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Abstract
So~are Test Environments (STES) provide a means of

automating the test process and integrating testing tools to

support required testing capabilities across the test pro-
cess. Specifically, STES may support test planning, test
management, test measurement, test failure analysis, test

development, and test execution. The software architecture
of an STE describes the allocation of the environment’s
jimctions to spec.i$c implementation structures. An STE’S
architecture can facilitate or impede modifications such as
changes to processing algorithms, data representation, or
jimctionality. Perjorrnance and reusability are also subject
to architecturally imposed constraints. Evaluation of an
STE’S architecture can provide insight into modifiability,
extensibility, portability and reusability of the STE. This
paper proposes a reference architecture for STES. Its ana-
lytical value is demonstrated by using SAAM (So@are
Architectural Anulysis Method) to compare three sojlware
test environments: PROTest II (Prolog Test Environment,
Version II), TAOS (Testing with Analysis and Oracle Sup-
port), and CITE (CONVEX Integrated Test Environment).

1 Introduction

Software testing is a critical activity in the development

of high quality software. When testing is performed manu-

ally it is highly error-prone, time consuming and costly.

Software Testing Environments (STES) overeome the defi-

ciencies of manual testing through automating the test pro-

cess and integrating testing tools to support a wide range

of test capabilities. Industrial use of STES provide signifi-

cant benefits by reducing testing costs, improving test

accuracy, improving software quality, and providing for

test reproducibility [17, 20].

Despite the critical importance of S333s in the develop-

ment of quality software, rigorous evaluation of their

capabilities has keen largely ignored. Comparisons are fre-

quently made among STES using a taxonomic approach

[6, 12, 14,5, 18]. These illustrate whether a system sup-

ports a given task or has a specific attribute.

How well an STE meets its intended goals is usually

drawn from textual descriptions. A uniform graphical

depiction complements textual descriptions, thereby facili-

tating evaluation of developers claims concerning qualities

of STlk Examples of typical claims are

The rule-based approach offers many advantages
over more traditional test execution systems...which
require that each test case carry with it a script or a
program to perform the necessary executions and
results verification [20].

Developing sophisticated testing capabilities through

composition of less complex, more general compo-
nents proved to be an extremely effective approach, it
facilitates rapid prototyping and lower development

costs for new tools as well as tool integration [17].

It has been demonstrated that some system qualities can

be evaluated through an analysis of the system’s software

architecture, where an architecture consists of both system

structure and functionality. A uniform graphical depiction

of system architectures facilitates such an analysis [8,10].

The Software Architecture Analysis Method (SAAM)

provides an established method for describing and analyz-

ing software architectures [10]. SAAM is used in this

paper to examine three STF!S: PROTest II (Prolog Test

Environment Version II), TAOS (Testing with halysis

and Oracle Support), and CITE (CONVEX Integrated Test

Environment). The terminology used to describe SW

in this paper is consistent with that of [10], where SAAM

is defined as consisting of the following steps:

1. Characterize a canonical functional partition for

the domain.

2. Create a graphical diagram of each system’s struc-

ture using the SAAM graphical notation.

3. Allocate the functional partition onto each sys-

tem’s structural decomposition.

4. Choose a set of quality attibutes with which to

assess the architectures.

5. Choose a set of concrete tasks which test the

desired quality attributes.

6. Evaluate the degree to which each architecture pro-

vides support for each task, thus indicating satisfac-

tion of the desired quality.
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To accomplish this analysis, the SAAM method takes

three perspectives: a canonical functional partition of the

domain, system structure, and allocation of functionality

to system structm.

The tit perspective, a canonical functional partition of

the application domain, may be provided by a reference

architecture. If one is not available, a domain analysis can

be done to determine the necessary partitioning of func-

tionality.

In this paper, the three STEs are presented as originally

published and then their system stmctum is recast in the

SAAM architectural notation. Using a uniform notation

permits a common level of understanding on which to base

the analysis.

For each STE, the canonical functional partition is then

allocated to its structural decomposition. The architecture

can then be evaluated with respect to specific quality

attributes. To ascertain if a system has a particular quality,

concrete tasks are chosen to demonstrate the presence or

absence of that quality in the STE. The analysis deter-

mines whether the architecture supporta specific tasks or

not in accordance with the qualities attributable to the sys-

tem.

1.1 Overview

In section 2, the three architecturalanalysis perspectives

used by SAAM am described. The canonical functional

partition is a result of a domain analysis of the test process

and test process automation. This results in a reference

architecture for STES. Them the graphical notation that is

used by SAAM to describe system structure is provided.

Finally, the allocation of functionality to system structure

is described. This section sets the groundwork for evaluat-

ing the architecture of STES.

Section 3 describes each of the three STES to be evalu-

ated PROTest II, TAOS, and CITE. Each is first described

as originally diagramed and discussed by the authors and

then nxast in the graphical notation used by SAAM along

with an allocation of the canonical functional partition.

Section 4 delhes the quality of reusability of test arti-

facts analyzed in this paper. The test artifacts and the func-

tional partition to which they are relevant are deactibed.

Each of the three STES is then evaluated with respect to

test artifact reusability.

Section 5 concludes with a summary of results and con-
tributions as well as a discussion of future work.

Specific contributions of the paper include an initial ref-

erence amhitectum for So&vare Test Environments

(STEs), a comparison of three WE-s using the Software
Architectural Analysis Meth@ an evaluation of architec-

tural constraints on test artifact reusability, and further

evaluation of SAAM as an analysis method for software

architectures.

2 Architectural Analysis Perspectives

Using SAAM, architectural analysis is approached from

three perspectives: a canonical functional partition, system

stmcture, and allocation of functionality to system struc-

ture. This section describes these three perspectives.

2.1 Canonical Functional Partition

A canonical functional partition of the application

domain provides tbe functional perspective required by

SAAM. Reference architectures, such as the Arch/Slinky

Mets-model for UIMSS (User Jnterface Management Sys-

tems) and the Toaster model for SDES (Software Develop-

ment Environments), provide fictional characterizations

for their domains. In mature domains such as these, a

canonical functional partition has been accomplished

through extensive domain analysis by researchers in the

field.

Software Test Euvironmenta do not yet have a reference

architecture to characterize their domain specific function-

ality. A domain analysis is needed to accomplish this. The

domain analysis and resulting canonical functional parti-

tion for STE5 requires that two aspects be evaluated the

specific testing activities inclusive in an ideal test process

[9] and the functions specific to the automation of that pro-

cess.

STEa pose a significant challenge for domain analysis.

This is in part due to the rapid advances in test technology

as well as the evolution of the test process that should be

automated by an STE. Gelperin and Hetzel point out that

over the years the test process has increased in scope

across the life cycle and has been refocused as to ita pri-

mary goals and objectives [9]. STH.Shave not all kept up

with the state-of-the-art in test process or its automation.

To describe the STE’S process focus, we provide a history

of test process evolution.

Test process evolution is shown in figure 1. The test

process began with a debugging focus in the early 50’s,

where the process took an ad hoc approach of simply find-

ing bugs. The test process then evolved to a demonstration

period, which focused on making sure the program ran and
solved the intended problem. This period was followed by

the destruction period, which focused on executing a pro-

gram to tid failures through implementation-based test-

ing. Next, an evaluation-oriented period addressed the

integration of methods to provide evaluative support

throughout the software lifecycle, as described in the Fed-

eral Information Processing Systems (FIRS) guidelines

[13]. The evaluation process focuses on detecting require
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ments, design, and implementation faults, which requires

an early life cycle testing effort. The current test process is

a life cycle prevention model, which focuses on fault pre-

vention through parallel development and test processes.

The change of emphasis has been from detection of faults

to one of prevention of faults.

1950-1956 The Debugging-Oriented Period
1957-1978 The Demonstration-Oriented Period
1979-1982 The Destruction-Oriented Period
1983-1987 The Evaluation-Oriented Period
1988-1995 The Prevention-Oriented Period

Figure 1. Test process evolution, adapted from [9]

Our domain analysis evaluated the software test pro-

cess, test process automation, and current ST&. The anal-

ysis resulted in a partitioning of the STE domain into six

canonical functions: test execution, test development, test

failure analysis, test measurement, test msnagemen~ and

test planning.

● Test Execution includes the execution of the instru-

mented source code and recording of execution

traces. Test artifacts ntcorded include test output

resuha, test execution traces, and test status.

● Test Development includes the specification and

implementation of a test cotiguration. This results in

a test suite, the input related test artifacts, and docu-

mentation. Specific artifacts developed include test

oracles, test cases, and test adequacy criteria.

● Test Failure Analysis includes behavior verification

and documentation and analysis of test execution

pass/fail statistics. Specific artifacts include pass/fail

state and test failure reports.

● Test Measurement includes test coverage measure-

ment and analysis. Source code is typically instru-

mented to collect execution traces. Resulting test

artifacts include test coverage measures and test fail-

ure measures.

● Test Management includes support for test artifact

persistence, artifact relations persistence, and test

execution state preservation. Test process automation

requires a repository for test artifacts. A passive

repository such as a file serves the basic need of stor-

age. However, an active repository is needed to sup-

port relations among test artifacts and provide for
their persistence.

● Test PZanning includes the development of a master

test plan, the features of the system to be tested, and

detailed test plans. Included in this function are risk

assessment issues, organizational training needs,
required and available resources, comprehensive test

strategy, resource and staffing requirements, roles and

responsibility allocations, and overall schedule.

/

canonical Test
Functional Process
Partitions Evolutiou

Debugging
........................ ......................

Demonstration

....................................

Destruction

Test

\

...........................

Measurement Evaluation

Test
Management

— .................
Prevention

Test
Plaoning

\/ ~----------
Figure 2. STEP Model

The test process evolution and canonical functional par-

tition resulting f%om the STE domain analysis provide the

foundation for the Software Test Environment Pyramid

(STEP) model. The STEP model, shown in figure 2, strati-

fies test functionalities from the apex of the pyramid to its

base in a corresponding progression of test process evolu-

tion as described in figure 1. Each period represented in

the pyramid includes the functionalities of previous peri-

ods as you descend from the apex to the base.

The top section of the pyramid represents the function

of test execution. Test execution is clearly required by any

test process. The test process focus of the debugging-ori-

ented period was solely on test execution.

The second segment of the pyramid, from the top, is

divided into two scalene triangles. The smaller scalene tri-

angle representa test development. The larger scalene tri-

angle represents test failure analysis. The relative

positions and sizes have semantic significance.
Test development played a more significant role to the

overall test process during the demonstration-oriented and

destruction-oriented periods due to the manual intensive

nature of test development at that time. Test development

methods have not significantly changed, although they
have improved in reliability and reproducibfity with auto-

mation. Thus, their role in test process has diminished in

significance as you move ahead in test procxws evolution.
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Test failure analysis was less important when performed

manually, as interactive checking by humans added little

benefit for test behavior verification. The methods applied

to test failure analysis have increased in their level of

sophistication, making test failure analysis more signifi-

cant to the overall test process. One of the most significant

advances are specification-based test oracles which

enables early entry of the test process into the life cycle.

This is a key difference in test process focus as it

progresses towards the prevention-oriented period.

Test measurement is represented by the third segment in

the pyramid. Test measurement is required to support the

evaluation-oriented period, which represents the point of

departure from a phase approach to a life cycle approach,

A significant change in the test process focus is that testing

is applied in parallel to development not merely at the end

of development. Test measurement also enables evaluating

and improving the test process.

Approaching the base of the pyramid, the fourth seg-

ment representa test managemen~ which is essential to the

evaluative test process due to the sheer volume of informa-

tion that is created and must be stored, retrieved, and

reused. Test management is critical for test process repro-

ducibility.

The base, or foundation, of the pyramid is test planning.

Test planning is the essential component of the prevention-

oriented period, Test planning introduces the test process

before requirements, so that rather than being an after-

thought, testing is preplanned and occurs concurrently

with development.

The Software Test Environment Pyramid reference

architecture presented here is an initial attempt at a dia-

grammatic representation of the canonical functional parti-

tion of the Software Test Environment domain. We will

continue to refine and improve the STEP model and wel-

come other researchers to do the same. To avoid overuse

of the term architecture, canonical functional partition is

used in the remainder of the paper in deference to refer-
ence architecture.

2.2 SAAM Structure

Structure represents the decomposition of the system

components and their interconnections. The graphical

notation used by SAAM is a concise snd simple lexicon,

which is shown in figure 3. In the notation used by SAAM

there are four types of components: a process (unit with an

independent thread of control); a computational compo-

nent (a procedure or module); a passive repository (a file);

and an active repository (database). There are two types of
connectom: control flow and data flow, either of which

may be uni or hi-directional.

Components

I

o Computational
Component

[ I Passive Data
Repository

(3 Active Data
Repository

Connections

Data Flow
4

Uni/Bi
4 ➤ Directional

Control Flow

+ Uni/Bi
Directional

Figure 3. SAAM graphical architectural notation

SAAM’S goal is to provide a uniform representation by

which to evaluate architectural qualities. The simplicity of

the notation is achieved by abstracting away all but a nec-

essary level of detail for a system level comparison. The

field of software architecture, not unlike hardware design,

recognizes a number of distinct design levels, each with its

own notations, models, componentry, and analysis tech-

niques. A more detailed and complex lexicon would be

required for a more focused analysis. This is not within the

scope or objectives of this paper but is planned for future

work.

2.3 Allocation of Functional Partitions to Struc-
ture

The allocation of domain functionality to the software

structure of an STE completes the graphical representation

of the STE. The allocation provides the mapping of a sys-

tem’s intended functionality to the concrete interpretation

in the implementation. SAAM focuses most closely on

allocation as the primary differentiating factor among

architectures of a given domain.

3 Architectural Descriptions of STES

In this section we evaluate three test environments from

the domain of Software Test Environments.

We &-at duplicate the system level graphical diagram

for each STE as published by their respective authors. We

discuss components in this diagram briefly. The reader is

referred to the authors’ papem for detailed information.

Next, we recast each STE in the graphical notation osed by

SAAM.
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PDLT/1
Program

structure
Checker

Teat
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TeatReport
Generator

\uReport
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Figure 4. The PROTest II system, adapted from [2]

Here, we name components of all three systems of stillar

functionrdity the same and indicate what components in

the authora’ original descriptions correspond to these like-

narned components. The re-characterization of the archi-

tectures in a uniform, evenly abstract graphical diagram

and common terminology provides a sound basis for

understanding and comparison. Each STE is evaluated in

terms of ita stated goals and compared with the STEP
model to determine its process focus. Finally, the three

STE architectures are compared as represented in the nota-

tion used by SAAM.

3.1 PROTest II

PROTest 11 Author’s Description. The PROTest II

system, as depicted by [2], is shown graphically in figure

4. PROTest II is composed of five components: a test

driver, structure checker, test input generator, test cover-

age analyzer, and a test report generator. PROTest II also
provides a graphical user interface. A detailed textual

description of the system can be found in [2].

PROTest II SAAM Description and Functional Allo-

cation. As shown in figure 5, PROTeat 11includes three of

the canonical functional partitions test execution, test

development, and test measurement. Test failure analysis,

test managemen~ and test planning are missing, which is

often typical of interactive test environments [11].

The”SAAM re-characterization of the PROTest 11archi-

tecture facilitates determining g if system goals are

achieved. In particular, a major deficiency highlighted is
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Figure 5. The PROTest II system structure and func-
tional allocation through SAAM.

357



I TAOS
I
1I

.-
-.,; .:. -

----- ,.. ; =-----

Teat Developmen~------------- ,.--”’-
: ..::. .+-

m& &’y&----M:me”t

Teat Management

S’=.+

Figure 6. The TAOS system, source[171

that the PROTest II architecture does not have structural

separation between the functions of test development and

test measurement. The test input generation process is

interdependent with the test coverage process. This is not

evident in the author’s diagram but is explicit in the
SAAM architectural description. PROTest II accomplishes

the function of test measurement by analyzing instru-

mented source code to determine what clauses will be cov-

ered given the test cases that are chosen. The predicted

coverage of clauses is reported along with the test cases

that did not execute (called the failed to execute report).
These structural choices create interdependencies of test

measurement with test development and test execution.

The resulting srchitectme has highly coupled components,

as is clear in the functional overlays in figure 5,

The objective of PROTest II is to provide a fully auto-

mated test environment for Prolog programs [2]. PROTest
II does not achieve this goal but rather provides an interac-

tive test environment that partially automates test execu-

tiou test development, and test measurement. The

developers state that the strength of PROTest II as a sys-

tem stems from the idea of delining coverage in real logic

programming terms, rather than adapting imperative pro-

@amming ideas. It appears that this language focus led to
coupling of components, since generic capabilities were

not developed,

. . . . .*

PROTest II Process Focus. The SAAM diagram of

PROTest II highlights the system’s structural composition.

It also provides a basis to compare the STE to the process

evolution of the STEP Model. The PROTest II system sup-

ports implementation-based testing thus, the life cycle

entry point for PROTest II is post-implementation. The

PROTest II system supports executing a program to cause

failures, and thus the test process has a destructive focus

[9]. PROTest II does not support the test process across the

development life cycle. However, the PROTest II STE is

part of a larger system, mentioned but not described in [2],

which may extend its range of support.

3.2 TAOS

TAOS Author’s Description. The TAOS system as

depicted by [17], is shown graphically in figure 6. TAOS is

composed of several components: a test generator, test cri-
terion deriver, artifact repository, parallel test executor,

behavior verifier, and coverage analyzer. TAOS also inte-

grates several tools ProDAG (Program Dependenm Anal-

ysis Graph), Artemis (source code instmmentor), and LPT

@@age processing Tools). The TAOS system is shown
in figure 6. A complete detailed textual description of

TAOS and its integration with the Arcadia SDE is given in

[17]. Specification-based test oracles as automated by

TAOS are described in [16].
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Figure 7. The TAOS system structure and functional
allocation through SAAM

ADES objeet management system, which supporta persis-

tence of data and data relations in an active reuositorv
TAOS SAAM Description and Functional Alloca-

tion. As shown in figure 7, TAOS provides support for test

execution, test development, test failure analysis, test mea-

surement, and test management. Test planning, however, is

not supported.

As evident in the SAAM architectural description,

TAOS achieves loosely cnupled components through sep-

aration of concerns with respect to system functionalities.

The composition of each functional partition is accom-

plished through the use of highly cohesive components.

Test generation is a process with an independent thread of

control and is not dependent on components from other

functional areas. Test execution is achieved by an indepen-

dent process for program execution. Test failure analysis

and test measurement are invoked by the test driver, but

remain highly cohesive componentry within their respec-

tive functional partitions.

This high degree of separation of concerns is facilitated

by the primary component integration mechanism, which
is data integration. Data integration is facilitated by

abstract programmatic interfaces provided by the PLEI-

[19].

The TAOS system was built using a development strat-

egy identified during the TEAM project [4] with the goal

of building components that provide generic capabilities

and abstract interfaces to support varied testing activities

and processes. TAOS integrates several multipurpose

components, including ProDAG, LPT, and Artemis. Effec-

tive data integration is achieved through a consistent inter-

nal data representation in the Language Processing Tools

(LPT), which is also used by ProDAG and ,Artemis. Inte-
gration of generic analysis tools supports multiple test and

analysis purposes. ProDAG, for instance supports the use

of program dependence graphs for test adequacy criteria,

test coverage analysis, and optimizing efforts in regression

testing (by identifying code affeeted by program changes).

The TAOS arehiteetare clearly achieves its goal through

genetic capabilities and abstract programmatic interfaces,

TAOS Process Focus. TAOS supports specification-

bssed testing and thus an entry point into the life cycle
after the requirements phase. TAOS suppoms a test process

with an evaluative focus.
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Figure 8. The CITE system, adapted from [20]

3.3 CITE mated, general purpose software. test environment.- .- _———

CITE Author’s Description. The CITE system, as

depicted by [20], is shown graphically in figure 8 (only the

components of CITE developed by Convex are shown).

The CITE architecture consists of several components: a

test driver (’ID), test coverage analyzer (TCA), test data

reviewer (TDReview and TDPP), test generator, and data-

bases and a rule base. Additional tools have been inte-

grated for use with the system. Specifically, the OCT test

coverage tool expanda the typea of test coverage measured
by the environment and the EXPECT simulator provides

for special purpose interactive testing. A complete textual

description of CITE is given in [20].

CITE SAAM Description and Functional Allocation.

The SAAM graphical depiction of CITE, as shown in fig-

ure 9, reflects the structural separation desired in a system
that controls the test process automatically. CITE provides

support for test execution, test development test failure

analysis, test measurement, and test management. CITE

does not support teat planning,

CITE has achieved the desired functionalities through
allocation to atructarally cohesive components. The pro-
cess control exercised by the ride-base ia evidenced in

direct control to each functional area. This clean separa-
tion of concerns supports the primary goal of a fully auto-

CITE Proce-= Focus. CITE supports implementation-

baaed testing. CITE has a destructive test process focus

that is, it executes a program to &tect failures, which is a

limited scope for automation of the test process. However,

all testing functionalities supported by CITE are fully

automated,

3.4 STE Comparison

The three STEa share stated goals of automating the test

process. The use of SAAM clarifies how well each STE

achieves this goal and to what degree. SAAM uses a

canonical functional partition to characterize the system

structure at a component level. The functionalities sup-

ported and stmctural constraints imposed by the architec-

ture are more readily identified when compared in a
uniform notation.

Test process focus was identified for each STE. PRO-

Test II and CITE support implementation-baaed testiug

and have a destructive test process focus. This focus has a

limited scope of life cycle applicability, as it initiates test-
ing after implementation for the purpose of detecting fail-

ures. TAOS supporta specification-baaed testing and has

an evaluative teat process focus. An evaluative test process

focus provides complete life cycle support, as failure de-
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Figure 9. The CITE system structure and functional
allocation through SAAM

tection extends ffom requirements and design to code. Test

process focus appears to dictate the scope of automation

achieved across the life cycle and the types of functional-

ity supported by an STE.

Test planning is not supported by any of the three STES.

Test planning functionality specifically supports a preven-

tative test process focus. We could not Iind an STE that

explicitly supports a preventative process. Some tools

address planning as a separate issue but fail to integrate

test artifacta with a parallel development effort. A preven-

tative process focus may be best achieved through inte-

grating an STE with an SDE.

Test Management is not supported in PROTest II. CITE

and TAOS support test management with an active reposi-

tory. TAOS provides support for object management and

process management. CITE provides support for object

management, rule-based test process templates and config-

uration management. Test management is essential for full

automation. The test process spans a temporal boundary of

the life cycle and generates voluminous amounts of test
artifacts with complex relations that must be supported by

test management. Coordinating the test process over time

is not possible without automated test management.

Test Measurement in PROTest II is tightly coupled with

test development and test execution. PROTest II only par-

tially automates measurement, specifically source code

instrumentation is done manually. PROTest II addresses

test measurement and test development by focusing on the

language constructs of Prolog. The resulting monolithic,

highly coupled architecture reflects this focus. CITE and

TAOS provide for full automation of test measurement.

CITE supports block coverage and TAOS supports pro-

gram dependence coverage as well as statement and

branch coverage.

Test Failure Aualysis requires that the expected output

be documented for test case inputs. The actual outputs

must be verified with respect to correct or expected behav-

ior. Verification can be accomplished through a test oracle.

The most accurate of oracles are specification-based test

oracle~ the most error prone are interactive human ora-

cles. Test failure analysis has increased in importance as

the test process focus has changed fimn demonstrative to

evaluativ% it is also critical in achieving a preplanned pre-

ventative process. PROTest II does not support failure
analysis, as it does not store expected outputw rather

behavior verification relies on an interactive human oracle.

CJTE stores expected outputs with test case inputs, yet this
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approach still relies on a human as oracle. The process is

not interactive, however, and is thus less error prone. CITE

provides additional leverage for the human oracle in that

stored expected outputs are reused extensively adding to

the cotidence that they are correct. TAOS supporta speci-

fication-based test oracles, which provide the greatest

degree of oracle accuracy and reproducibility.

Test development is partially automated in PROTest II.

It is an interactive process that manually develops an aug-

mented Prolog program for test execution, manually

instruments the source code, and manually checks the

structure report. CITE and TAOS provide full automated

support for test development including test data genera-

tion.

Test execution is ftdly automated by all three STBS.

All thee STES share the goal of providing a fully auto-

mated software test environment. PROTest II does not

achieve this goal. The author’s claim their focus on lan-

guage constructs is a strength despite the architectural

implications in lack of support for separation of concerns

and development of highly cohesive components. TAOS

and CITE have highly cohesive components that are

loosely coupled. TAOS clearly achieves its goal of full

automation and provides broader support across the life

cycle with an evaluative process focus. Test failure analy-

sis is optimized in TAOS through the use of specification-

based test oracles. CITE meets its goal of full automation.

A particular strenglh of the CITE STE is its provision for

automated configuration management (CM) and version-

ing control, Automated CM is foundational to successful

process control.

4 Analyzing Software Architectural Quali-

ties

The goal of a software development process is to pro-

duce software having a specified set of qualities, hopefully

quantifiable. The eleven ...ilities of software quality, delin-
eated by [3], are correctness, reliability, efficiency, integ-

rity, usability, maintainability, flexibility, testability,

portabdity, reusabilhy and interoperabilhy. These qutilties

are also desirable for Software Test Environments.

Software architectural analysis is used to determine if a

specific structural decomposition and the functional allo-

cation to system structures supports or irnpedos certain

qualities. Parnas identified changes to data representation

and changes to processing algorithm as particularly sensi-

tive to system architectural constraints [15]. Gsrlan, Kai-

ser, and Notkin further identified enhancements to system

functionality, improvements to performance (space and

time), and reuse of components [7]. This paper examines

software architectural constraints in relation to reusability.

An examination of system modifications, functional

enhancements, and performance improvements are to be

examined in future work.

Component reusability is the attribute of facilitating

multiple snd/or repeated use of components, This applies

to both computational and data components. Wh.h respect

to STES, we might evaluate reuse of the components in the

STE or reuse of the components managed and manipulated

by the STE. Here, we choose the latter, and thus will eval-

uate each STB with respect to its support for reuse of the

artifacts of the test process managed by the STE. An

STB’S ability to store, retrieve, and reuse test plans, test

scripts, test suites, test cases, test criteria, test oracles, test

resulta, and the like is central to their ability to effectively

automate the test process. Note that some of these artifacts

are indeed computational components (e.g., test scripts)

while others are data components.

Reuse is further delineated by [Bie91] as verbatim or

leveraged reuse. Verbatim reuse is reuse without modifica-

tion to the code. Leveraged reuse is reuse through modi~-

ing some portion of the code. Verbatim reuse has the clear

advantage of reducing test effort. Leveraged reuse is of

value as long as it takes less effort to locate, select and

modi@ the test artifact than to simply reproduce it.

The next section evaluates test artifact reusability for

each of the three STES. The presence or absence of the

quality of ~usability in PROTest II, TAOS, and CITE is

evaluated in regards to the STE’S support for test artifact

reusability.

4.1 Reusability of Test Artifacts in PROTest II.

PROTest II does not support test artifact reuse. The lack

of provision for test management is a primary factor in this

deficiency. Test management is necessary to support arti-

fact persistence and thus reuse.

The structure of PROTest II also impedes test artifact

reusability. Test inputs are generated based on test cover-

age. Test execution results provide clauses actually cov-
ered in the execution. Failed cases are test cases that did

not execute. This functional interdependency among struc-

tural components inhibits test artifact reuse. The high

degree of artifact interdependence impedes reuse as well.

4.2 Reusability of Test Artifacts in TAOS.

TAOS supporta test artifact persistence and maintains

test artifact relations through an active object repository.

TAOS test management support provides the ability to

store, retrieve, and modi@ test artifacts. Thus, TAOS ade-

quately supports test artifact reuse.

Primarily, TAOS provides support for verbatim reus-

ability. As an example, F%oDAG provides dependence

graphs for many uses, including derivation of test ade-

quacy criterion and test coverage analysis. The same
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dependence graphs can be reused iu debugging, where

code slices leading to a failure can be determined. These

same graphs can be used later in the life cycle to facilitate

software maintenance, where code slices affected by a

change can be determined analyzed and related test arti-

facts reused for regression testing. Thus, we see that

TAOS provides for reuse in diverse functional capacities

as well as in disbursed temporal contexts.

TAOS also provides support for leveraged reuse as per-

sistent test artifacts may be modified for use in slightly dif-

ferent contexts, such as during software evolution and

maintenance.

43 Reusability of Test Artifacts in CITE.

CITE provides extensive support for leveraged reusabil-

ity. Leveraged reuse in CITE includes reuse of test rides

and test templates. The rules may be reused with slight

modifications to execute tests including new capabilities.

Test information can be modified for reuse by editing tem-

plates. As an example, Convex discusses the reuse of the

compiler test suites for a family of related compiler prod-

ucts, where in each instance the rule required a simple

modification allowing 909% of the test suite to be reused.

Verbatim reuse in CITE includes the reuse of entire test

suites as well as individual test caaes.The test management

provides support for version control, which supporta reus-

ing tests during maintenance and updates of previously

released or tested code.

5 Conclusions and Future Work

This paper laid the groundwork for future evaluation of

software testing environments by developing the STEP

Model for STES, validating the model by representing

three different systems using the architecture, comparing

three STEa using SAAM, and evaluating the architectural

constraints for one quality attribute, test artifact reusabil-

ity, for all three STES. This work has also provided insight

into the application of SAAM for architectural analysis of

STES.
STEP Model. The Software Test Environment Pyramid

(STEP) model was introduced in section 2 as an initial

attempt at providing a much needed canonical functional

partition for STEs in a semantically significant model that

incorporates process evolution and focus. The six func-

tions identified - test execution, test development, test fail-

ure analysis, test measurement, test management and test

planning - provide orthogonal partitiona for all STE func-

tionality. The pyramid model provides semantic signifi-

cance in the ordering of the sections through the test
process evolution progression from apex to base. This
model is unique in its incorporation of both functionality

and teat process evolution. The STEP model implicitly

recognizes the importance of test process focus for STG.

STEP also provides insight into an STE’S range of life

cycle support in the test process focus. The STEP model’s

integration of process evolution recognizes the importance

of test process automation as well as ita evolutionary

nature in applicability across the life cycle,, The STEP

model attempts to capture the complexity of test process

automation in a semantically rich model with intuitive

explanatory powers.

Comparison of Three STES. PROTest II, TAOS, and

CITE all share the goal of a fully automated test environ-

ment. Claims made by the respective authors of the S’Ilk

were: the PROTest II focus on declarative language con-

structs would provide an advantage for such a system,

CITE was the most powerful and complete automated test

environment in use, and TAOS provided an automated

STE based on integrated tools and generic component

functionality.

PROTest II provides a partially automated environment.

CITE is indeed powerful and complete, although auto-

mated oracle support for test failure analysis could be

improved. A particular strength of CITE is its provision

for configuration management and versioning control.

TAOS achieves its goal of a fully automated test environ-

ment and covers test activities across the life cycle. A sig-

nificant strength of TAOS is its provision for automated

specification-based test oracles to support test failure anal-

ysis.

Test Artifact Reusability. Test artifact reusability is of

particular importance for ST13S.Reuse of test artifacts with

little or no modification is critical to providing full aut~

mation across the test process and the software life cycle.

Reuse is also an effective determinant for delimiting the

amount of information that must be stored and therefore

managed by an STE. To support artifact reuse, an STE

must provide test management utilities, specifically persis-

tence of test artifacts and test artifact relations. Persistence

alone, however, is not sufficient to support leveraged reus-

ability. The artifacts must be configured to enable efficient

storage, retrieval, and modification for leveraged reuse. If

this capability is not supported, leveraged reuse becomes

more costly and possibly prohibitive.

This paper examined PROTest II, TAOS, and CITE for

the quality of reusability, in particular test artifact reusabil-

ity. PROTest II does not support such reuse. TAOS and

CITE support both verbatim and leveraged reuse. Support

for test artifact reuse serves as the litmus test for an STE’S

support for full automation of the test process across the

life cycle.

Evaluation of SAAM Method. The SAAM architec-
tural analysis is approached from three perspectives: a
canonical functional partition, system structwe, and allo-

cation of functionality to structural decomposition of the
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system. SAAM uses a simple lexicon to describe all the

STES in a uniform notation to depict their system structure

so as to permit a common level of understanding. The sys-

tems are further evaluated in their support for some con-

crete task that would determine whether or not the system

has a quality such as modifiability or reusability.

SAAM enabled our analysis of all three STES and

revealed system strengths and weaknesses inherent to

structural decompositions and choices concerning func-

tional allocations, The differences noted were not apparent

from the original author’s descriptions but were revealed

by using SAAM.

A more detailed lexicon in SAAM would support more

in-depth analysis of test artifact reusability. The SAAM

lexical notation supports analysis of data and control flow

among system components but does not address complex

data relationships. Future work will look at augmenting

the SAW lexical notation to provide greater detail and

support complex analysis of data components.

Future Work. The STEP model reference architecture

for STES is to be further refined. Specific improvements

planned are adding a third dimension to the pyramid and

providing the required semantic significance to more

closely correlate the canonical function partitions to test

process evolution.

Additional STES will be compared to the current work

and evaluated with SAANL This will provide additional

insight into WI% beyond that gained by taxonomic

approaches.

The three STES analyzed in this paper will be further

evaluated for architectural impact on enhancements to sys-

tem functionality. Such analysis is supported by SAAM

and will be the next area of investigation. In addition, sys-

tem modifiability as evidenced in changes to data repre-

sentation, processing algorithms, and performance

optimization will be examined. However, SAAM’S simple

lexicon does not support such analysis and will therefore

require a more detailed lexical notation be developed.
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