the data
propagate in GrIDS.

e The relevant hosts are up.



Chapter 10

The User Interface

Figure 10.1: Hierarchy window after clicking on CS depart-
ment icon.

10.1 Logging In
On startup, the user interface will promt the user for a user-
name, a password and a department to administer. This in-
formation will be used to obtain a copy of the hierarchy below
the requested department as described in chapter 6. Only af-
ter this information has been obtained will the user move
beyond the login prompt into the interface proper.

Note that it is not possible in the current version of GrIDS
to administer several departments at the same time except by
administering a common ancestor of all of them.

10.2 Managing the hierarchy

The interface will present to the user a window which shows
the organizational hierarchy. Departments and hosts will be
shown as appropriate icons, and the hierarchical relationship
between them will be displayed as a tree, as shown in Fig-
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ure 10.1.

All operations on the hierarchy will be achieved by first
selecting a node by clicking on it via a mouse, and then by
issuing an appropriate command through a menu or through
a mnemonic keyboard shortcut. This will bring up an appro-
priate dialog panel in which additional information necessary
to the transaction will be entered. The interface will then
initiate the appropriate hierarchy transaction.

We now go through the possible actions on a node and give
details of the transactions that can be performed. In each
case, the transaction will be perfomed on the hierarchy. Only
when it is complete will the user’s display be updated. Should
the transaction fail, an error panel will be put up informing
the user of the problem.

10.2.1
Selected:

Add Host

A Department

Dialog parameters: Name of new host
Port of module controller

The new host is created below the selected department. Note
that a module controller must already have been started on
the host in question, and its port must be supplied manu-
ally to the system. (After this, everything can be handled
automatically, but we need this initial manual input to get a
foothold on the system).

10.2.2 Add Dept

Selected: A Department

Dialog parameters: Name of new department
Host for aggregator.
Host for software manager.

The new department is created as a child of the selected de-
partment. The user must make the decision as to where the
aggregator and the software manager will be located, since
this decision is likely to depend on factors not available to



the system (performance and security of machines in ques-
tion)).

10.2.3 More transactions

There will be a whole bunch more, deriving in a natural way
from the ones listed in chapter 6, but they will be added here
when implementation of them is a little closer.

10.3 Managing rulesets

Upon selecting a department node in the hierarchy view and
giving the appropriate menu option, the names of all rulesets
running on that aggregator will be presented. Selecting any
particular ruleset name causes the graphs in that graph space
to be drawn. Two kinds of operations are supported on nodes
by selecting them and giving the appropriate command. For
departments only, it is possible to expand the node to the
corresponding graph in the department which this node rep-
resents. For both host and departments, an attribute panel
can be brought up which shows all the attributes of the node
in this particular graph. A button or equivalent should be
provided to move upwards in the aggregation scheme.

When any department is selected, the option of making
queries to the corresponding aggregator is provided. The
query will be entered as text, in some text editor (of the im-
plementors’ choice), and fed to the engine. The query should
be in the query language, as specified.

When any department is selected, with all ruleset names
displayed, the option of viewing the ruleset text is provided
as well as viewing the graphs associated with that set. While
viewing the text, modifications may be made to the text, and
an entry button clicked on when finished to ship the new
version of the ruleset off to the aggregator. When all ruleset
names are displayed, the option of creating another ruleset
(by entering text) is also provided.

10.4 Alerts

A seperate window is maintained for alerts. In this window,
an icon for each ruleset is shown, with icons containing un-
viewed alerts in yellow or red (depending on the severity of
the alert) as shown in Figure 10.2. Clicking on the “Sweep”
icon generates the popup window shown in Figure 10.3. This
window displays the most recent alert, showing the text of
the alert above the graph of the alert (both of which are
sent by the graph engine automatically when alerts are gen-
erated.) Selecting from the alert history bar, one can see
previous alerts (see Figure 10.4).

10.5 Managing Software

Alerts

WormD Telnet Fip

Sweep

Temp

Figure 10.2: Main alert window displaying icons for each rule
set. Rule sets which have generated alerts are shown in yellow
and red.

r| Sweep Ruleset Alerts ﬁﬂ
Graph 17 - Latest report (4) =
Large Sweep Detected!!

GrIDS provides features so that the IDS itself can be managed Figure 10.3: Window resulting from clicking on Sweep in main

conveniently. Here we describe the interface to those features.
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alert window.
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Figure 10.5: Inspecting the GrIDS system for a department.

Figure 10.4: Window after clicking on history bar.
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Figure 10.6: Inspecting the GrIDS system on a particular
host.

mayhach.cs.ucdavis.edu:253

Figure 10.7: Inspecting a particular module.
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10.5.1

From the hierarchy view, after selecting a particular depart-
ment, a department inspector panel can be brought up. This
shows summary information about the department (such as
where its infrastructure is located), and provides statistics
on what kind of data sources are running at or below this
department.

Department Inspector

10.5.2 Host Inspector

From the hierarchy view, after selecting a particular host, a
host inspector panel can be brought up. This provides a view
similar to that shown in Figure 10.6. At the top, the panel
provides a summary of the GrIDS infrastructure components
running on the host (in this case, the module controller and
two aggregators). These cannot be manipulated directly. Be-
low that are shown possible data source modules, together
with switches which allow them to be started or stopped.

10.5.3 Module Inspector

From the host inspector or the department inspector, it is pos-
sible to bring up the module inspector (shown in Figure 10.7).
This provides an overview of the status of a module, and al-
lows the user to alter control variables. Control variables
which should not be directly manipulated (here the aggrega-
tor to which this data source responds) are shown greyed out.
Some control variables may have extensive text. In this case
the text field should be replaced with a button to bring up
an extra edit window for viewing and altering the variable.



Appendix A

Tracing Using GrIDS

A.1 Introduction

This appendix covers the issues involved with tracing intrud-
ers using GrIDS. Here tracing means finding out who is re-
sponsible for a particular activity on a network, even though
they may have taken various steps to disguise their identity
(such as logging in through multiple compromised accounts).
The tracing problem has been discussed in more detail else-
where. [?7, 7]

We consider two possible tracing mechanisms. The first we
call on-host tracing. Here, the basic primitive available is that
some channel into a host and some channel out are, in fact,
causally connected. The second is thumbprinting. [?] Here
the available primitive is that two network connections, which
may or may not be close together in the network topology,
have identical content. In each case, we take up the question
of how GrIDS can make use of the primitive in question to
trace the source of an activity.

A.2 General Considerations

The essence of tracing is that one waits for something to hap-
pen (probably something bad), and then says “who did this?”

What GrIDS does is to build graphs incrementally as infor-
mation arrives. This is inherent in its design. Thus, in order
to answer a tracing query, GrIDS must already have built
the graphs it needs before it receives the query. It is then
only capable of modest analysis to determine which graphs
are required to answer the query.

Let us take the example of users telneting through multiple
machines (possibly using different accounts on each one) be-
fore perpetrating some crime. We, detecting the crime, would
like to trace back through the sequence of telnets to determine
the origin of the criminal activity.

The only approach possible in GrIDS is something like the
following. As we receive reports of telnet connections, we form
them into graphs with the proviso that all causally related
links are in the same graph, while links which are not causally
related must be in different graphs. Then, GrIDS must have
the ability to search through its graphs looking for ones which
contain some particular host or connection of interest, and
returning this.
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Thus GrIDS must be able to handle queries for graphs in
addition to reporting all graphs which cause some rules to
fire.!

A.3 GrIDS Query Language

The GrIDS engine needs to a have a query mechanism to
support tracing. A sufficient mechanism might provide the
features to return all graphs which match certain criteria. At
a minimum, these criteria should be able to refer to the global
attributes of the graph. However, it is essential for tracing
that the criteria also refer to local attributes.

For example, typical queries might be (in English), return
all graphs which

e have an incoming telnet to host X

e have an incoming telnet to department Y

e involve an NFS mount of filesystem F on server S.
e begin on host X

e involve user U

We restrict ourselves to what is needed for tracing. Many
more general queries can be imagined for other purposes.

Thus, a reasonably general query mechanism needs at least
the ability to say “give me all graphs which include host X,
where that host has attributes which satisfy condition Px and
where the global graph attributes satisfy Pg. Such queries
need to be parsed at request time, the resulting graphs se-
lected, and the graphs shipped out to the requester.

A.4 On-Host Tracing

Suppose we have two network channels, C'y and Cs which
share at least one endpoint. The primitive which an on-host
tracing system provides us with is an assertion

caused_by(Cy, C5) (A.1)

IThe alternative is to pass all graphs to some special purpose mod-
ule which handles the queries. However, this is very inefficient since it
requires updating complete copies of all graphs in two places instead of
one.




This indicates that the activities occurring in C5 are caused
by C;. For example, C> may be a sendmail connection which
results from mail being sent during a login session C. This
kind of information can usually only be obtained when ade-
quate instrumentation is present on the host in question.

One example of such an on-host tracing system, Fozhound,
was described in [?]. That system worked (under Unix) by
examining the process table of the host, and associating pro-
cesses with their parent processes and with the connections
they owned. For our purposes, it is of only passing interest
how the predicate in equation A.1 is computed. Our concern
is with how it can be used by GrIDS.

From GrIDS’ perspective, the incoming information cannot
be naturally modelled as a link attribute, since it involves
two different links. However, since the links share an end-
point, it could be modelled as a node attribute at that shared
endpoint. The report would say that node X has the at-
tribute caused_by(C1, C>), where C; and Cy would use what-
ever scheme we finally settle on for referring to links. Note
that this idea requires that attributes are not constants but
rather link to other things in the graph topology.

The alternative to viewing the report as a node attribute is
to say that it is a special kind of report - a “correlated links”
report, which gets handled by its own set of rules. We note
that the same kind of report is needed in aggregation, where
we have to pass up reduced graph nodes and the incoming
and outgoing links from them; we need to distinguish whether
such links are actually connected or not in the graph.

A.5 Thumbprinting

The primitive in the thumbprinting could be one of several
things. In the simplest case, we could just get thumbprints
as link attributes which represented the numerical values of
the thumbprints. Then we could associate links together into
graphs based on whether their thumbprints matched. In the
current graph execution model, this would require storing the
attributes of the links also as node attributes so that an in-
coming link could be compared with them.

We would need to import some suitable function which
knew how to compare thumbprint attributes. Note that a
thumbprint is a somewhat complex piece of data - it is nei-
ther a scalar, nor a set, but rather a two dimensional array
of scalars (several numbers for each time slice). This sug-
gests that attributes need to have relatively complex types,
and that we need to be able to import code for operations on
those types.

In the second case the primitive could be something like

causally linked(Cy, Cs) (A.2)

where there is no longer any requirement that C; and Cs
share an endpoint. This could be a report from some external
thumbprinting system which got reports of all thumbprints,
sorted them using appropriate spatial data structures, and
then reported when any got close together.
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Given these reports, we no longer need to import fancy
code to compare attributes. We could use these reports ex-
actly as in the previous section (for on-host reports), and just
throw away any reports where C; and C5 happen not to share
an endpoint. This rather limits the benefits of thumbprint-
ing though. The alternative is to start building disconnected
graphs so that we can lump together connections which we
know must be causally connected, even though we do not
know the topology of the connection between them. This
opens rather a can of worms.



